MATH423 - Introduction to String Theory Set Work: Sheet 10

- 1 Consider coordinates $X^{\mu}=(x^0,x^1,x^2,x^3)$ and the associated light-cone coordinates (x^+,x^-,x^2,x^3) . Write the following Lorentz transformations in terms of the light-cone coordinates:
 - **a.** A boost with velocity parameter β in the x^1 direction.
 - **b.** A rotation with angle θ in the x^1 , x^2 plane.
 - **c.** A boost with velocity parameter β in the x^3 direction.
- 2 Consider the "lightlike" compactification, in which we identify events with position and time coordinates related by

- a. Rewrite this identification using light-cone coordinates.
- **b.** Consider coordinates (ct', x') related to (ct, x) by a boost with veclocity parameter β . Express the identifications in terms of the primed coordinates.
 - **c.** Consider the family of indentifications given by

$$\begin{pmatrix} x \\ ct \end{pmatrix} \sim \begin{pmatrix} x \\ ct \end{pmatrix} + 2\pi \begin{pmatrix} \sqrt{R^2 + R_s^2} \\ -R \end{pmatrix}. \tag{2}$$

Show that there is a boosted frame S' in which the identification (2) becomes a standard identification (*i.e.* the space coordinate is identified but the time coordinate is not).

3 The vacuum energy associated with the current acceleration of the universe is $\rho_{\rm vac} = 7.7 \times 10^{-27} {\rm kg/m^3}$. Derive a fundamental length scale, $\ell_{\rm vac}$ associated with this vacuum energy in terms of $\rho_{\rm vac}$, the Planck constant \hbar , and the speed of light c. Express the numerical value for ℓ_{vac} in μ m where 1μ m = 10^{-6} m.