
MATH423 String Theory Solutions 10

1a.

The nontrivial Lorentz transformations for this boost are:

x′0 = γ(x0 − βx1)

x′1 = γ(x1 − βx0)

We then find

x′± =
x′0 ± x′1√

2
=

γ√
2
(x0 − βx1 ± x1 ∓ βx0)

=
γ(1 ∓ β)√

2
(x0 ± x1) = γ(1 ∓ β)x±

Therefore

x′+ =

√

1 − β

1 + β
x+ , x′− =

√

1 + β

1 − β
x− , x′2 = x2 , x′3 = x3 (1)

The light cone coordinates x+ and x− do not mix under boosts along X1!
b.

The new rotated coordinates are given by

x′0 = x0

x′1 = cos θx1 + sin θx2

x′2 = − sin θx1 + cos θx2

x′3 = x3

After some algrebra we find

x′+ =
1

2
(1 + cos θ)x+ +

1

2
(1 − cos θ)x− +

sin θ√
2

x2

x′− =
1

2
(1 − cos θ)x+ +

1

2
(1 + cos θ)x− −

sin θ√
2

x2

x′2 = −
sin θ√

2
x+ +

sin θ√
2

x− + cos θx2
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c. For a boost with velocity parameter β along x3, the Lorentz transfor-
mations are:

x′0 = γ(x0 − βx3)

x′1 = x1

x′2 = x2

x′3 = γ(x3 − βx0)

Therefore,

x′+ =
x′0 + x′1

√
2

=
γ(x0 − βx3) + x1

√
2

=
γ

2
(x+ + x−) −

γβx3

√
2

+
1

2
(x+ − x−).

Similalry for x′−, x′2 and x′3 we get

x′+ =
1

2
(γ + 1)x+ +

1

2
(γ − 1)x− −

γβ√
2
x3,

x′− =
1

2
(γ − 1)x+ +

1

2
(γ + 1)x− −

γβ√
2
x3,

x′2 = x2

x′3 = γx3 −
γβ√

2
(x+ + x−).

2a.

(

x
ct

)

∼
(

x
ct

)

+ 2π

(

R
−R

)

. (2)

We use (2) to compute

x+ =
ct + x√

2
∼

1√
2
(ct − 2πR + x + 2πR) = x+

x− =
ct − x√

2
∼

1√
2
(ct − 2πR − x − 2πR) = x− − 2π(

√
2R)
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We therefore have the light –cone identifications

x+ ∼ x+ , x−x− − 2π(
√

2R).

The compactification does not involve light–cone time.

b. With the Lorentz transformation x′ = γ(x−βct) and ct′ = γ(ct−βx),
we have

x′ ∼ γ(x + 2πR − β[ct − 2πR]) = x′ + 2πRγ(1 + β)

ct′ ∼ γ(ct − 2πR − β[x + 2πR]) = ct′ − 2πRγ(1 + β)

(

x′

ct′

)

∼
(

x′

ct′

)

+ 2π

√

1 + β

1 − β

(

R
−R

)

.

Comparing with (2) we see that in the boosted frame the effective radious of
compactification is increased.

c.

Considering the compactification
(

x
ct

)

∼
(

x
ct

)

+ 2π

(√

R2 + R2
s

−R

)

. (3)

We search for a fame (x′, ct′)

x′ = γ(x − βct)

ct′ = γ(ct − βx)

in which this compactification is standard. For this we need ct′ ∼ ct′. So,

ct′ ∼ γ(ct − 2πR − β[x + 2π
√

R2 + R2
s ])

= ct′ − γ(2π)(R + β
√

R2 + R2
s)

Thus, we need R + β
√

R2 + R2
s = 0, so

β = −
R

√

R2 + R2
s

.

Now examine the x′ identification to find the radius:
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x′ ∼ γ(x + 2π
√

R2 + R2
s − β(ct − 2πR))

x′ ∼ x′ + 2πγ(
√

R2 + R2
s + βR)

Similarly,

γ(
√

R2 + R2
s + βR) =

1
√

1 − β2
(
√

R2 + R2
s −

R2

√

R2 + R2
s

)

=

√

R2 + R2
s

Rs

(

R2 + R2
s − R2

√

R2 + R2
s

)

= Rs

Thus, x′ ∼ x′ + 2πRs. The radiius of compactification is Rs. It is interesting
to note that γ =

√

R2 + R2
s/Rs. In the limit as Rs is small this is a very

large Lorentz factor γ ∼ R/Rs.

3.

In the formula
ℓvac = ρα

vac~
βcγ (4)

The units on both sides must agree:

L =

(

M

L3

)α(
ML2

T

)β (
L

T

)γ

This gives three equations for matching powers of M , L and T :

α + β = 0, − 3α + 2β + γ = 1, − β − γ = 0 .

The solution is α = −1/4, β = 1/4 and γ = −1/4. This means that (4)
gives

ℓvac =

(

~

cρvac

)
1

4

Taking ρvac = 7.7 × 10−27kg/m3 gives

ℓvac = 8.22 × 10−5m = 82.2µm
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