MATH423 - Introduction to String Theory Set Work: Sheet 8

1. The Fourier modes of the energy-momentum tensor

For a closed string, the Fourier expansion of the solution to the equations of motion is

$$X^{\mu}(\sigma) = x^{\mu} + \frac{1}{\pi T} p^{\mu} \sigma^{0} + \frac{i}{2} \sqrt{\frac{1}{\pi T}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-2in\sigma^{-}} + \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_{n}^{\mu} e^{-2in\sigma^{+}}$$

The lightcone components of the energy-momentum tensor are

$$T_{\pm\pm} = \frac{1}{2} (\partial_{\pm} X^{\mu})^2.$$

Use the Fourier expansion of X^{μ} to show that the Fourier modes of T_{--} at worldsheet time $\sigma^0 = 0$ are given by:

$$L_{m} = T \int_{0}^{\pi} d\sigma^{1} e^{-2im\sigma^{1}} T_{--} = \frac{1}{2} \sum_{n=-\infty}^{\infty} \alpha_{m-n} \cdot \alpha_{n} .$$

2. Compute the commutation relations

$$[L_m,\alpha_n^{\nu}]$$
.

The basic commutations relations and the definition of the L_m are given in the lecture notes.

3. Show that the operators

$$l_m = \frac{i}{2}e^{2im\sigma^+}\partial_+$$

satisfy the Witt algebra

$$[l_m, l_n] = (m-n)l_{m+n} .$$