MATH423 - Introduction to String Theory Set Work: Sheet 2

1. Consider the plane (x,y) with the identification

$$(x,y) \sim (x + 2\pi R, y + 2\pi R)$$

What is the resulting space.

- 2. (a) Consider the circle S^1 . Presented as the real line with the identifications $x \sim x + 2$. Choose $-1 < x \le 1$ as the fundamental domain. The circle is the space $-1 < x \le 1$ with the points $x \pm 1$ identified. The orbifold S^1/Z_2 is defined by imposing the Z_2 identification $x \sim -x$. Describe the action of this identification on the circle. Show that there are two points on the circle that are left fixed by the Z_2 action find a fundamental domain for the two identifications. Describe the orbifold S^1/Z_2 in simple terms.
- (b) Consider a torus T^2 , presented as the (x,y) plane with the identifications $x \sim x+2$ and $y \sim y+2$. Choose $-1 < x, y \le -1$ as the fundamental domain. The orbifold T^2/Z_2 is defined by imposing the Z_2 identification $(x,y) \sim (-x,-y)$. Prove that there are four points on the torus that are left fixed by the Z_2 transformation. Show that the orbifold T^2/Z_2 is a two dimensional sphere, naturally presented as a square pillowcase with seamed edges.

3. The Lorentz force equation can be written relativistically as

$$\frac{dp^{\mu}}{ds} = \frac{q}{c} F^{\mu\nu} \frac{dx_{\nu}}{ds},$$

where p_{μ} is the four momentum. Check explicitly that that equation reproduce the Lorentz force law equation,

$$\frac{d\vec{p}}{dt} = q\left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right),\,$$

when μ is a spatial index. What does the relativistic equation give when $\mu = 0$

- **4.** (a) Show explicitly that the source free Maxwell equations emerge from $T_{\mu\lambda\nu}=0$.
 - (b) Show explicitly that the Maxwell equations with sources emerge from

$$\frac{\partial F^{\mu\nu}}{\partial x^{\nu}} = \frac{1}{c} j^{\mu}.$$