MATH423 - Introduction to String Theory Set Work: Sheet 1

* Reading: Zwiebach chapters 1 and 2

1.

Write down the weight lattice of the spinorial 16 representation of SO(10) and how it decomposes under the $SU(5)\times U(1)$, $SO(6)\times SO(4)$ and] $SU(3)\times SU(2)\times U(1)^2$ subgroups.

Indentify how the Standard Model states fit into the spinorial 16 of SO(10).

2.

Consider the infinitesimal line element,

$$ds^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu} = dt^{2} - dx^{2}.$$

(a)

Write the metric $g_{\mu\nu}$ and its inverse in an explicit in matrix form.

(b) Find the set of independent transformations of the form

$$t \to t + \epsilon A(t, x)$$

 $x \to x + \epsilon B(t, x)$,

where ϵ is an infinitesimal constant and the functions A and B have to be determined by the requirement that ds^2 is invariant. State what each transformation represents in space time.

3.

Consider two Lorentz vectors a^{μ} and b^{μ} . Write the Lorentz transformations $a^{\mu} \to a'^{\mu}$ and $b^{\mu} \to b'^{\mu}$. Verify that $a^{\mu}b_{\mu}$ is invariant under these transformations.

4.

- (a) Give the Lorentz transformations for the components a_{μ} of a vector under a boost along the x^1 axis.
- (b) Show that the object $\frac{\partial}{\partial x^{\mu}}$ transforms under a boost along the x^1 axis as the a_{μ} vector considered in (a) do. This checks, in a particular case, that partial derivatives with respect to upper–index coordinates x^{μ} behave as a four–vector with lower indices, which is why they are written as ∂_{μ} .
- (c) Show that, in quantum mechanics, the expression for the energy and momentum in terms of derivatives can be written compactly as $p_{\mu} = \frac{\hbar}{i} \frac{\partial}{\partial x^{\mu}}$.