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1a.
The basic commutator between oscillators is
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(I assumed that m # 0, so that there is no need to worry about normal
ordering. )

1b.
For the closed string
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we get
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and similarly for L,,.

1c.
Using
[, BC] = [A, BIC + BIA,C]

we have
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letting p — p — m in the second sum we get
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1d.
The only term in the infinite sum that contributes to the state is the one
with p = 1:
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imposing the commutation relations on the a operators we get
1 1 1
[|L_2|0 > || =< 0|§a’fa1,ua'ila_1,nu|0 >= énuueta’“’ = ED #0. (4)
This clearly contradicts our expectation that
L,|phys >=0

i.e. that the Fourier modes of the world-sheet energy-momentum tensor
annihilates the vacuum. The problem arises because of the nontrivial com-
mutation relations [L,,, L,| when m = —n.

le.
From d, and using < 0|Lo|0 >= 0, we have
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< 0|L2L_2|0 >= ED , < 0|L_2L2|0 >=0
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Hence A(2) = 3D

For A(0) this is obvious as we have
A(0) = [Lo, Lo] = 0.
For )
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The only possible nonvanishing term in
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comes from
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However, we are taking the state with p#|0 >= 0 and hence < 0|[L;L_4]|0 >=
0 and A(1) = 0.

1f.
From the Jacobi identity we have:

[Lis [Lny Lin]] + [Lny [Loms Le]] + [Lim, [Les Ln]] = 0 (6)
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Inserting the commutation relation

[Lin, Ln] = (M — 1) Ly + A(M)6min (7)
into (6) we get
(n—m)A(k) + (m —k)A(n) + k—n)A(m) =0 (8)
Taking k =1, m = —1 — n,n = n we have,
2n+1)A(1)— (n+2)A(n)+ (1 —n)A(—-1—n) =0 9)

From (7) it follows that A(—m) = —A(m) therefore

(2n+1)A(1) = (n+2)A(n) — (1 —n)A(n+1)=0 (10)
Using A(1) = 0 it follows that
_ (n+2)
An+1) = (n— 1)A(n) (11)
Inserting the proposition
An) = —en(n+1)(n—1) (12)

12
into (11) we see that the recursion relation is indeed satisfied.
Taking n = 2 in (12) and using A(2) = ;D we find that
c=D.

The algebra (7) is the celebrated Virasoro algebra and the central charge
A(m) embodies the quantum anomaly.



