MATHA423 String Theory Solutions 5

The action in terms of 7(7) is given by
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where 7(7) is an arbitrary parameter and éd7 is an invariant line element.
Hence, the following hold:
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Hence the integrand of the action transforms as
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and is invariant under reparametization 7 — 7. Invariance under Poincare
transformations follows from the fact that it is constructed from four vectors
and the fact i#%, and m? are Lorentz and Poincare invariants. The fact that
the action contains only derivatives of z# also implies that it is invariant
under constant four vector shifts.

b.

We obtain the equations of motion from the Euler-Lagrange equations
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Hence,
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c. For m? > 0 (dz*/dr)? < 0
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Substituting back into the action we get
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which is the action for a free massive particle.

d. The e equation of motion ©? + e?m? =0
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The equation of motions become
d <dx“> Pt 0
dr \ dr dr?

9 dx* dx”

= e

e For m*=0 impose e=1

The equation of motions become
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Under reparameterization the measure of integration transforms as

gfj,) 1d5°d5" = |det M |d6°5"
g
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where M = [M;;] is the matrix defined by M;; = (95" /d67) . Similarly,
dg’det = |det (g ) |do’do* = |detM|do do!

where M = [M,;] is the matrix defined by M;; = (85 /907) . We note that
|det M ||det M| = 1.

From invariance of the infinitesimal line element under reparameterization
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or in matrix form
gZJ( ) - gPQ(5)MPiqu = (Mzz) gquqj . (2)

We consider a target space surface S described by the mappting X* (o, 0%).
Given a vector dX* tangent to the surface, left |ds| denote its length. Then
we can write
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The induced matrix is given by
0X"0X,

999 = 3o Dot

whose determinant appears in the square root of the Nambu—Gotto action.
Taking the determinant of both sides of (2), and defining,

g = det(g;;)
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we have ) ) )
g = (detM™)g(det M) = G(detM)?>.

or
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Combing the results we get
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b
Identifying 0 = 7, the world-sheet ‘time’ parameter and o! = o, the
world—sheet internal parameter, we obtain from the Nambu—Gotto action:
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where L is given by
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Hence,
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