MATHA423 String Theory Solutions 4
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We have to Taylor expand the square root. Recall that Taylor expansion for
an arbitrary function to first order is

f(xo+0) = f(z0) + f'(w0)A.
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Here,
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The first term vanishes by the conditions éz#(7;) = dz#(7¢) = 0. Since dz*(7)

is arbitrary in the domain of integration, The second term vanishes iff the
integrand is identicaly zero 1i.e.
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This equation is in manifestly reparameterization invariant form. Indeed, the
object between the brackets is clearly reparameterization invariant:
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This follows from the chain rule di_r = ‘ffr - ‘fiiT. The derivative in front of

the square bracket does not spoil the reparameterization invariance since

4l ]=4[..]% =0— L[...] = 0. When we choose 7 = s
o datdr d:v“d:c”_(ds)z_l
Mg ar T M s ds (ds)?

2



Equation (4) then becomes
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3. The relativistic version of Newton’s second law is
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we want to show that (6) is the same as (5). Note
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Here s is the proper time and ds = v/1 — 92dt. Note that we fixed ¢ = 1.
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We have to replace ¥ by p’'. From part (b)
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We are interested in variation of the action

n
gz_mwéd&+%} Izﬂﬁn%@@»%%@y

when we let z#(7) — 2#(7) + dz#(7). We note that

0AL(2(7)) = Au (z(7) + 02(7)) — Ay (2(7)) = %533”(7),
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where gA,, is calculated at x = (7). The variation of the firstpart wss done

in problem 2. The variation of the second part is obtained from
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where we dropped the term of order 42 in the last line. We therefore have
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We exchange p <+ v in the first term and rewrite the second using a total
derivative:
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We assume that dx vanishes at the ends of P, so the total derivative (first
term in square brackets) vanishes. Using the chain rule for the second term
in square brackets we find
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This concludes the variation of I.

The variation of the first term in (7) is obtained by varying the path
xH (1) — x#(7) + 0x#(T), as was done in problem 2, or alternatively as we did
in the lectures,

m v
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The first term is a boundary term and vanishes by imposing

§(z*(m)) = 6(a*(7y)) = 0 .




= 65=-— /:f dré(z (7)) (mcnﬂ”% (%))

The momentum four vector is given by

dz¥
ds’

P’ =mu” = mc

where u” is the velocity four vector. Hence,
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Combining the variation of the two terms in the action for a charged particle
in an electromagnetic field we get
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