MATH423 String Theory Solutions 3
la.

T)\/u/ = a)\F;w + a,qu/)\ + aI/F)\p,'

where

F.—0,A, —0,A,.
Toij = 0o k35 + 0iFjo + 05 Fu;.
For time independent fields 0y F;; = 0, so Tp;; = 0 implies
8Z»F0j — 8jF0Z- =0— &E] — 8]EZ =0. (1)
E = —V® says E; = —8,®, so condition (1) is satisfied since
b

With d spatial dimensions and a point charge ¢ at ¥ = 0, the magnitude
E(r) of the electric field is

E(r)= l;fi) % (derived in lectures) (2)
Since E(r) = —%(r). )
o(r) = - (5) 1 ¢ 3)

- 27r% d— 2rd-2

Setting ® = 0 at r = oo for d > 2. Using I'(x + 1) = 2I'(z),

-l )

so we get



2.

a.
The standard Bohr radius
n? e?
ag = > =529 x 10 %cm,  arises from the potential V = ——. (6)
mee ,

In the gravitational case, the potential is
V = —-Gmemy/r,

so the gravitational Bohr radius af is obtained by replacing e? with Gm,.m,:

af — h _h ( e ) )

me(Gmemy,)  mee> Gmem,,

The ratio between the “gravitational” and the conventional Bohr radius is
therefore
ad e? (4.8 x 10710)2

— — ~ 2.27 x 10%.
a  Gmum,  (6.67 x 10-5)(0.911 x 10-27)(1.672 x 10-21) 8
(8)

aj = 1.2 x 10**cm (9)

This gives

Since 1 light year ~ 9.5 x 107cm, af = 1.3 x 10*3 light years!! The universe
is about 1010 years old, so this distance is quite large.

b.
We introduce factors of GG, ¢ and & into the formula, with exponents «,
£ and v to be determined:
1 GecPRY

T = ) 1
K S8t M - STM (10)

Since [kT] = [E] = ML*/T?, using [G] = L*M~'T2 [¢] = LT, and
[h] = ML*T~!, we find

2
]\g}; _ L3a+,@+2'yM—a+'y—1T—2a—,@—’y (11)

This gives three equations for three unknowns

Ja+0+2v=2, —a+y—-1=1, —-2a—-0F—y=-2 . (12)
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The solution is « = —1, § =3 and 7 = 1. As a result

hed he\ 2 m3c?
kKT = == = - 13
STGM (G) STM STtM’ (13)

where mp = 2.17 x 10~ gr is the Planck mass. For a mass with million solar
masses M = 10°M,,, ~ 2 x 10¥gr,

(2.17 x 107°)%(3 x 10%°)?

kT =
82 x 1039

=843 x107%%V = T =~6.1x107"K.

(14)
For aroom temperature black hole, 7" ~ 300K, and we find M = %2 >
10%%gr ~ 4.1 x 10*kg, which is approximately 6.8 x 107 Maip.




d?
dj;jt%wal()—O for 0<z<a,
d2
%y;jL% w?yy(z) =0 for a <z <2a.

Here y,(z) = y(x) for z € [0,a] and ys(x) = y(z) for = € [a, 2a]. We let

2 M1 2 2
= 1
Al = Tow and A5 Tow (15)

with this notation, the two equations take similar form

2

d*yi i
T PN =0 A= [Fw =12 (16)
Since y(x = 0) = y(x = 2a) = 0 we write
y1(z) = Asin(\z), and ya(x) = Bsin(Ag(2a — x)), (17)

which satisfy the differential equation and the boundary conditions at x = 0
and z = 2a.

a.
Since the string does not break at © = a, we must have y;(a) = ya(a).
Since there is no mass at the joining point the slopes must agree too: yj(a) =

ys(a )

b.
Applying the boundary conditions in (a) we find

Asin \ja = Bsin \a
AXjcosAja = —BAycos A

These two equations can be written as

sin A\ja — sin Asa AN
<)\1 cosA\ia g cos)\ga> (B) =0 (18)



Since we need solutions where both A and B are not zero, the determinant
of the above matrix must vanish:

Ao sin Aja cos Aya + A cos Adjasin \ga = 0 . (19)

This equation can be used to find the oscillations frequencies. As a check
assume i1 = s = g, in which case A\; = Ay = A. The condition becomes
sin(2Aa) = 0, which gives A(2a) = nm. This gives the familiar frequencies

c.
With py = po and pe = 29 we write

2
Al:H%wE)\ and My = Tioow:\/@\.
Eq (19) then gives
V2 sin Aa cos V2 a + cos Aa sin V2 a = 0 .

Solving this equation numerically we find that to the lowest root is Aa ~
1.26567. This gives the lowest frequency

[Ty 1.26567 [Ty 2.53134
wr, =/ — =4 — .
" Ho @ Mo 2a
Note that wy, is bounded as
T
—Oﬂ-/\/é <wp < %_ﬂ' .
Vo (20) \ 1o (2a)

The lower and upper bounds are the lowest frequencies of strings of contant
mass density 2/ and g respectively (m/v/2 ~ 2.22144).




