
MATH423 String Theory Solutions 1

1.

+ + + + +

+ + + - -
- + + - +
+ - + - +
+ + - - +
- + + + -
+ - + + -
+ + - + -
- - + + +
- + - + +
+ - - + +

- - + - -
- + - - -
+ - - - -
- - - - +
- - - + -

Table 1: The weight lattice of the spinorial 16 representation of SO(10). Each
entry should be multiplied by the 1

2
. The ±

1

2
entries are the charges with

respect to the five U(1) generators of the Cartan subalgebra. The product
of the five charges should be either positive or negative. If we choose to be
positive then we can have either, zero, two or four negative charges (or spins)
of the total five. Alternatively, if we choose the product to be negative we
can have either one, three or five of the charges (or spins) to have a minus
sign. In either case the total number of possibilities is 16. These are the two
spinorial representations of SO(10) being the chiral 16 and the anti–chiral
16. The table above shows the chiral 16 representation.

From the table above we see that there is one state with zero minus signs.
This is a singlet of SU(5). There are five states with four minus signs. This
is a 5 representation of SU(5). Finally there are 10 states with two minus
sighs. This is the 10 representation of SU(5). Hence, under SU(5) × U(1)X

the 16 representation of SO(10) decomposes as:
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16 = (1,
5

2
) + (5̄,−

3

2
) + (10,

1

2
)

where the U(1)X charges are obtained by taking the trace QX = Q1 +Q2 +
Q3+Q4+Q5, and theQi are the ±1

2
charges with respect to the five generators

of the Cartan subalgebra.
in our combinatorial notation we can write

16 =

(

5

0

)

+

(

5

2

)

+

(

5

4

)

where the combinatorial factor counts the number of − in a given state.
To find the decomposition under SO(6) × SO(4) ≡ SU(4) × SU(2)L ×

SU(2)R we split the five slots into the first three which correspond to SO(6)
and the last two which correspond to SO(4). We now split the 16 again
by counting how many minus signs there are under the first three times
how many there are under the last two. Note that here we have to take
the product of the signs with respect to the first three slots and last two
separately. So, for example, states with zero or two minus signs under the
first three slots belong to the same SO(6) representation. Hence, under
SO(6) × SO(4) ≡ SU(4) × SU(2)L × SU(2)R it decomposes as:

16 = (4, 2, 1) + (4̄, 1, 2)

In the combinatorial notation this decomposes as:

16 =

[(

3

0

)

+

(

3

2

)] [(

2

0

)

+

(

2

2

)]

+

[(

3

1

)

+

(

3

3

)] [(

2

1

)]

To find the decomposition under SU(3)×U(1)C×SU(2)×U(1)L we again
split the five slots into the first three, which correspond to SU(3) × U(1)C

and the last two that correspond to SU(2) × U(1)L. We again count how
many minus signs there are in each state under the first three and last two
slots to find the multiplicity. The charges under the U(1)s are given by the
sums under Q1 + Q2 + Q3 and Q4 + Q5 for U(1)C and U(1)L, respectively.
Hence, under SU(3) × U(1)C × SU(2) × U(1)L the 16 decomposes as:

16 = (1,
3

2
, 1,+1)+(3,

1

2
, 2, 0)+(3̄,−

1

2
, 1,+1)+(1,

3

2
, 1,−1)+(3̄,−

1

2
, 1,−1)+(1,−

3

2
, 1, 0)
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where QC and QL are defined as QC = Q1 +Q2 +Q3 and QL = Q4 +Q5. In
combinatorial notation these are:

16 =

[(

3

0

)(

2

0

)]

+

[(

3

2

)(

2

0

)]

+

[(

3

0

)(

2

2

)]

+

[(

3

1

)(

2

1

)]

+

[(

3

2

)(

2

2

)]

+

[(

3

3

)(

2

1

)]

2.
a.

gµν =
(

1 0
0 −1

)

, gµν =
(

1 0
0 −1

)

b.

t → t+ ǫA(t, x)

x → x+ ǫB(t, x)

dt → dt+ ǫ(∂A
∂t
dt+ ∂A

∂x
dx)

dx → dx+ ǫ(∂B
∂t
dt+ ∂B

∂x
dx)

ds2
→ [(1 + ǫ

∂A

∂t
)dt+ ǫ

∂A

∂x
dx]2 − [(1 + ǫ

∂B

∂x
)dx+ ǫ

∂B

∂t
dt]2

we require invariance of ds2. Expanding to first order in ǫ we impose that
the coefficients of the addtional terms vanish. These yield the constraints on
the functions A and B.

dt2 : ∂A
∂t

= 0 ⇒ A = A(x)

dx2 : ∂B
∂x

= 0 ⇒ B = B(t)

dxdt : ∂A
∂x

−
∂B
∂t

= 0 ⇒
dA
dx

= dB
dt

= constant = c

⇒ A(x) = cx+ a

B(t) = ct+ b

we obtained three constants of integration a, b and c. These correspond
to a shift in time a, a shift in space b, and a boost c.
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3.

a′
0

= γ(a0
− βa1)

a′
1

= γ(−βa0 + a1)

a′
2

= a2

a′
3

= a3

b′
0

= γ(b0 − βb1)

b′
1

= γ(−βb0 + b1)

b′
2

= b2

b′
3

= b3

b′
0

= −γ(b0 − βb1)

b′
1

= γ(−βb0 + b1)

b′
2

= b2

b′
3

= b3

Then

a′µb′µ = −γ(a0
− βa1)γ(b0 − βb1) + γ(−βa0 + a1)γ(−βb0 + b1) + a2b2 + a3b3

= γ2
[

a0b0(−1 + β2) + a1b1(1 − β2)
]

+ a2b2 + a3b3

= −a0b0 + a1b1 + a2b2 + a3b3 = a0b0 + a1b1 + a2b2 + a3b3

= aµbµ

4.
Lorentz transformations, derivatives and quantum operators

a.

a0 = −a0, a1 = a1, a2 = a2, a3 = a3

a′
0

= −a′0 = −γ(a0
− βa1) = γ(a0 + βa1)

a′
1

= a′1 = γ(−βa0 + a1) = γ(βa0 + a1) (1)

and a′
2

= a2, a
′

3
= a3
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b.
Suppose we have a function f(x0, x1, x2, x3) which we express as a function

of x′0, x′1, x′2, x′3 by expressing xµ as a function of x′µ. The standard chain
rule for partial differentiation says that

∂f

∂x′µ
=

3
∑

ν=0

∂f

∂xν

∂xν

∂x′µ
for µ = 0, 1, 2, 3 (2)

Using the summation convention and writing as an operator equation we get

∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
(3)

We need x as a function of x′, the inverse of the Lorentz transformation that
gives x′ as a function of x. For a boost along the x′ axis, the inverse is a
boost with the opposite speed, so

x0 = γ(x′0 + βx′1), x1 = γ(βx′0 + x′1) (4)

Hence
∂

∂x′0
= γ(

∂

∂x0
+ β

∂

∂x1
),

∂

∂x′1
= γ(β

∂

∂x0
+
∂

∂x1
) (5)

which is the same as as (1) with aµ = ∂
∂xµ

c.
The operator for momentum ~p is h̄

i
~∇, i.e.

p1 =
h̄

i

∂

∂x1
, p2 =

h̄

i

∂

∂x2
, p3 =

h̄

i

∂

∂x3
(6)

The Schrödinger equation says

ih̄
∂ψ

∂t
= Hψ

where H is the energy operator. Since p0 = E
c

and x0 = ct, this can be
written as

p0 = ih̄
∂

∂x0

= −
h̄

i

∂

∂x0

(7)

If we write (6) and (7) in terms of pµ, we remove the sign difference between
the 0 component and the others.

pµ =
h̄

i

∂

∂xµ
. (8)

This is Lorentz invariant since we proved in (b) that ∂
∂xµ tranforms like pµ.
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