MATH 423 midterm November 2011
Full marks can be obtained for complete answers to THREE questions. Only the best THREE answers will be counted.

You may use a university approved pocket calculator and the constants:

$$
\begin{array}{cll}
c=3 \times 10^{10} \frac{\mathrm{~cm}}{\mathrm{~s}} ; & \hbar=1.054 \times 10^{-27} \mathrm{erg} \cdot \mathrm{~s} ; \\
G_{N}=6.674 \times 10^{-8} \frac{\mathrm{~cm}^{3}}{\mathrm{~g} \cdot \mathrm{~s}^{2}} & m_{e}=9.109 \times 10^{-28} \mathrm{~g} ; \\
m_{p}=1.672 \times 10^{-24} g ; & k=1.380 \times 10^{-16} \frac{\mathrm{erg}}{\mathrm{~K}} ; \\
m_{\text {Planck }}=2.17 \times 10^{-5} g ; & & m_{\text {sun }} \approx 2 \times 10^{33} g ;
\end{array}
$$

1. (a) Give the Lorentz transformations for the components a_{μ} of a vector under a boost along the x^{1} axis.
[7 marks]
(b) Show that the object $\frac{\partial}{\partial x^{\mu}}$ transform under a boost along the x^{1} axis as the a_{μ} vector considered in (a) does.
[7 marks]
(c) Show that, in quantum mechanics, the expression for the energy and momentum in terms of derivatives can be written compactly as $p_{\mu}=\frac{\hbar}{i} \frac{\partial}{\partial x^{\mu}}$.
[6 marks]
2. (a) Consider the plane (x, y) with the identification

$$
(x, y) \sim(x+2 \pi R, y+2 \pi R)
$$

What is the resulting space?
[6 marks]
(b) Consider the circle S^{1}, presented as the real line with the identifications $x \sim x+2$. The circle is the space $-1<x \leq 1$ with the points $x= \pm 1$ identified. The orbifold S^{1} / Z_{2} is defined by imposing the Z_{2} identification $x \sim-x$. Show that there are two points on the circle that are left fixed by the Z_{2} action.
[7 marks]
(c) Consider a torus T^{2}, presented as the (x, y) plane with the identifications $x \sim x+2$ and $y \sim y+2$. Choose $-1<x, y \leq-1$ as the fundamental domain. The orbifold T^{2} / Z_{2} is defined by imposing the Z_{2} identification $(x, y) \sim(-x,-y)$. Prove that there are four points on the torus that are left fixed by the Z_{2} transformation.
3. (a) The Standard Bohr radius is $a_{0}=\frac{\hbar^{2}}{m e^{2}} \approx 5.29 \times 10^{-9} \mathrm{~cm}$, and arises from the electric potential $V=-\frac{e^{2}}{r}$. What would be the gravitational Bohr radius if the attraction force binding the electron to the proton was gravitational?
[9 marks]
(b) In units where G, c and \hbar are set equal to one, the temperature of a black hole is given by $k T=\frac{1}{8 \pi M}$. Insert back the factors of G, c and \hbar into this formula. Evaluate the temperature of a black hole of a million solar masses. What is the mass of a black hole whose temperature is room temperature?
[11 marks]
4. A string with tension T_{0} is stretched from $x=0$ to $x=2 a$. The part of the string $x \in(0, a)$ has constant mass density μ_{1} and the part of the string $x \in(a, 2 a)$ has constant mass density μ_{2}. Consider the differential equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{\mu(x)}{T_{0}} \omega^{2} y(x)=0 .
$$

that determines the normal oscillations.
(a) What boundary conditions should be imposed on $y(x)$ and $\frac{d y}{d x}(x)$ at $x=a$?
[5 marks]
(b) Write the conditions that determine the possible frequencies of oscillation.
[15 marks]

