MATH 423 midterm November 2011

Full marks can be obtained for complete answers to THREE questions. Only the best THREE answers will be counted.

You may use a university approved pocket calculator and the constants:

$$c = 3 \times 10^{10} \frac{\text{cm}}{s}; \qquad \qquad \hbar = 1.054 \times 10^{-27} erg \cdot s;$$

$$G_N = 6.674 \times 10^{-8} \frac{cm^3}{g \cdot s^2} \qquad \qquad m_e = 9.109 \times 10^{-28} g;$$

$$m_p = 1.672 \times 10^{-24} g; \qquad \qquad k = 1.380 \times 10^{-16} \frac{erg}{K};$$

$$m_{\text{Planck}} = 2.17 \times 10^{-5} g; \qquad \qquad m_{\text{sun}} \approx 2 \times 10^{33} g;$$

1. (a) Give the Lorentz transformations for the components a_{μ} of a vector under a boost along the x^1 axis.

[7 marks]

(b) Show that the object $\frac{\partial}{\partial x^{\mu}}$ transform under a boost along the x^1 axis as the a_{μ} vector considered in (a) does.

[7 marks]

(c) Show that, in quantum mechanics, the expression for the energy and momentum in terms of derivatives can be written compactly as $p_{\mu} = \frac{\hbar}{i} \frac{\partial}{\partial x^{\mu}}$.

[6 marks]

2. (a) Consider the plane (x, y) with the identification

$$(x,y) \sim (x + 2\pi R, y + 2\pi R)$$
.

What is the resulting space?

[6 marks]

(b) Consider the circle S^1 , presented as the real line with the identifications $x \sim x + 2$. The circle is the space $-1 < x \le 1$ with the points $x = \pm 1$ identified. The orbifold S^1/Z_2 is defined by imposing the Z_2 identification $x \sim -x$. Show that there are two points on the circle that are left fixed by the Z_2 action.

[7 marks]

(c) Consider a torus T^2 , presented as the (x,y) plane with the identifications $x \sim x+2$ and $y \sim y+2$. Choose $-1 < x, y \le -1$ as the fundamental domain. The orbifold T^2/Z_2 is defined by imposing the Z_2 identification $(x,y) \sim (-x,-y)$. Prove that there are four points on the torus that are left fixed by the Z_2 transformation.

[7 marks]

3. (a) The Standard Bohr radius is $a_0 = \frac{\hbar^2}{me^2} \approx 5.29 \times 10^{-9} \text{cm}$, and arises from the electric potential $V = -\frac{e^2}{r}$. What would be the gravitational Bohr radius if the attraction force binding the electron to the proton was gravitational?

[9 marks]

(b) In units where G, c and \hbar are set equal to one, the temperature of a black hole is given by $kT = \frac{1}{8\pi M}$. Insert back the factors of G, c and \hbar into this formula. Evaluate the temperature of a black hole of a million solar masses. What is the mass of a black hole whose temperature is room temperature?

[11 marks]

4. A string with tension T_0 is stretched from x=0 to x=2a. The part of the string $x \in (0,a)$ has constant mass density μ_1 and the part of the string $x \in (a,2a)$ has constant mass density μ_2 . Consider the differential equation

$$\frac{d^2y}{dx^2} + \frac{\mu(x)}{T_0}\omega^2 y(x) = 0.$$

that determines the normal oscillations.

(a) What boundary conditions should be imposed on y(x) and $\frac{dy}{dx}(x)$ at x=a?

[5 marks]

(b) Write the conditions that determine the possible frequencies of oscillation.

[15 marks]