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Chapter 1

Plan Of The Lectures

The aim of these lectures is to provide a plan for constructing fermionic field
models. The focus of these lectures is therefore on the construction of these
models rather than the preliminary construction of superstring theories.

However, the construction of superstring theories has culminated in a set of
rules derived by Antoniadis, Bachas and Kounnas as well as Kawai, Lewellen
and Tye. This set of rules is our tool for constructing the realistic free fermionic
field (FFF) models.
These notes will provide a ’flavor’ of the derivation of these rules, but not the
full derivations as they can be lengthy.

The plan is therefore

1. The ABK and KLT free fermionic field building

2. Construction of consistent vacua

3. Construction of realistic vacua

4. Derivation of the superpotential

5. Phenomenology and future directions
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Chapter 2

The ABK and KLT
Construction

String model building follows the following methodology:

1. Construct string vacua, consistent with the string consistency conditions

2. Extract the massless spectrum
(For some purposes the massive spectrum is also of interest and can be
extracted similarly)

3. Analyze the cubic level and higher order terms in the superpotential

4. Study flat F and D directions while imposing phenomenological criteria

5. Study the string characteristics that fix the phenomenological properties
of the models
⇒ Extract the general properties

1) Construction of consistent string vacua in FFF.

We will have a brief reminder of the basics of strings.
Strings are one dimensional objects (rather than 0 dimensional objects such as
point particles) propagating in space and time.
If the world line is parameterized only by the proper time τ then the action is

S = −m
∫

ds = −m
∫

dτ

√

−gµν
dXµ

dτ

dXν

dτ
=

1

2

∫

dτ

(
1

e
Ẋ2 − em2

)

(2.1)

where
∫
ds is the integral over the world line and Ẋ = ∂X

∂τ . Here e is interpreted
as an ’einbein’ for the one dimensional geometry of the world line which ensures
that the action is invariant under reparameterizations of the proper time τ .

If the world line is parameterized by the proper time τ and an arbitrary
parameter σ which is orientated along the world line, (i.e X = X(τ, σ)) then
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the corresponding action is

S = −T
∫

dσdτ

√

− det
∂Xµ

dσα
dXν

∂σβ
ηµν

= −T
∫

d2σ
[
(Ẋ ·X ′)2 − (Ẋ2 ·X ′2)

]
(2.2)

where T is the string tension, X ′ = ∂X
∂σ and α, β = 0, 1.

This can also be expressed in a linear form as

S =
1

4πα′

∫

Λg

d2σ
√

− det gαβ g
αβ∂αX

µ∂βX
νηµν (2.3)

where gαβ is the world sheet metric, ηµν is the flat Minkowski metric and α′

is the slope parameter. From this we can also infer that the string tension
T = 1

4πα′
.

The worldsheet metric gαβ is an auxiliary field that can be integrated out to
find the Nambu-Goto (NG) action SNG, which is

SNG = − 1

2πα′
(
area of the worldsheet

)

Constraints on S
a) Reparameterization invariance i.e

τ → τ̃ (τ) for the world line parameterized only by τ
{

σ → σ̃(σ, τ)

τ → τ̃ (σ, τ) for the world line parameterized by both τ and σ

b) Weyl rescaling
gαβ(σ, τ)→ ef(σ,τ)gαβ(σ, τ)

Due to this, we can fix the independent components of gαβ which implies that
the 2 dimensional metric becomes gαβ → ηαβ .

1

This can be interpreted as using Weyl rescaling to set the world sheet metric
equal to the flat 2d metric ηµν . We will use this shortly to create the flat gauge

action (equation (2.4)) which simplifies our theory considerably.
Choosing a metric of this form is known as selecting a conformal gauge which
is a gauge that preserves angles locally.

If we consider the complex coordinates (which we introduce as they will become
useful for writing some later expressions. We will also call these the world sheet
coordinates)

z = τ + iσ

z̄ = τ − iσ
then we can show explicitly how Weyl rescaling works. We begin by defining

gzz = gz̄z̄ = 0

gzz̄ = gz̄z =
1

2
eφ(z,z̄)

1For definition of Weyl invariance, see David Tong ’String Theory’ p.20
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where g is metric. When written in matrix form we obtain

g =

(
0 1

2e
φ

1
2e
φ 0

)

⇒ det g = −1

4
e2φ

where φ is some function on the world sheet that depends on z and z̄ (note that
it is equivalent to the f(σ, τ) in the Weyl rescaling definition above). Using the
result of the determinant we find

√

− det gαβ =

√

+
1

4
e2φ =

1

2
eφ

gαβ = 2e−φ
(

0 1
1 0

)

√

− det gαβ g
αβ =

1

2
eφ · 2e−φ

(
0 1
1 0

)

=

(
0 1
1 0

)

and the Louiville mode drops from the action (i.e the term
√
− det gαβ g

αβ is
removed from the action (2.3)).

The classical action is now invariant under the conformal transformations as
we have removed the Louiville mode. This means the following transformations
hold

Z → f(Z)

Z̄ → f(Z̄)

The conformal invariance of the classical action is one of the important prop-
erties of the perturbative string as string theories are described in terms of 2d
conformal field theories.
The flat gauge action is a two dimensional conformal field theory of D-free
bosons (where D is the number of dimensions).

S =
1

4πα′

∫

Λg

dz dz̄ ∂zX
µ ∂z̄Xµ = 0 (2.4)

The equation of motion from this action is a 2 dimensional wave equation
(
∂2
σ − ∂2

τ

)
Xµ(σ, τ) = 0 (2.5)

which can also be written in complex coordinates with the form

∂z∂z̄ X
µ(z, z̄) = 0 (2.6)

which indicates that (∂zX
µ) is an analytic function of z.

This simply reflects the fact that the solution of the 2d wave equation can split
arbitrarily into left and right moving solutions.

Xµ(σ, τ) = Xµ
R(τ + σ) +Xµ

L(τ − σ) (2.7a)

Xµ(z, z̄) = Xµ
R(z) +Xµ

L(z̄) (2.7b)

where equation (2.7b) is written in complex coordinates.
For a closed string we have the periodicity condition

Xµ(σ, τ) = Xµ(σ + π, τ) (2.8)
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and (as an aside) we have the open strings periodicity condition

Xµ(σ = 0;π) = 0

These solutions can then be expanded in Fourier modes

Xµ
L,R =

1

2
Xµ +

1

2
l2pµ(τ ∓ σ) +

i

2
l
∑

αµ(n)
n e−2in(τ∓σ) (2.9a)

∂zX
µ ∼

∑

n

z(−n−1) αµn

∂z̄X
µ ∼

∑

n

z̄(−n−1) α̃µn
(2.9b)

where equation (2.9a) is the mode expansion of (2.7a) and (2.9b) are the mode
expansions of (2.7b).
Classically, αµn, α̃

µ
n have the physical interpretation of being the amplitudes of

the nth oscillation mode. However, in a quantum theory αµn, α̃
µ
n are realised as

creation and annihilation operators. It is these operators that define a Hilbert
space.

2.1 Quantization of the Bosonic String

To properly quantize the theory with local gauge symmetries we must either
introduce Fadeev-Popov ghost fields or perform canonical quantization with
first-class constraints.

2.1.1 Canonical Quantization

First we will briefly consider the canonical approach. We begin this by imposing
equal time commutation relations

[
Xµ(σ′, τ), Xν(σ, τ)

]
= ηµνδ(σ − σ′)T−1 (2.10)

If we vary the action with respect to the worldsheet metric and demand that
the result equal zero, we get the 2d energy-momentum tensor. As gµν is an
auxiliary parameter we have the constraint

δS

δgαβ
⇒ Tαβ = 0 (2.11)

in the light cone (i.e worldsheet) coordinates. Recall that the light cone coor-
dinates are2

x+ ≡ 1√
2
(x0 + x1)

x− ≡ 1√
2
(x0 − x1)

(2.12)

2For an in depth review of light cone coordinates, see Zwiebach - Section 2.3
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In our complex coordinates we have Tzz̄ = 0 which follows from the tracelessness
of the energy momentum tensor (this condition is equivalent to stating that there
is conformal symmetry3). We therefore have the two constraint operators

T (z) = Tzz = −1

2
∂zX

µ∂zXµ (2.13a)

T̄ (z̄) = Tz̄z = −1

2
∂z̄X

µ∂z̄Xµ (2.13b)

The energy momentum tensor can be expanded in terms of Fourier modes

T (z) =
∑

n

z(−n−2) Ln (2.14)

and classically the Fourier modes Ln satisfy the Virasoro algebra4

[
Ln, Lm

]
= (n−m)Lm+n (2.15)

Quantum mechanically, Ln, L̃n become the harmonic oscillator’s creation and
annihilation operators. We can write this explicitly to show the form of these
Fourier modes

Lm =
1

2

∑

n∈Z

αn−m · αn

where it is more obvious that these modes correspond to the creation and an-
nihilation operators.

We then have to consider the case where there is an anomaly in the Virasoro
algebra. The motivation for considering this is that the energy momentum
tensor (which depends on this Virasoro algebra, see equation (2.14)) in the
quantum theory is generally not traceless, which is a condition we need5. We
need this to be true as this is the condition for a conformal theory. We consider
this anomaly by introducing a second term into the Virasoro algebra, which is
done by

[
Ln, Lm

]
= (n−m)L(n+m) +

c

12
(n(n2 − 1)) δ(n+m) (2.16)

Here, c is the central charge of the Virasoro algebra. In this case it is equal to
the number of dimensions d of the target space, or equivalently the number of
free scalar fields on the world sheet6.
This anomaly arises due to the fact that the Louiville mode does not decouple
when we quantize the theory, meaning we can not simply recover the condition
that gµν → ηµν . This signals the break down of conformal invariance.

For the bosonic string we find that only in the case of D = 26 does the
anomaly vanishes (i.e c = 0).

The constraint equation on the energy momentum tensor is then expressed
in terms of Fourier modes. We should also note that there is a normal ordering

3See ’Introduction to Conformal Field Theory’ - Blumenhagen p 19
4See notes Virasoro Modes and Algebra
5GSW Vol 1 p75
6Kitisis - ’String Theory in a Nutshell’ - p30
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ambiguity in L0.
7

The constraint equation (equations (2.13a) and (2.13b)) becomes the condition
that the Ln and L̄n annihiliate the physical state. This means (for the left
movers)

Ln |Phys〉 = 0 for n > 0
(
L0 − a) |Phys〉 = 0 (L0 − L̄0

)
|Phys〉 = 0

(2.17)

where there are similar condition for the right movers. The constant a is in-
troduced here to resolve normal ordering ambiguities in the normal-ordered
operator L0. As the Fourier modes correspond to quantum operators, their
ordering is important. By introducing this constant a we aim to resolve this
problem, however we will leave it undetermined at this point.

We should note here the physical interpretations of these Virasoro gener-
ators. L−1 and L̄−1 generate translations in the plane, where as L0 and L̄0

generate scaling and rotations. These generators are therefore performing con-
formal transformations.8

The spectrum at this level contains states with negative normals due to the
time-like commution relation and the residual gauge freedoms. However, we can
fix the remaining freedoms by considering the light cone gauge

X± =
1√
2

(
X0 ±X(D−1)

)
(2.18)

The spectrum is free of negative norm states when the light cone gauge is used,
but it is not manifestly Lorentz invariant. It can be shown that it is only Lorentz
invariant for D=26 and a=1.

2.1.2 Quantization Using the Fadeev-Popov Formalism

Alternatively, we can use the Fadeev-Popov formalism the quantize the theory
in the covariant path integral formalism. This is what we will consider now.

By doing this we get a contribution canomaly from the ghost fields which is
independent of the space-time dimensions. The c here is the same that was
introduced in the Virasoro anomaly (equation (2.16)).
We find

cgh = −26 (2.19)

for the bosonic string. This means the total anomaly is

cB = D · 1 + (−26) (2.20)

where cB is the contribution for the bosonic string.
The mass of the string can be obtained in terms of the Fourier coefficients

of the constraint equation

L0 =
1

2

∞∑

−∞
α−nαn =

1

2
α2

0 +
1

2

∑

n6=0

α−nαn = 0 (2.21)

7For definition, see ’Lectures on String Theory’ - David Tong - p31
8see ’Lectures on String Theory’ - David Tong - p94
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or by using the mass squared definition M2 = −p2

M2 = 2

∞∑

n=1

(
α−nαn + α̃−nα̃n

)
(2.22)

where we have used

α2
0 = α̃2

0 =
1

4
pµpµ = −1

4
M2 (2.23)

This can be seen in the footnote9.
For the closed string, L0 = L̃0 due to last constraint in equation (2.17). Then
we get

M2 = −8a+ 8

∞∑

n=1

α−nαn = −8a+ 8

∞∑

n=1

α̃−nα̃n (2.24)

where the equality is shown as the Virasoro constraint affecting the mass of the
left and right movers. The factor of 8 here is significant as it means that mass
squared is four times as large for closed strings as for the open string case. We
also note that the introduction of the normal ordering constant a has introduced
a shift in the mass squared spectrum.

The Hilbert space is obtained by acting with the bosonic oscillations on the
vacuum. However, in order to completely describe the string state we must
include another degree of freedom which is the center of mass momentum pµ.
The vacuum state with a center of mass momentum is defined as

|0, pµ〉 = ie−pµX
µ |0〉 (2.25)

For n = 0 we see that M2 < 0. We can see this if we substitute the relation
M2 = −p2 into the right hand side of equation (2.25). This implies that there
are tachyons in the theory because there are scalar particles which travel in a
space-like manner.
The first energy level above this is then

αµ−1α̃
ν
−1 |0, pµ〉 (2.26)

by continuing in this way we can build the entire spectrum of physical states.

2.1.3 Introducing Supersymmetry

So far we have been discussing the bosonic string. As we have seen, it contains

• Tachyons

• No space-time fermions

therefore this implies a need for supersymmetry. We can introduce superpart-
ners for the bosons Xµ by demanding that for each boson Xµ → Xµ, ψµ. The
ψµ(z, z̄) here are D-Majorana world sheet fermions, where the D refers to the
dimensions of the fermions.

9Zwiebach - ’A First Course in String Theory’ - p252
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The flat gauge action defined in equation (2.4) is therfore modified to include
these superpartners. It now takes the form

S =

∫

d2σ
[
∂αX

µ∂αXµ − iψ̄µρα∂αψµ
]

(2.27)

where ρα are the 2d gamma matrices. These matrices are included due to the
use of the Majorana fermions, for clarification see footnote[10].
We should note here that it is not immediately obvious that this will lead to
spacetime fermions or spacetime supersymmetry as the fermion fields introduced
here are actually still bosons with respect to the spacetime Lorentz group. It is
also noted that they currently have no mass.

The gauge fixed action exhibits global worldsheet supersymmetry. Local
worldsheet supersymmetry can also be exhibited by using the ungauged fixed
action.

We can write the Majorana fermion in terms of it’s two Weyl compenents10

ψµ(z, z̄) =

(
ψµ(z)
ψ̄µ(z̄)

)

(2.28)

Then by using this and the light cone worldsheet coordinates, the action becomes

S =
i

π

∫

d2z
(
ψz ∂z̄ψz + ψ̄z̄ ∂zψ̄z̄

)
(2.29)

which explicitly shows that the left and right moving degrees of freedom are
decoupled.

Similarly to the bosonic case, the fermion modes give rise to negative norm
states. In the covariant path integral formulism the total fermionic ghost con-
tribution is

cfg = +11 (2.30)

while each Majorana fermion gives c = 1
2D, where D is the dimension.

For the superstring we get

ctotal = −26 + 11 +D +
D

2
= −15 +

3D

2
(2.31)

therefore to get ctotal = 0 we find D = 10.
Similarly to the bosonic case, to construct the theory in which the nega-

tive norm states are decoupled we work in the light cone gauge in which only
transverse excitations act on the non-degenerate vacua.

For the bosonic coordinates of a closed string we have the boundary condi-
tions

X(σ, τ) = X(σ + π, τ) (2.32)

For the Majorana coordinates we can have either periodic or anti-periodic
boundary conditions for the left or right movers seperately

ψ±(σ, τ) = ±ψ±(σ + π, τ)|RNS (2.33)

10A detailed analysis of Dirac, Majorana and Weyl fermions can be found
in the paper ”Dirac, Majorana and Weyl fermions” - Palash B. Pal at
http://arxiv.org/pdf/1006.1718v2.pdf
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where R refers to the Ramond boundary conditions and NS refers to the Neveu-
Schwarz boundary conditions. This gives rise to the mode expansions

ψµ−(π) = ψµ−(0) R : ψµ− =
∑

dµn e

(
−2in(τ−σ)

)

← periodic (2.34a)

ψµ−(π) = −ψµ−(0) NS : ψµ− =
∑

bµr e

(
−2ir(τ−σ)

)

← anti-periodic (2.34b)

where n ∈ Z and r ∈ Z + 1
2 . There are also similar mode expansions for the left

movers ψµ+.
The equal time anticommutation relation for the fermionic coordinates gives

the anticommutation relation for the fermionic R and NS oscillation modes

{bµr , bνs} = ηµνδr+s {dµm, dνn} = ηµνδm+n (2.35)

In the case of NS boundary conditions the non-degenerate Fock space11 created
is unique because the lowest lying state is

bµ− 1
2

|0〉 (2.36)

which transforms as a vector of the Lorentz group

{bµ− 1
2

, bν+ 1
2
} = ηµν (2.37)

However, in the Ramond sector the zero modes obey the Dirac algebra

{dµ0 , dν0} = ηµν (2.38)

which commutes with the mass operator.
Therefore the zero modes are proportional to the Dirac gamma states and the
states

dµ0 |0〉 (2.39)

transform in the spinorial representation of the Lorentz group, therefore gener-
ating spacetime fermions.

For a single real R-fermion, we can think of this as a doubly degenerate state

d0 |0〉 ; |0〉 (2.40)

There are some other points that we should note

1. Similar to the energy momentum tensor, we have the worldsheet super-
current which is obtained by varying the action with respect to the 2d
gravitino

TF (z) = ψµ ∂zXµ(z)

T̄F (z̄) = ψ̄µ ∂z̄Xµ(z̄)
(2.41)

2. The mass shell condition is modified

(
L0 − 1

)
|Phys〉 = 0→

(
L0 −

1

2

)
|Phys〉 = 0 (2.42)

11The Fock space is an algebraic construction used to construct a space of quantum states
of an unknown number of identical particles from a single particle Hilbert space
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3. We define a fermion number operator

(−1)NNS (−1)NR (2.43)

which roughly counts the number of fermions acting on the non-degenerate
ground state |0〉NS and the number of R-zero modes acting on the non-
degenerate Ramond vacua.

2.2 Construction of String Vacua

The next important symmetry we must discuss is modular invariance.
However, allow us to first start describing the construction of string vacua in
the fermionic formulation and describe the modular invariance throughout this
procedure.

Vanishing of the conformal anomaly gives the constraint

ctotal = cbg + cfg + cXµ ·D + cψµ
·D

= −26 + 11 +D +
D

2

(2.44)

from which we can set ctotal = 0, therefore implying D = 10 (recall that the D
2

factor is present due to the fermions being Majorana). We therefore get the ten
dimensional superstring theory.

Due to the decoupling of the left and right moving modes for the closed
string, we can cancel the left and right moving anomalies seperately.

In this case we can impose worldsheet supersymmetry in the left moving
sector while the right moving sector is left as bosonic. This means for the
central charges c we have

cL = −26 + 11 +D +
D

2
= 0 ⇒ D = 10

cR = −26 +D ⇒ D = 26
(2.45)

When a string theory is constructed in this way, it is called the heterotic string

construction.
The cancellation of these anomalies requires that we ‘compactify’. This involves
mounting 16 right moving components on a flat torus which has a fixed radia.
This is necessary as we can not have different spacetime dimensions for the left
and right movers as this is unphysical. We therefore have to remove the 16
‘extra’ components from the bosonic sector.

For each coordinate that is compactified in this way, there is a generated
vertex operator for a U(1) space time current.12

We find that there are only two allowed choices of group that permit this.
These groups are E8 ×E8 and SO(32). These turn out to be the only anomaly
free gauge groups that couple to N = 1 supergravity in 10 dimensions, but this
will become clearer when discussing the fermion construction.
We then compactify six dimensions of space onto a Calabi-Yau manifold in order

12In the vertex the α is a ‘charge’ and in string theory it is interpreted as the spacetime mo-
mentum along the X(z, z̄) spacetime direction. See ’Introduction to Conformal Field Theory
- Blumenhagen and Plauschinn’ p51-53
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to preserve the N = 1 supersymmetry in 4D, which gives the representation of
the group E6 in 4D.

Alternatively, we can use the Narain construction. This construction treats
all the bosonic coordinates equally and compactifies them on a flat torus with
a Lorenzian even self dual lattice13.

This construction gives a wider range of gauge groups that the theory can
use in four dimensions and N = 4 supersymmetry. The orbifolding technique
can then be used to recover N = 1 supersymmetry from the N = 4 case. We
will not cover how this is done in these notes, as the method is lengthy. We will
instead continue by covering the fermionic construction.

However one remark should be made about the Narain construction. As in
the Calabi-Yau case, we have a set of moduli that control the shape and size of
the 6D compactified space.

2.2.1 Fermionic Construction

We will now begin considering the fermionic construction. Rather than identify-
ing the degrees of freedom needed to cancel the conformal anomaly as spacetime
dimensions, we can interpret them as free fermions which propagate on the string
world sheet. This allows us to formulate the theory directly in four dimensions.

We have

cL = −26 + 11 +D +
D

2
+NfL

· 1
2

= 0

cR = −26 +D +NfR
· 1
2

= 0

(2.46)

If we then include that D = 4 for our four dimensional spacetime then we find

NfL
= 18

NfR
= 44

(2.47)

Therefore, we need 18 left moving real Majorana fermions and 44 right moving
Majorana-Weyl fermions to cancel the left and right moving conformal anoma-
lies. The left moving fermions must be Majorana as they must have mass (which
is intrinsic in the definition of a Majorana fermion). The right movers must be
Majorana-Weyl as these can be either massive or massless, therefore allowing
our formulation to include massless bosons such as the photon.

A remark is in order here. The fermionic and bosonic constructions are
entirely equivalent. In the fermionic construction we are working with free fields
on the world sheet. The equivalence of the two cases follows from the equivalence
of fermions and bosons in two dimensions. This can be seen explicitly by defining

e+iX = y + iω

e−iX = y − iω
(2.48)

which allow us to go back to the bosonic construction. In these definitions,
the ei±X factors represent the bosons and the y ± iw represent the fermions.
When these are considered while using the vertex operators we can see they

13See file titled ’Lattices’
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are equivalent as they both give a related ‘conformal weight’ when Operator
Product Expansions (OPEs) are considered.14

The free fermion field is formulated at a fixed point in moduli space. If we
wish to move away from the fixed point we have to include the fermionic world-
sheet interations that preserve the conformal invariance. This is not particuarly
well developed but while the equivalence between the fermionic and bosonic
descriptions may not be known in the general case, they are entirely equivalent.

In the Polyakov picture, string theory is formulated as a perturbative sum
over the path integral of the string worldsheet. The string worldsheet then de-
fines a genus-g-Riemann surface (e.g for the tree level, g=0 and the Riemann
surface is a sphere, for one loop g=1 and the Riemann surface is a torus).
Using the conformal invariance we can describe the string states as vertex op-
erators on the genus-g-Riemann surface. However, we have to make sure that
we are only integrating over physically inequivalent paths. This is necessary as
integrating over physically equivalent paths leads to overcounting of identical
physical states in the partition function.

The partition function is defined as the one loop vacuum to vacuum ampli-
tude. Therefore we are integrating on a one dimensional Riemann surface i.e a
torus.

The free fermions are world sheet fermions that can propagate around the
non-contracting loops of the torus which can therefore pick up a phase

f → −e−iπα(f)f (2.49)

where f is the fermion and α(f) is the phase.
This forms the boundary conditions of the world sheet fermions as the fermions
have a periodicity associated with each non-contractible loop. We will cover
this in more detail in the section on spin structures.

2.2.2 Lecture 2

Let us remember that our goal is to identify a class of string compactificiations
that are as realistic as possible. In the case that string theory is relevent, our
hope is that such models will be relevant. On the other hand we are developing
the methodology needed to confront string theory with experimental data. If
string theory if relevent in Nature then our models will guide in trying to learn
about the Planck scale dynamics.

In the light cone gauge we have the following world sheet content. (Here we
will introduce a notation that will become clearer later).

14See ’Introduction to Conformal Field Theory - Blumenhagen and Plauschinn’ - Section
2.9-
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Left moving:

Xµ
L(z) µ = 1, 2 The two transverse coordinates

ψµL µ = 1, 2 Their fermionic partners

χL yi wi 18 internal real fermions

(2.50)

Right moving:

Xµ
R(z̄) µ = 1, 2 Two transverse coordinates

φ1,...,44
a (z̄) 44 internal real fermions

(2.51)

We have to specify the bounday conditions of all the world sheet fermions.
We specify these boundary conditions in basis vectors15 with 64 entries that will
be used to expand the models and the partition function. We need 64 entries as
we have two fermionic contributions from ψµL as µ = 1, 2, 18 contributions from
the internal real left moving fermions and 44 contributions from the internal
real right moving fermions.
When we expand the partition function we have to include all possible boundary
conditions for all physically inequivalent paths, or physically inequivalent tori.
We then have to integrate over all inequivalent tori which specify distinct paths
to obtain the partition function (which is free from overcounting).

In the Polyakov approach to string theory a string amplitude is calculated
by the path integral

An =

∞∑

g=0

A(g)
n

=

∞∑

g=0

∫

DhDXµ

∫

d2z1 . . . d
2zn V1(z1, z̄1) . . . Vn(zn, z̄n)

(2.52)

where An is the string amplitude, g is the genus of Riemann surface, h is the
worldsheet metric and Vi are vertex operators of extremal string states.
Due to the symmetry of the action, we must again ensure that we only sum over
physically inequivalent paths.

We find the string topologies by using conformal invariance to map from the
string world sheet to the Riemann surface.16 They are mapped by

Tree level 7→ sphere

One loop 7→ torus

and so forth.
At the tree level all of the reparameterizations are local, where as at higher

levels further constraints will arise.

15Where the basis vectors are linearly independent vectors that can be linearly combined
to completely describe any other vector in a vector space.

16We perform this mapping because we find it much easier to mathematically describe a
Riemann sphere/torus as opposed to trying to describe the actual form of the string world
sheet. It is conformal invariance that makes this possible.
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2.3 The Partition Function and Modular Invari-

ance

2.3.1 The Partition Function

In order to find these new constraints, it is instructive to consider the one loop
amplitudes with no external states. This is just the one loop partition function,
which is isomorphic to the torus.
The analysis here is done in analogy to quantum statistical mechanics, where
the partition function is calculated by considering the periodic temperature.
Here we are considering the time coordinate as a complex temperature τ .

The partition function (Z) is found by summing over all physical states that
can propagate around the loop, then integrating over the inequivalent tori.

Z(β, θ) =
∑

s∈H
〈s| eiθPe−2πβH |s〉 (2.53)

whereH is the Hilbert space, P is the momentum operator,H is the Hamiltonian
and |s〉 is some state that can be created and annihilated from the vacuum.
The first exponential is the spacial propagation and the second exponential is
the time propagation.

Z(β, θ) = Tr
H
eiθPe−2πβH (2.54)

We recall that the translations are generated by the zero modes of the energy
momentum tensor17

H = L0 + L̄0 −
1

24
P = L0 + L̄0

(2.55)

where the 1/24 is the normal ordering ambiguity. By combining τ = iβ− θ
2π this

can be rewritten as
Z(τ) = q−

1
48 q̄−

1
48 Tr

H
qL0 q̄L̄0 (2.56)

where q = ei2πτ .
We know how L0 acts on the Fock space and we can calculate this. We still

have to specify the boundary conditions for each worldsheet fermion. The total
partition function will then be the product of

ZF (τ) =

64∏

i=1

Zi

[
θ
β

]

(τ) (2.57)

where the individual Zi

[
θ
β

]

depend on the boundary conditions in the ‘time’

(β) and ‘spacial’ (θ) directions. The product of 64 contributions is due to the
64 basis vectors needed to consider all the fermions.

The space choice fixes ψµ(z) (i.e the space fermions) to be R/NS. For the
NS ‘time’ boundary conditions we have

ZNSNS (τ) = Tr
NS

qL0− 1
48 (2.58a)

17See David Tong ’String Theory Notes’ Section 6.4.2
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ZRNS(τ) = Tr
R
qL0− 1

48 (2.58b)

and for the R ‘time’ we have

ZNSR (τ) = Tr
NS

(−1)F qL0− 1
48 (2.59a)

ZRR (τ) = Tr
R

(−1)F qL0− 1
48 (2.59b)

2.3.2 Modular Invariance

Now we come to the modular invariance. To understand what modular invari-
ance is, we first note that we can map the torus to the complex plane. This is
done by cutting the torus along its two noncontractible loops.

INSERT DIAGRAM
We can then define a complex parameter

z = σ1 + iσ2 (2.60)

where the two coordinates σ1, σ2 are periodic with a length λ1 and λ2 respec-
tively. The torus can then be specified on the complex plane by

INSERT DIAGRAM
with

z ⇔ z + n1λ1 + n2λ2 ni ∈ z (2.61)

which specified the torus. Alternatively we see that the torus is Rz moded by
the lattice. We can see that if we take λ′1 = aλ1 and λ′2 = aλ2 then we get the
same torus as this is simply a rescaling in the complex plane.

The parameter that specifies inequivalent tori is then

τ =
λ2

λ1
(2.62)

This complex parameter then embodies the two real degrees of freedom inherent
in torodial geometry and can either be called the complex structure or the mod-

ular parameter. However there are still tori which are conformally equivalent.
Suppose we take

(
λ′2
λ′1

)

=

(
a b
c d

)(
λ2

λ1

)

(2.63)

with arbitrary a, b, c, d ∈ Z.
Then

τ → τ ′ =
aτ + b

cτ + d
(2.64)

we then ask what the conditions are on τ ′ such that it describes the same tori
as τ .18

The new torus is defined by the identification

z ⇔ z + n′
1λ

′
1 + n′

2λ
′
2 (n′

1, n
′
2) ∈ Z (2.65)

we get
z ⇔ z + (n′

1d+ n′
2b)λ1 + (n′

1c+ n′
2a)λ2 (2.66)

18For a proof of this equation, see file ’Proof of Equation 2.64’
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The two tori will be the same provided that19

(
n2

n1

)

=

(
a c
b d

)(
n′

1

n′
2

)

(2.67a)

(
n′

2

n′
1

)

=
1

(ad− bc)

(
d −c
−b a

)(
n2

n1

)

(2.67b)

is true, with n2, n1 ∈ z. The relation (2.67b) is simply the inverse of the relation
(2.67a). The two tori are identical if

a, b, c, d ∈ SL(2,Z) (2.68)

as this group has the necessary conditions on a, b, c, d so that equations (2.67a)
and (2.67b) are true20. To get the correct contributions we have to integrate
over all the conformally inequivalent tori.

The fundamental domain of the modular group21 is given by

F ≡
{
τ |τ | ≥ 1 − 1

2
≤ |τ | ≤ 1

2

}
(2.69)

INSERT DIAGRAM
and to get the contribution of all inequivalent tori we have to integrate over

this fundamental domain and require that the partition function is invariant un-
der modular transformations (if the partition function was not invariant under
these transformations, we would not be able to use the modular transforma-
tions to ensure that the tori lies within the fundamental domain with the same
contributing partition function).

In addition, we have to require that the partition function does not depend
on the parameterization of the tori. This is related to the fact that the string
action is invariant under reparameterization of the string worldsheet. It is also
related to the fact that in two dimensions the metric is conformally equivalent to
the flat metric. However, in the one loop amplitude not all the transformations
are continuously connected to the identity. This means we have to require that
the partition function is invariant under the modular transformations which are
‘spanned’ by

τ → −1

τ
(2.70a)

τ → τ + 1 (2.70b)

which are the important transformations. Requiring invariance under them will
lead to a set of constraints on the allowed boundary conditions. It is also these
transformations that allow us to ensure that the torus is within the fundamental
domain.
These are the consistency constraints derived by the ABK and KLT construc-
tions.

19See file ’Proof of 2.67
20See ’Introduction to Conformal Field Theory - Blumenhagen & Plauschinn’ p116
21see David Tong String notes p144
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2.3.3 Implementation of ABK Constraints and Spin Struc-
tures

We will now see how these constraints are implemented.
For every world sheet fermion we have to specify the transformation around the
two non-contractible loops of the torus. For real fermions, these can only be
periodic or anti-periodic i.e R/NS22.

So we have four possibilities for the propagation around these loops decribed
by f → −eiπα(f)f .

Zf =

[
0
0

]

, Zf =

[
1
0

]

, Zf =

[
0
1

]

, Zf =

[
1
1

]

(2.71)

These are called the spin structures of the fermion on the torus. More generally,
we can also combine two real fermions to form a complex fermion by

f =
1√
2
f1 + if2 , f̄ =

1√
2
f1 − if2 (2.72)

In this case, the boundary conditions may be complex

f → −e−iπα(f)f with α(f) ∈ (−1, 1] (2.73)

However, we will only consider the derivation for real fermions here.
The partition function is then given by

Z =

∫
dτdτ̄

[Im(τ)]2
Z2
B(τ, τ̄ )

∑

spin structure

C

(
a
b

)

Zlong,3/2

[
aψ
bψ

] 64∑

f=1

Zf

[
α(f)
β(f)

]

(2.74)
where ZB is the transverse coordinate contribution to the partition function,

the C

(
a
b

)

are phases (and a, b = 0 or 1) which are yet to be calculated, the

Zlong,3/2 refers to the partition function contribution from the gravitinos (3/2) in
the longitudinal direction.
The rules are derived by requiring that the partition function is invariant under
the modular transformations

τ → −1

τ
(S Channel)

τ → τ + 1 (T Channel)

which is what we will now consider.

The measure dτdτ̄
τ2

I

is modularly invariant by itself. Also the term

ZB =
1

|τ2|2|η(τ)|2
(2.76)

is modular invariant and is the contribuition of the transverse coordinates. Here,
η(τ) is the Dedekind eta function and is defined as

η(τ) = q
1/24
∏

n

(1− qn) (2.77)

22Imaginary boundary conditions exist for complex fermions, i.e they pick up a phase of ±i
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where q = e2πiτ .
The partition function is simply the sum over all the string states, massless

and massive, that we have to include when propagating the string around a

closed loop. For example, the Z

[
0
0

]

spin structure is given by

Z

[
0
0

]

= C

(
0
0

)

Tr e2πiτHNS

= C

(
0
0

)

Tr qHNS

= C

(
0
0

)

q−
1/24Tr q

P

∞

r= 1
2 rb−rbr

= C

(
0
0

)

q−
1/24
∏

r

∑

Nr

qrNr

= C

(
0
0

)

q−
1/24

∞∏

n=1

(
1 + qn−

1
2

)

(2.78)

This is the grand partition function for an ideal Fermi gas with energy levels
Er = r.23

We now define a new modular function ϑ by2425

ϑ3 = η(τ)q−
1/24

∞∏

n=0

(
1 + qn+ 1

2

)(
1 + qn+ 1

2

)
(2.79)

It can be shown by simple rearrangment that

Z

[
0
0

]

=
ϑ

1/2
3 (τ)

η1/2(τ)

= Tr
[
eiτHNS

]
(2.80)

Similarly, for the other spin structures we find

ZF

[
0
1

]

=

√

ϑ4(τ)

η
= Tr

[
(−1)F eiτHNS

]
(2.81a)

ZF

[
1
0

]

=

√

ϑ2(τ)

η
= Tr

[
eiτHR

]
(2.81b)

ZF

[
1
1

]

=

√

ϑ1(τ)

η
= Tr

[
(−1)F eiτHR

]
(2.81c)

The fermionic partition function is then just a product of the left and right
moving ϑ functions (which depend on z and z̄).

23For proof, see file ’Proof of 2.78’
24See String Theory and Particle Physics - An Introduction to String Phenomenology -

Ibanez and Urunga - p577
25See ’Introduction to Conformal Field Theory - Blumenhagen - equation (4.36)
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2.3.4 Modular Transformations of the Spin Structures

We can now determine the effect of the modular transformations given by equa-
tion (2.70a) and (2.70b) on the spin structures.

The effect of the S channel τ → − 1
τ = −λ1

λ2
is just to interchange λ1 ↔ λ2.

We will now just state the result that these modular transformations have on
the spin structures which is obtained using the Poisson resummation26 and the
theta functions.
For τ → τ + 1

η → ei
π/12η (2.82a)

ϑ1 → ei
π/4ϑ1 (2.82b)

ϑ2 → ei
π/4ϑ2 (2.82c)

ϑ3 ↔ ϑ4 (2.82d)

and for τ → − 1
τ

η → (−iτ) 1
2 η (2.83a)

ϑ1

η
→ e−i

π/2ϑ1

η
(2.83b)

ϑ2

η
↔ ϑ4

η
(2.83c)

ϑ3

η
→ ϑ3

η
(2.83d)

The crucial point is that now the fermionic partition function is a product of
the spin structures of 64 fermions. Performing the modular transformations
τ → − 1

τ and τ → τ + 1 will take us from one spin structure to another, i.e it
will take us from one product of ϑi functions to another.

Modular invariance requires that both of the spin structures related under
these transformations must contribute to the partition function with an equal
weight, which is

C

(
~α
~β

)

This condition will lead us to some constraints, which we will consider below.
The one loop fermionic partition function is then

∑

Spin Structures

C

(
~α
~β

)

Z

(
~α
~β

)

(2.84)

for all the spin structures allowed by modular invariance.
For example, we consider the modular transformation τ → τ + 1

(
ϑ

1/2
3

)n∣
∣
α=0,β=0

τ→τ+1−−−−−→ (ϑ
1/2
4 )n

∣
∣
α=0,β=1

, i.e Z

[
0
0

]

→ Z

[
0
1

]

(2.85a)

(
ϑ

1/2
4

)m∣
∣
α=0,β=1

τ→τ+1−−−−−→ (ϑ
1/2
3 )m

∣
∣
α=0,β=0

, i.e Z

[
0
1

]

→ Z

[
0
0

]

(2.85b)

26Basic Concepts of String Theory - Blumenhagen p257
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(
ϑ

1/2
2

)l∣
∣
α=1,β=0

τ→τ+1−−−−−→(ϑ
1/2
2 )l

∣
∣
α=1,β=0

· (eiπ/4)l·1/2 , i.e Z

[
1
0

]

→ ei
iπ/8 Z

[
1
0

]

= (ϑ
1/2
2 )l · ei π

8

P

l αf

(2.85c)

ϑ1 ≡ 0 (2.85d)

where ϑ1 = 0 because the spin structure that it is associated with is already
modular invariant under both the transformations.
We also have similar expressions for the right movers by taking the complex
conjugate of the initial ϑ functions.
In the expression for ϑ2 the sum appears in the exponential due to counting l
number of fermions which have the boundary conditions αf .

To ensure modular invariance we must impose the following condition on the
coefficients C27

C

(
α
β

)

= − exp
(
i
π

8

∑

αf
)
C

(
α

α+ β + 1

)

(2.86)

where the negative sign is present due to the η’s and the sum is explicitly
∑

=
∑

left-movers−
∑

right-movers. We also have

∑

αf = 0 mod 8 (2.87)

Our ϑ1 expression is as follows

ϑ1(Z, τ) = 2eiπ
τ/4 sinπZ

∞∏

n=1

f(τ, z, n) (2.88)

Now we will state how the ϑ functions transform under the modular transfor-
mation τ → − 1

τ

(
0
0

)n

:

(
ϑ

1/2
3 (τ)

η1/2

)n

−→
(

0
0

)n

:

(
ϑ

1/2
3

η1/2

)n

(2.89a)

(
0
1

)m

:

(
ϑ

1/2
4

η1/2

)m

−→
(

1
0

)m

:

(
ϑ

1/2
2

η1/2

)m

(2.89b)

(
1
0

)l

:

(
ϑ

1/2
2

η1/2

)m

−→
(

0
1

)m

:

(
ϑ

1/2
4

η1/2

)l

(2.89c)

(
1
1

)p

:

(
ϑ

1/2
1

η1/2

)p

−→
(

1
1

)p

: e−i
π/4

(
ϑ

1/2
1

η1/2

)p

(2.89d)

We must also impose another condition on C in order to maintain modular
invariance, this is28

C

(
α
β

)

= exp
(
i
π

4

∑

αf · βf
)
C

(
β
α

)

(2.90)

27See ”Four dimensional Superstrings - ABK” - equation 2.6a
28See ”Four dimensional Superstrings - ABK” - equation 2.6b
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where
~α · ~β = 0 mod 4 (2.91)

where ~α · ~β is a Lorenzian product, i.e

∑

left

αf · βf −
∑

right

αf · βf (2.92)

This is how the ABK rules are derived.
In additon, the modular invariance imposes the GSO projection on the physical
spectrum.

The entire partition function can then be generated by specifying a set of
boundary condition basis vectors

B = {~b1, . . . ,~bn} (2.93)

and all the terms in the partition function are of the form

Z

(
~α
~β

)

(2.94)

where
~α = α1

~b1 + . . .+ αn~bn (2.95a)

~β = β1
~b1 + . . .+ βn~bn (2.95b)

For models with only NS/R boundary conditions the possible coefficients are

αi = 0, 1 and βi = 0, 1 (2.96)

where the basis vectors bi and the coefficients C

(
bi
bj

)

are subject to the consis-

tency constraints set out by the ABK rules.2930

2.3.5 Ensuring a Well Defined Supercurrent

There is one more important constraint that should be mentioned. This impor-
tant constraint has lead to some confusion in the construction of SO(10) GUT
models. The constraint is that worldsheet supersymmetry must be preserved.
This means that the supercurrent TF must be uniquely defined (up to a sign)
under the transformation of the world sheet fermions under the specified bound-
ary conditions in all sectors. Again, it is sufficient to ensure this for the basis
vectors.

Recall that for the heterotic string the supercurrent has the form (from
equation (2.41))

TF = ψµ∂Xµ where µ = 1, . . . , 8 (2.97)

29See ”4d Fermionic Superstrings with Arbitrary Twists - Antoniadis and Bachas” - Equa-
tions B1-B5

30Also see Chapter 3
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In the fermionic construction, it will take the form

TF = ψµ∂Xµ + fabcψ
aψbψc (2.98)

where fabc are the structure functions of some semi-simple lie group of dimension
18.

In the models that are being described, the group is SU(2)6. The 18 internal
left moving fermions are then grouped into 6 representations in the adjoint of
SU(2). The supercurrent takes the form

TF = ψµ∂Xµ +

6∑

i=1

χiyiwi (2.99)

Requiring that the supercurrent is well defined then imposes that every product
χiyiwi transforms with the same sign as ψµ∂Xµ. This means that if ψµ → −ψµ
we have

χiyiwi → −χiyiwi
Therefore, the following boundary conditions are valid for each χ, y, w are

(χ, y, w) : (1, 1, 0) (0, 1, 1) (1, 0, 1) (0, 0, 0) (2.100)

This is because for each boundary that is 0 (NS) there is a negative contribution,
so the three boundary conditions must contain an odd number of 0’s in order
to contribute an overall negative sign.
By the same reasoning, if ψµ → +ψµ then the valid boundary conditions are

(χ, y, w) : (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 1) (2.101)

and χ, y, w→ χ, y, w. However, in this case we need an even number of NS (0)
boundary conditions.
This ensures that we have a well defined world sheet supercurrent.

It would seem that we are done with the prerequisit. However, we aren’t
quite yet, but we are almost there. The fun only begins in constructing real
models. Fortunately for us ABK summerized their rules very nicely.

We could have just stated the ABK rules amd forgot all about the prelimi-
naries but it is useful to see where they come from.

The next thing we should know is that every complex fermion generates a
world sheet current. This world sheet current produces the Cartan generators
of the 4-dimensional gauge group. The charges with respect to these are given
by

Q(f) =
1

2
α(f) + F (f) (2.102)

where α(f) is the boundary condition of a complex fermion and F (f) is the
fermion number.

The fermion number is given by (±1) for a fermion acting on the non-
degenerate vacuum and (−1) for its complex conjugate.
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For the Ramond vacua there are two degenerate vacua denoted by |±〉 with
fermion numbers

F : |+〉 = (0) |0〉
F : |−〉 = −1 |+〉 (2.103)

There is one more type of world sheet operator in the models that will be
described. These are obtained by combining a real left moving with a real right
moving fermion. They generate the conformal field theory of Ising operators
with the field operator of the Ising model. This will become clearer when we
discuss specific examples.
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Chapter 3

ABK Rules and GSO
Projections

We will now summarize the ABK rules and how GSO projection works so that
we can start constructing real models.

A model is defined by specifying two ingredients

1. A set of boundary condition basis vectors

2. The one loop phases C

(
bi
bj

)

for all intersection of the basis vectors

3.1 Summary of the ABK Rules

We will now write down the explicit rules of the ABK models. This is our
starting point for the construction of actual models.

1. Basis vectors {b1, . . . , bn}
Each of these basis vectors consists of a set of boundary conditions for each
fermion which can be written as

bi = {α(ψµ1,2), . . . , α(w6)|α(ȳ1), . . . α(Φ̄8)} (3.1)

where α(f) is the phase defined by f → −eiπα(f)f .
The basis vectors form an additive group Ξ which is defined by

Ξ =

n∑

i=1

mibi where mi = 0, . . . , Ni − 1

where Nibi = 0 mod 2.
Any spin structures that contribute to the partition function are pairs of ele-
ments in Ξ.

3.1.1 Rules on Basis Vectors

We should first recap that 1 implies a periodic (Ramond) boundary and 0 implies
an anti-periodic (NS) boundary. Also in ABK we have f → −eiπα(f)f .
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1. ∑

mibi = 0 if and only if ∀mi = 0 mod Ni (3.2)

where Ni is the smallest positive integer where Nibi = 01.

2.
Nijbibj = 0 mod 4 (3.3)

where Nij is the least common multiplier of bi and bj .

3.
Nibibi = 0 mod 8 (3.4)

4. Number of real fermions must be even

5.
b1 = 1 (and more generally 1 ∈ Ξ) (3.5)

where 1 is the basis vector which includes boundary conditions for all
fermions.

In the above, we defined the scalar product between the basis vectors as

bi · bj =

{
∑

Complex Left

+
1

2

∑

Real Left

−
(

∑

Complex Right

+
1

2

∑

Real Right

)}

bi(f)bj(f)

(3.6)
where bi(f) and bj(f) are the fermion numbers that count each real fermion
once and each complex fermion minus once.

3.1.2 Rules on One-loop Phases

1.

C

(
bi
bj

)

= δbi
e

2πi
Nj

n
= δbj

e
2πi
Ni

m
e

iπ
2 bi·bj (3.7)

2.

C

(
bi
bi

)

= −e iπ
4 bi·bi C

(
bi
1

)

(3.8)

3.

C

(
bi
bj

)

= e
iπ
2 bi·bj

(
bj
bi

)∗
(3.9)

4.

C

(
bi

bj + bk

)

= δbi
C

(
bi
bj

)

C

(
bi
bk

)

(3.10)

where

δbi
= eiπbi(ψ

µ) =

{

−1 bi(ψ
µ) = 1

+1 bi(ψ
µ) = 0

(3.11)

This index ensures the correct spacetime statistics for spacetime fermions
and bosons.

1We should note that for our cases Ni will always be 2. This is because we are working in
Ξ = Z2 ⊕ . . . ⊕ Z2 i.e the Z2 orbifold
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3.1.3 Matching (Virasoro) Condition

The basis spans a finite additive group Ξ =
∑
mibi for mi = 0, . . . , Ni − 1. For

every sector α for which α ∈ Ξ there is a corresponding Hilbert space. This
Hilbert space is obtained by acting with the fermionic oscillators (denoted by
NL and NR) on the vacuum.
The states in this space have to satisfy the Virasoro conditions2, this means
they must have the same mass in the left and right sectors

M2
L = −1

2
+
αL · αL

8
+NL = −1 +

αR · αR
8

+NR = M2
R (3.12)

where αL, αR correspond to the left and right parts of α respectively and NL,NR
are the total left and right oscillator numbers which act on the vacuum |0〉α.
For periodic fermions there is a double degenerate spinorial vacua (|±〉)

να0α ; |±〉

where να is the frequency of the oscillators and is given for a fermion f and its
conjugate f∗ by

νf =
1 + α(f)

2
νf∗ =

1− α(f)

2
(3.13)

The frequencies and the fermionic oscillators are related by

NL =
∑

νL =
∑

f
L−osc

νf +
∑

f∗

L−osc

νf∗

NR =
∑

νR =
∑

f
R−osc

νf +
∑

f∗

R−osc

νf∗

For the NS vacuum

α(f) = 0 ⇒ νf = νf∗ =
1

2

3.1.4 Fermion Number

The fermion number is denoted by F (f) and has the following properties

F (f) =

{

+1 for f

−1 for f∗ (3.14)

This will enter into some of our descriptions in the following sections, such as
the U(1) charges and the GSO projection.

3.1.5 U(1) Charges

When the U(1) gauge group is realised by a free fermion we have the corre-
sponding charge

Q(f) =
1

2
α(f) + F (f) (3.15)

2For this section, see ’Classification of Free Fermionic Models - Marc-Olivier Renou’ - p18
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3.2 GSO Projection

The GSO projection is defined by the equation

eiπbj ·Fα |s〉α = δαC

(
α
bj

)∗
|s〉α (3.16)

where
α ∈ Ξ bj ∈ Basis

and |s〉α is a state in the sector α ∈ Ξ. In the argument of the exponential we
have used the definition

bj · Fα =

(
∑

Left

−
∑

Right

)

bj(f)Fα(f) (3.17)

The states |s〉 that do not satisfy this equation are projected out and no longer
contribute to the partition function.
We should make a remark about the GSO projections. The GSO projection
also arises by modular invariance.
The partition function simply counts the spectrum at all masses. When we
expand the partition function for a sector α we can take it as a sum over its
intersection with other sectors.

Z =
∑

α

∑

β

C

(
α
β

)

Z

(
α
β

)

(3.18)

This means that in the sum there may be cancellations between different parts.
These cancellations will be reflected in the spectrum. For example, N = 4
SUSY has

[
ϑ4

3 − ϑ4
2 − ϑ4

4

]

︸ ︷︷ ︸
ϑ6

3ϑ̄
22
3

where the underbraced term equals zero for N = 4 SUSY.
When we construct the Hilbert space (of the models) by using the basis vectors,
the GSO projections incorporate those cancellations. Therefore, they are just a
result of the modular invariance of the partition function.
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Chapter 4

Constructing Models

4.1 Single Basis Vector Model B = 1

Let us now finally construct models. We will begin with the simplest one with
a single basis vector.

B = {~1} = {1} → required by consistency

In this case we only have two sectors

{~1, 2 ·~1 = ~0}

where ~0 implies the NS boundary conditions.
The rules are trivially satisfied, to see how see the footnote1.
In general the even number of real fermions means that if we pair two real

fermions they will have the same boundary conditions in all sectors (basis vec-
tors).

For phenomenology, we are only interested in massless states as we want
to create states with low energy (i.e not at the unobtainable Planck energy
scale). We must also ensure that there are no states with m < 0 which lead to
a tachyon.
In this model we have two sectors
~1 sector

M2
L = −1

2
+

10

8
+NL = −1

2
+

5

4
+NL =

3

4
+NL > 0 (4.1)

The factor of 10 comes from the definition

αL · αL =
1

2

∑

Real Left

=
20

2
= 10

where we used the definition from equation (3.6) and that there are 20 left
moving fermions from equation (2.50).
For the right movers we have a similar expression

M2
R = −1 +

44

8
+NR = −1 +

11

2
+NR =

9

2
+NR > 0 (4.2)

1See ”Building b=I First Model”
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Equation (4.1) means this sector contains no massless states asM2
L > 0 is always

true. Also equation (4.2) shows M2
R > 0 and therefore there are no massless

states for the right movers either.
NS sector

M2
L = −1

2
+

0

8
+NL = −1 +

0

8
+NR = M2

R (4.3)

where the zero term comes from the fact that all the fermions are included in
the basis vector 1, meaning there are no fermions in the NS sector.

The possible oscillators of the world sheet fermions are

νf,f∗ =
1± 0

2
=

1

2
(4.4)

So we need a combination of:

• One left moving fermionic oscillator

and either

• Two right moving fermionic oscillators

• One right moving bosonic oscillator

to get a massless state. Or we need one fermionic right moving oscillator to get
a tachyonic state.2

4.1.1 Notation

We should remark on the notation that is introduced to describe these states.
We will use the following notation, which is often found in the papers
Left movers

ψµ1,2
(
χ1y1w1

)(
χ2y2w2

)(
χ3y3w3

)(
χ4y4w4

)(
χ5y5w5

)(
χ6y6w6

)

In this expression, the ψµ1,2 and all χi are complex, where as yi and wi are all
real.
Right movers

{ȳ1w̄1 ȳ2w̄2 ȳ3w̄3 ȳ4w̄4 ȳ5w̄5 ȳ6w̄6}{ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8}

All the terms in the first brackets are real and all the terms in the second
bracket are complex. The use of this notation will become more obvious while
proceeding.

4.1.2 Massless States in the NS Sector

We therefore have the following massless states in the NS sector

•
ψµ1/2 ∂X̄

ν
1 |0〉NS (4.5)

where ψµ1/2 is the left moving fermion and ∂X̄ν
1 is the bosonic creation

operator (right moving boson). The bosonic states correspond to the
graviton, dilaton and the antisymmetric tensor.

2See file ‘Massless and Tachyon States in NS Sector’
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•
ψµ1/2 φ̄

a
1/2 φ̄

b
1/2 |0〉NS {a, b} = 1, . . . , 44 (4.6)

This state contains one left moving fermionic oscillator and two right mov-
ing fermionic oscillators. The right movers correspond to the gauge bosons
in the adjoint representation of SO(44).

•
{χi1/2, yi1/2, wi1/2} ∂X̄µ

1 |0〉NS {i = 1, . . . , 6} (4.7)

Here {χi1/2, yi1/2, wi1/2} is the left moving fermionic oscillator and ∂̄Xµ
1 is

the right moving bosonic oscillator. This state corresponds to the gauge
bosons in the adjoint representation of SU(2)6.

•
{χi1/2, yi1/2, wi1/2} φ̄a1/2 φ̄b1/2 |0〉NS (4.8)

This state contains one left moving fermionic oscillator and two right mov-
ing fermionic oscillators. This state corresponds to the scalars in the ad-
joint representation of the gauge group SU(2)6 × SO(44).

We also have the tachyonic states which contains one right moving fermion

φ̄a1/2 |0〉NS (4.9)

which has M2 = − 1
2 .

4.1.3 GSO Projection of B = 1 Model

We now have to perform the GSO projections for each state in this model to
see which states survive.

First we will define some results for the spin structures which will be useful
for GSO projecting our states found in the previous section. Using rule (1)
defined in equation (3.7) we find

C

(
NS
NS

)

= δNSe
i 2π0

0 = δNS = 1 (4.10)

where δNS = 1 due to equation (3.11) as bi(ψ
µ) = NS = 0.

Also by using rule (1), we find

C

(
NS
bj

)

= δbj
e
i
2πmNS

NNS
︸ ︷︷ ︸

ei
πbj ·NS

2
︸ ︷︷ ︸

= δbj
= δNSe

i
2πnj
Nbj (4.11)

where the underbraced terms equal one. The first underbrace equals one as
mNS = 0 by definition as this is the NS sector and the second underbrace
equals one because in the exponential bj ·NS = bj · 0 = 0.
The useful identity we have obtained here is

C

(
NS
bj

)

= δbj
(4.12)

We can now continue to perform the GSO projection for our states. We will first
consider the states in the massless spectrum by considering the GSO projection
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for a general state |s〉. For our additive group Ξ in this model, we have α = NS
and bj = 1 and therefore

eiπbj ·Fα |s〉α −→ eiπ1·FNS |s〉NS = δNS C

(
NS
1

)∗
|s〉NS

= δNS δ1 |s〉NS
= δ1 |s〉NS
= − |s〉NS

(4.13)

To obtain the second line we used the boxed equation (4.12), to obtain line three
we used the fact that δNS = +1 and to obtain the final result we used δ1 = −1.
These results for the δ’s are true due to equation (3.11).

We can now perform this calculation for a specific state instead of our generic
state |s〉. We will consider the first massless state of one left moving fermion
and one right moving boson which describes the graviton, dilaton and the anti-
symmetric tensor and see if this survives the GSO projection. We find

eiπ1·FNS
(
ψµ1/2 ∂X̄

ν
1/2 |0〉NS

)
= δ1

(
ψµ1/2 ∂X̄

ν
1/2 |0〉NS

)

= − ψµ1/2 ∂X̄ν
1/2 |0〉NS

(4.14)

(In general we find that the state ψµ1/2 ∂X̄
ν
1/2 |0〉NS always survives because the

identity C
(
NS
bj

)
= δbj

is true).

We also find
eiπbj(ψ

µ)FNS(ψµ) = eiπbj(ψ
µ) = δbj

which is true because the state that we are considering here (ψµ∂X̄ν |0〉) only
contains the fermion ψµ, therefore giving the left hand side of this equation.
The second exponential is true as FNS(ψµ) = +1 due to equation (3.14) and
finally due to the spacetime spin statistics index (equation (3.11)) we find the
answer. This means we have an equality and therefore this state survives the
GSO projection.

This is the statement that the graviton multiplet is always in the spectrum
of a string theory. This is also true in the bosonic and the type II string theories,
which has the states (respectively)

∂Xν
1 ∂X̄

µ
1 |0〉NS

ψν1/2 ψ
µ
1/2 |0〉NS

which also always exists in the massless spectrum. It is seen that gravity is
always present.

Continuing with the projection of the other states

eiπ1·FNS :
ψµ φ̄a φ̄b

−1 −1 −1
|0〉

= δ1 = −1 X (4.15a)

The exponential on the left hand side can be explicitly written by

e(iπ(1(ψµ)·FNS+1(φ̄a)·FNS+1(φ̄b))·FNS = eiπ(1(ψµ)·FNS)eiπ(1(φ̄a))·FNS)eiπ(1(φ̄b))·FNS)
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and as these states are periodic in the basis vector 1 and FNS = +1 then the
contribution of each exponential is −1.

The same reasoning applies to the following states
{
χ y w

}
φ̄a φ̄b |0〉NS

eiπ1·FNS : −1 −1 −1
= δ1 = −1 X (4.15b)

{
χ y w

}
∂X̄µ

1 |0〉NS
eiπ1·FNS : −1 0

= δ1 = −1 X (4.15c)

The boson state ∂X̄µ
1 has a contribution of zero as bosons are not included in

the fermion number F (f) and therefore give no contribution.
As all of these states equal −1 on the left and right hand sides meaning there
is an equality and they all survive the GSO projection.
Now we must consider the tachyons

φ̄a1/2 |0〉NS
eiπ1·FNS : −1

= δ1 = −1 X (4.16)

Therefore the tachyon survives the GSO projection in this model.

4.1.4 Modular Invariance of B = 1 Model

The partition function for this model is composed of three sectors

Z = C

(
0
0

)

Z

(
0
0

)

+ C

(
0
1

)

Z

(
0
1

)

+ C

(
1
0

)

Z

(
1
0

)

(4.17)

By using rule (3) of the one loop phases (equation (3.9)) we find the following
to be true

C

(
1
0

)

= ei
π0·1

2 C

(
0
1

)∗
= δ1 = −1 (4.18)

and using the result of equations (4.10) and (4.12) we calculate our partition
function to be

Z = Z

(
0
0

)

− Z
(

0
1

)

− Z
(

1
0

)

(4.19)

We now have to ask if this modular invariant. By using our definition of the
partition function given in equation (2.80) we obtain

Z

(
0
0

)

=
ϑ

1/2
3

η1/2
=
ϑ

20/2
3

η20/2
· ϑ̄

44/2
3

η44/2
=
ϑ10

3

η10

ϑ̄22
3

η̄22
(4.20)

The ϑ are the left movers and the power of 10 comes from the fact that there
are 20 left moving fermions. The ϑ̄ are the right movers and the power of 22
comes from the fact that there are 44 right moving fermions.
Similarly for the other spin structures

Z

(
0
1

)

=
ϑ10

4

η10

ϑ̄22
4

η̄22
(4.21a)

Z

(
1
0

)

=
ϑ10

2

η10

ϑ̄22
2

η̄22
(4.21b)
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Substituting these expressions into the total partition function given in equation
(4.19) we get

Z =
1

η10η̄22

[
ϑ10

3 ϑ̄
22
3 − ϑ10

4 ϑ̄
22
4 − ϑ10

2 ϑ̄
22
2

]
(4.22)

Now we can consider the modular invariance of the partition function.
Under the transformation τ → τ + 1 the following transformations are true

η → ei
π/12η (4.23a)

ϑ2 → ei
π/4ϑ2 (4.23b)

ϑ3 ↔ ϑ4 (4.23c)

By performing these transformations on the partition function given in equation
(4.22) we obtain

→ 1

eiπ(10−22)/12η10η̄22

[
ϑ10

4 ϑ̄
22
4 − ϑ10

3 ϑ̄
22
3 − eiπ

10−22
4 ϑ10

2 ϑ̄
22
2

]

=
1

e−iπη10η̄22

[
ϑ10

4 ϑ̄
22
4 − ϑ10

3 ϑ̄
22
3 − e−3iπϑ10

2 ϑ̄
22
2

]
(4.24)

We then compare the modular weight between the initial and final partition
functions to see if the transformation has left it invariant. In equation (4.22)
the three terms had the weight (+,−,−) and therefore was + overall. After the
transformation, the modular weight for each term is −1× (+,−,+) = (−,+,−)
and is therefore still + overall. This means it is invariant.

Under the transformation τ → − 1
τ we get

η → (−iτ) 1
2 η (4.25a)

ϑ2

η
↔ ϑ4

η
(4.25b)

ϑ3

η
→ ϑ3

η
(4.25c)

so trivially, it is invariant under this transform.
The modular invariance of the partition function was expected, but it is a good
check to know what is going on.

As we saw, this model contains a tachyon. As we know, a tachyon is un-
physical which means that our constructed model is unstable. We will attempt
to find a more accurate model by adding another basis vector b2 which is what
we will consider in the next section.

4.2 Basis Vector Model B = {1, ~S}
We begin by adding another basis vector b2 = ~S which means we have B =
{1, ~S}. The newly introduced basis vector has the following boundary conditions
for the fermions

~S : S{ψµ1,2 , χ1,2 , χ3,4 , χ5,6} = 1 → Periodic (Ramond) (4.26)
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and all other fermions are anti-periodic (Neuvu-Schwarz).

As an aside, we will find that the χ fermions are the Majorana-Weyl super-
partners to the six compactified dimensions (degrees of freedom of the world-

sheet). It is this reason that they are included in the ~S sector.
This basis vector must also satisfy the ABK rules

Rules Check:
First we will calculate ~S · ~S and ~S · ~1 as these will be used in the calculations.
Using equation (3.6) we find

~S · ~S =
8

2
− 0 = 4− 0 = 4 (4.27a)

~S · ~1 = 4− 0 = 4 (4.27b)

These are true because we have 8 left moving real fermions (by definition in
equation (2.50) and (4.26)).
As NS = 2, rule 3 is satisfied by

NS · bS · bS = NS · ~S · ~S
= 2 · 4
= 8

= 0 mod 8 X

(4.28)

and rule 2 is satisfied by

NS,1 · bS · b1 = NS,1 · ~S · ~1
= 1 · 4
= 4

= 0 mod 4 X

(4.29)

We have four sectors which are in the additive group Ξ

{1, S,1+ S,NS} (4.30)

The 1 + S state comes from the fact that we add together the S basis vector
with the other basis vectors, in this case the only other basis vector that gives a
contribution is 1 (as S +NS does not give a new basis vector due to the other
basis vector being NS). We will see this clearer later when constructing the
NAHE set which requires adding more complex basis vectors than just 1.

The sectors {1,1 + S} do not give massless states, which can be seen by
considering the mass squared matching condition (equation (3.12)). Firstly, for
the (1 + S)L sector

αL · αL = (1 + S)L · (1 + S)L = 6

⇒M2
L = −1

2
+

6

8
= +

1

4
> 0

(4.31)

where the factor of 6 comes from the 12 left moving fermions
y1,...,6w1,...,6

2 = 6.
For the (1 + S)R sector

αR · αR = (1 + S)R · (1 + S)R = 22

⇒M2
R = −1 +

22

8
> 0

(4.32)
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where the value of 22 comes from the 44 real right moving fermions and 44
2 = 22.

We should note that in the descriptions of the mass squared, there are no
fermionic oscillators. This means this sector is a purely Ramond vacua.

The NS sector gives the same states as in the B = {1} model, but we have
to perform the GSO projections of the S sector.

4.2.1 GSO Projections of the S Sector

For a general state s, we know from equation (3.16) that the state must satisfy

eiπ
~S·~FNS |s〉NS = δNS C

(
NS
S

)

|s〉NS
= δNSδS |s〉S
= δS |s〉NS
= − |s〉NS

(4.33)

where we used equation (4.12) to find C
(
NS
S

)
= δS and the result found earlier

δNS = +1. We find that δS = −1 by using the definition in equation (4.26)
that the boundary conditions of the fermions in S are Ramond (periodic) and
therefore equal 1, using equation (3.11) for the spacetime spin index then gives
the result δS = −1.
Now we can consider the specific states in this model.

• For our ‘graviton’ state we find

eiπ(1−0) {ψµ1/2 ∂Xν
+1 |0〉NS} = δS{ψµ1/2 ∂+1X

ν |0〉NS}
= −{ψµ1/2 ∂+1X

ν |0〉NS}
(4.34)

where the 1 in the arguement of the exponential comes from the fact that
ψµ1/2 is a fermion and the 0 comes from the fact that ∂Xν

+1 is a boson.

Therefore eiπ = −1 and the contribution from the exponential is −1 .
Similarly for the boson, we find the contribution of the exponential is +1
due to e0 = 1.

When we combine these two results (by multiplication), we find that the
state is negative overall and therefore survives the GSO projection (as was
expected because this state always exists in string theories).

• Now the second state

eiπS·FNS

(

{χ1/2 ; y1/2 ; w1/2} ∂X̄µ
+1 |0〉NS

)

= eiπ(S(χ)·FNS+S(y)·FNS+S(w)·FNS+S(∂X̄)·FNS)

(

{χ1/2 ; y1/2 ; w1/2} ∂X̄µ
+1 |0〉NS

)

(4.35)

As FNS = 1 for all the fermions and 0 for the boson, we find

= eiπ(S(χ)+S(y)+S(w)+0)

(

{χ1/2 ; y1/2 ; w1/2} ∂X̄µ
+1 |0〉NS

)
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By definition, y and w are not in the ~S sector and therefore S(y) and S(w)
equal zero as they are not periodic, we therefore get

= eiπ(1+0+0+0)

(

{χ1/2 ; y1/2 ; w1/2} ∂X̄µ
+1 |0〉NS

)

which leaves us with the result

{χ1/2; y1/2; w1/2} ∂X̄µ
+1 |0〉NS = −1

eiπS : −1 +1 +1 +1 = −1
(4.36)

The fermions χ1/2 have a negative result for the exponential. When this is
multipied by the positive contribution from the boson an overall negative
result remains, meaning this state χ1/2 ∂X̄

µ
+1 |0〉NS survives.

However, the other two fermions y, w have a positive contribution when
individually multiplied by the positive contribution of the boson, this gives
an overall positive result and the states y1/2 ∂X̄

µ
+1 |0〉NS andw1/2 ∂X̄

µ
+1 |0〉NS

are projected out.

If we recall that this state corresponds to the gauge bosons of SU(2)6 in
the adjoint representation, then we can see that this projection breaks this
gauge group as the fermions {χ, y, w} have been split due to the addition
of this basis vector S.

• Following a similar method to the second state, for the third state we have
our exponential

eiπ
(
S(ψµ)·FNS(ψµ)+S(φ̄a)·F (φa)+S(φ̄b)·F (φb)

)

= eiπ(1+0+0) (4.37)

which leads to

ψµ1/2 φ̄a1/2 φ̄b1/2 |0〉NS
eiπS·FNS : −1 +1 +1 = −1 X

(4.38)

Here the state is not projected as −1 × +1 × +1 = −1, this means the
adjoint representation of SO(44) survives.

• The fourth state projection is (corresponding to the scalars in the adjoint
of SO(44))

{χ1/2; y1/2; w1/2} φ̄a1/2 φ̄b1/2 |0〉NS
{−1; +1; +1} +1 +1
X × ×

(4.39)

Again, as the contributions for y and w are +1 × +1 × +1 = +1 which
do not satisfy the GSO projection, they are projected out while the χ
fermions remain.

• We also had the tachyon

eiπ(0·1){φ̄a1/2 |0〉NS
}

= +
{
φ̄a1/2 |0〉NS

}
(4.40)

As the GSO equaltiy is not satisfied due to the positive result, this means
the tachyon is projected! This is a good sign.
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4.2.2 S Sector and the GSO Projections

We have considered the NS sector and the 1 + S sector so we now move on
to consider the ~S sector. We will do this by first defining some properties of
the sector, such as the mass squared and the vacuum, then we will consider the
GSO projections of this sector.
We begin with αL = SL

SL · SL = 4

⇒M2
L = −1

2
+

4

8
= 0

(4.41a)

The 4 comes from the fact that there are 8 real moving left fermions in the ~SL
sector, as defined in equation (4.26).
Again, there are no oscillators as this is a purely Ramond vacua. There are no
right moving fermions in the ~SR sector, therefore

SR · SR = 0

⇒M2
R = −1 +

0

8
= −1

(4.41b)

This equation has a negative mass squared. This implies the need for either
two right moving fermionic oscillators or one right moving bosonic oscillator in
order to not have a tachyonic state.

It will be useful for later discussion to complexify our fermions. We do this
by defining

ψµ12 =
1√
2
(ψµ1 + iψµ2 ) (4.42a)

χ12 =
1√
2

(
χ1 + iχ2

)
(4.42b)

χ34 =
1√
2

(
χ3 + iχ4

)
(4.42c)

χ56 =
1√
2

(
χ5 + iχ6

)
(4.42d)

along with their complex conjugates given generally by λ∗ab = 1√
2
(λa− iλb). We

will begin using these definitions now.
The S-vacuum is constructed as

|s〉L = |±〉 |±〉 |±〉 |±〉 |0〉L
ψµ χ12 χ34 χ56

(4.43)

So there are 24 = 16 possible choices of state in this sector.
The states in the S-vacuum are

|s〉L ∂X̄µ
+1 |0〉R (4.44a)

|s〉L φ̄a1/2φ̄
b
1/2 |0〉R (4.44b)

which is due to our need to have either one right moving bosonic oscillator or
two right moving fermionic oscillators so as not to introduce a tachyonic state
as mentioned above.
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We should note that the states in the left-moving sector are in the Ramond
vacuum of the spacetime fermions and therefore correspond to the fermions de-
fined as periodic in the basis vector S as given in equation (4.26).

We now make some comments on these states. The states in equation (4.43)
are in the spinorial (spin 1/2) representation of the Lorentz group.
The states |s〉L ∂X̄

µ
+1 |0〉R have spin 3/2 and are interpreted as gravitinos, where

as the states |s〉L φ̄a1/2φ̄
b
1/2 |0〉R are spin 1/2.

We still have to apply the GSO projections, which is what we will do now.

GSO Projections
Here we will introduce a combinatorial notation. In the example of the states

S : ψµ χ12 χ34 χ56

|±〉 |±〉 |±〉 |±〉 (4.45)

we can introduce the notation
[(

4
0

)

+

(
4
1

)

+

(
4
2

)

+

(
4
3

)

+

(
4
4

)]

(4.46)

to describe the states, where

(
4
i

)

counts the number of negative states |−〉, i.e

(
4
0

)

= |+〉 |+〉 |+〉 |+〉
(

4
2

)

= |−〉 |−〉 |+〉 |+〉 etc

(4.47)

We should also recall the fermion number

F : |±〉 =
{

0 |+〉
−1 |−〉 (4.48)

for the coming projections.

We have the GSO projections of two vectors {1, S} to perform. Firstly, we

will consider the vector 1 and secondly the vector ~S.
For the vector 1 we have the GSO projection

eiπ1·FS |s〉S = δS C

(
S
1

)∗
|s〉S (4.49)

By using rule (1) for the one loop phases (equation (3.7)) we find a result for
the one loop phase in the above equation

C

(
bi
bj

)

= C

(
S
1

)

= δSe
2πin1

N1 = δ1e
2πimS

NS e
iπ
2 bS ·b1 (4.50)

If we consider the contribution of this equation to the GSO projection, we find
that two of the exponentials contribute ±1 by

C

(
S
1

)

= δ1 ei
π1·S

2 e
i
2πmS

NS = δS ei
2πn1

N1

(−1) (+1) (±1) = (−1) (±1)
(4.51)
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(where 1 · S = 4 − 0 = 4 and therefore gives a positive contribution) and
mS , n1 = 0, 1 due to the ABK rule given in equation (3.2) i.e mS , n1 = 0
mod 2 where Ni = 2. We therefore have two choices that we can make for the
result of the GSO projection.
We will first consider the case where we make the choice

C

(
S
1

)

= −1 (4.52)

Due to this choice, we also calculate

C

(
1

S

)

= ei
π1·S

2 C

(
S
1

)∗
= −1 (4.53)

We can also calculate the one loop phase of two S sectors. Using rule (2) of the
one loop phases gives

C

(
S
S

)

= −eiπS·S
4 C

(
S
1

)

substituting the result of equation (4.51)

C

(
S
S

)

= −eiπS·S
4 δS e

2iπn1
N1

As S · S = 4

C

(
S
S

)

= −eiπ δS e
2iπn1

N1

So the first exponential gives a negative contribution and the two other terms
also give negative contributions (as in equation (4.51) because we make the
choice in equation (4.52)). Therefore

C

(
S
S

)

= (−)(−)(−) = −1 (4.54)

Therefore, we have

(
1 S

1 −1 −1
S −1 −1

)

or

(
1 S

1 −1 +1
S +1 +1

)

(4.55)

Where the 1 and S are the basis vectors and inside the matrix there are the
relative contributions.

Only C
(
S
1

)
or C

(
1

S

)
are independent, the rest are fixed by modular invariance.

This becomes important when the models become more complicated.
We therefore have

eiπ1·FS |s〉S = + |s〉S (4.56)

eiπ1·FS |s〉L φ̄aφ̄b |0〉R = e−iπ(1·(#of|−〉)−(1·1)−(1·1)) |s〉S
= eiπ(1·#of|−〉) |s〉

(4.57)

If the number of |−〉 is odd, then the state is projected. If the number of |−〉 is
even then the state survives.
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So we have that only even states remain, or expressed using our combinato-
rial notation

|s〉S =

[(
4
0

)

+

(
4
2

)

+

(
4
4

)]

φ̄a1/2φ̄
b
1/2 |0〉 (4.58)

which is our state that has a spin 1/2 and corresponds to the gaugino.
The same is true for

[(
4
0

)

+

(
4
2

)

+

(
4
4

)]

∂X̄µ
1/2 |0〉 (4.59)

which is the state with spin 3/2 and corresponds to the gravitino. It is useful to
ask how many gravitinos are present. We can find this by splitting the states to

(
1
0

)[(
3
0

)

+

(
3
2

)]

+

(
1
1

)[(
3
1

)

+

(
3
3

)]

(4.60)

where the
(
1
0

)
and

(
1
1

)
are the ψµ fermions and

(
3

even/odd

)
correspond to χ12, χ34, χ56.

These two terms corresponding to the χ fermions are the two components of a
spacetime Weyl spinor.
Having 4 gravitinos present means that we have N = 4 SUSY.

We still have to check the S projection which is what we will consider now.

eiπS·FS |s〉S = δS

(
S
S

)∗
|s〉S = + |s〉S (4.61)

We find that this projection actually acts in the same way as for the 1 vector
because SR ≡ 0. Therefore, the spectrum remains intact after the S projection.
This means the model contains N = 4 SUSY and a gauge group of SO(44).
This concludes the GSO projections of this model.

4.2.3 Partition Function of the B = {1, ~S} Model

We now want to consider the partition function of the model which has the
sectors {1, S,1 + S,NS}.

Firstly, we recall that (
1
1

)

→ ϑ1(τ) ≡ 0 (4.62)

Therefore, whenever we have two intersecting periodic fermions, this term van-
ishes in the partition function.
For example

(
1

S

)

;

(
1

1

)

;

(
1 + S
1

)

≡ 0 (4.63)

but (
1 + S
S

)

6= 0 (4.64)

The sectors that are non-zero are then
(
NS
S

)(
S
NS

)(
NS
NS

) (
1

NS

)(
1 + S
NS

)(
1 + S
S

) (
NS
1

)(
NS
1 + S

)(
S

1 + S

)

(4.65)
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meaning there are nine non-zero sectors.

Recall

(
0
0

)

→ ϑ3,

(
0
1

)

→ θ4,

(
1
0

)

→ θ2.

So each sector can be written in the following way

−
(
NS
S

)

→ θ44 θ
6
3 θ̄

22
3

−
(
S
NS

)

→ θ42 θ
6
3 θ̄

22
3

+

(
NS
NS

)

→ θ43 θ
6
3 θ̄

22
3

−
(

1

NS

)

→ θ42 θ
6
2 θ̄

22
2

+

(
1 + S
NS

)

→ θ43 θ
6
2 θ̄

22
2

−
(
1 + S
S

)

→ θ44 θ
6
2 θ̄

22
2

−
(
NS
1

)

→ θ44 θ
6
4 θ̄

22
4

+

(
NS
1 + S

)

→ θ43 θ
6
4 θ̄

22
4

−
(

S
1 + S

)

→ θ42 θ
6
4 θ̄

22
4

(4.66)

C

(
NS
S

)

= δS = −1 C

(
S
NS

)

eiπ
NS·S

2 C

(
NS
S

)∗
= −1 (4.67)

C

(
NS
bj

)

= C

(
bj
NS

)

(4.68)

C

(
S

1 + S

)

= δSC

(
S
1

)

C

(
S
S

)

= − − − = (−1) (4.69)

C

(
1 + S
1

)

= e
[1+S]·[S]

2 C

(
S

1 + S

)∗
= C

(
S

1 + S

)

= −1 (4.70)

Z =
[
θ43 − θ42 − θ44

][
θ63 θ̄

22
3 + θ62 θ̄

22
2 + θ64 θ̄

22
4

]
(4.71)

This is the partition function of the N = 4 model.

[
θ43 − θ42 − θ44

]
≡ 0 ↔ Jacobi Identity (4.72)

⇒ ΛCosmological = 0 (4.73)
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4.2.4 Outlook

We have a model with no tachyons, but

1. The gauge group is SO(44)

2. There is no matter

3. We have N = 4 SUSY

What we actually want a model to have is

1. Matter

2. Gauge group → Gauge Group ⊂ SU(3)× SU(2)× U(1)

3. N = 1 SUSY

As the gauge group SO(44) is too large, it implies that there are observable ⊗
hidden sectors. We need the matter to have three generations in order to retrieve
the Standard Model and we want to have N=1 SUSY as this gives us the most
freedom in our models to recover phenomenologically correct results.

In order to (hopefully) solve some of these problems, we need to add more
basis vectors. Each basis vector which is added gives rise to new sectors and at
the same time imposes GSO projections on the previous sectors.

The process then goes as follows

1. Choose an intellegent basis vector (this is the creative part)

2. Check compatability with the rules

3. Check for massless states

4. Check the type of massless states, i.e the number of oscillators acting on
the vacuum and whether they are purely Ramond

5. Analyze the Hilbert space from the new sectors {b1; . . . ; bn} and impose
the GSO projections on the states from these sectors

6. Impose the GSO of bn+1 on H{b1, . . . , bn}

It is this which process we will consider in the next chapter.
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Chapter 5

Constructing the NAHE
Set

We will begin by adding new basis vectors which will lead us to form the com-
monly used NAHE set.

5.1 b1 Vector

The first step of our process laid out at the end of the last chapter was to define
an intellegent basis vector. The basis vector we add is labelled b1 and is defined
by

b1 = {ψµ1,2, χ12, y3y4, y5y6 | y3y4, y5y6, ψ̄µ1,...,5, η̄1} (5.1)

The basis of this model is then

B = {1, S, b1} (5.2)

which means there are 23 = 8 sectors, so the additive group is

Ξ = {NS,1 + S,1 + b1, S + b1,1 + S + b1,1, S, b1} (5.3)

The second step of our process was to check that the rules are satisfied. We
check the ABK rules by:
Rule (2) is considered by

N1b1 1 · b1 = 2(4− 8) = 0 mod 4 X (5.4a)

since there are 8 left moving real fermions and 8 right moving complex fermions.

NSb1 · S · b1 = 2(2− 0) = 0 mod 4 X (5.4b)

since there is an ‘overlap’ between 2 left moving real fermions and no right
moving fermions the S and b1 sector.
Rule (3) is considered by

Nb1 · b1 · b1 = 2(4− 8) = 0 mod 8 X (5.4c)

where there are 4 left moving real fermions and 8 right moving complex fermions.
Here Nb1 = 2.
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The next step in our process is checking for massless states. First we calculate
that for the left and right moving sectors respectively, we have

b1L · b1L = 4 b1R · b1R = 8 (5.5)

which we can substitute into our equation for the mass squared as follows

M2
L = −1

2
+

4

8
+ 0 = −1 +

8

8
+ 0 = M2

R (5.6)

where there is a +0 as there are no oscillators present, meaning that the vacuum
is purely Ramond. We can see that there are massless states present but no
tachyonic states have been introduced by this choice of basis vector.

5.1.1 GSO Projections of b1

The GSO projections from an analysis of the Hilbert space are the next step in
our process. We begin by calculating the one loop GSO coefficients

C

(
α
β

)

→





1 S b1

1 −1 −1 ·
S −1 −1 ·
b1 · · ·



 (5.7)

We have two new independent GSO’s: C

(
1

b1

)

and C

(
S
b1

)

, which we can

calculate by using rule (1) of the one loop coefficients

C

(
1

b1

)

= δ1e
i 2πm

Nb1 = δb1e
iπ

b1·1

2 ei
2πn
N1 = ±1 choose (−1) (5.8a)

C

(
S
b1

)

= δSe
i 2πm

Nb1 = δb1e
iπ

S·b1
2 e

i 2πn
NS = ±1 choose (+1) (5.8b)

Using rule (3)

C

(
b1
1

)

= eiπ
b1·1
2 C

(
1

b1

)∗
= C

(
1

b1

)

= +1 (5.8c)

C

(
b1
S

)

= eiπ
b1·S

2 C

(
S
b1

)∗
= (−1)(+1) = (−1) (5.8d)

where equation (5.8d) was found to be negative as the exponential gives a neg-
ative contribution, which can also be seen in equation (5.8b).

First, lets anaylze the GSO of b1 on the NS sector.
From the state {χi1/2, yi1/2, wi1/2}∂X̄

µ
1 |0〉NS which is in the NS sector (equation

(4.7)), we consider the χ fermions and perform the GSO projections by adhear-
ing to equation (5.8a)

χ1,2
1/2 ∂X

µ
+ |0〉NS χ3,4

1/2 ∂X
µ
+ |0〉NS χ5,6

1/2 ∂X
µ
+ |0〉NS

eiπb1FNS −1 +1 +1
X × ×

(5.9)
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So we are only left with the χ1,2
1/2 ∂X

µ
+ |0〉NS state and the other two are projected

out. This was expected as only the χ1,2
1/2 were defined to be in the basis vector

b1 in equation (5.1).
The GSO projection for the next state (given in equation (4.6)) is

ψµ φ̄a1/2 φ̄b1/2 |0〉NS
eiπb1·FNS −1 { } (5.10)

where the curly brackets repesent the four possible choices of boundary condi-
tions for the φ’s

φ̄a1/2φ̄
b
1/2 : {1, 1} {1, 0} {0, 1} {0, 0}

−1− 1 −1 + 1 +1− 1 +1 + 1
(5.11)

we find that the states {1, 1} and {0, 0} are the ones that survive.
For the explicit states, which have one left moving fermion and two right moving
fermions by definition (equation (4.6)), our GSO projections are then

• For {1, 1}

ψµ1/2 {ψ̄1,...,5, η̄1, ȳ3,4, ȳ5,6} {ψ̄1,...,5, η̄1, ȳ3,4, ȳ5,6} |0〉NS
eiπb1·FNS −1 −1 −1 X

(5.12a)

• For {0, 0}

ψµ1/2 {w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8} {w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8} |0〉NS
eiπb1·FNS −1 +1 +1 X

(5.12b)

• For {0, 1} and {1, 0}

ψµ1/2 {ψ̄1,...,5, η̄1, ȳ3,4, ȳ5,6} {w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8} |0〉NS
eiπb1·FNS −1 −1 +1 ×

(5.12c)

So we can see that the states in equation (5.12a) and (5.12b) survive, but the
states in equation (5.12c) are projected.
As this is the case, we find that the gauge group SO(44) breaks to SO(16) ×
SO(28). This can be seen as each bracket in equation (5.12a) contains 8 fermions
and as the gauge group is SO(2n) then we find that the gauge group is SO(2×
8) = SO(16). Similarly for the brackets in (5.12b), there are 14 fermions and
therefore the resulting gauge group is SO(2× 14) = SO(28).

The last set of states to GSO project are those given in equation (4.8)

χ1,...,6 φ̄a1/2 φ̄b1/2 |0〉NS
eiπb1FNS ±1 { } (5.13)

This is done in a similar fashion to the states above. We get
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• For {1, 1}

χ1,2 {ψ̄1,...,5, η̄1, ȳ3,4, ȳ5,6} {ψ̄1,...,5, η̄1, ȳ3,4, ȳ5,6} |0〉NS
eiπb1FNS −1 −1 −1 X

(5.14a)

• For {0, 0}

χ1,2 {w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8} {w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8} |0〉NS
eiπb1FNS −1 +1 +1 X

(5.14b)

• For {0, 1} and {1, 0}

χ1,2 {ψ̄1,...,5, η̄1, ȳ3,4, ȳ5,6} {w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8} |0〉NS
eiπb1FNS −1 −1 +1 ×

(5.14c)

and therefore only the states {0, 0} and {1, 1} survive. We must also check for
the states containing χ34,56 which give a positive contribution. We find that the
states {1, 0}, {0, 1} survive and the states {0, 0}, {1, 1} are projected.

Next we need to analyze the GSO projections of b1 on the S sector.

S : {ψµ1/2 χ1,2 χ3,4 χ5,6} = 1

|±〉 |±〉 |±〉 |±〉 (5.15)

For our GSO projections we want to satisfy equation (5.8d) i.e we want a (−1).
For the gravitino state, which is

[(
4
0

)

+

(
4
2

)

+

(
4
4

)]

∂X̄µ
1/2 |0〉 (5.16)

in the basis vector b1 we have

ψµ1/2 χ1,2 χ3,4 χ5,6 |0〉
b1 1 1 0 0

(5.17)

as the first two fermions are defined to be within b1. As we have two periodic
and two anti-periodic boundary conditions, we only need to consider the

(
4
2

)

states.
After the GSO projections, we find

(
4
2

)

breaks−→
[(

2
1

)][(
2
1

)]

=

[(
1
0

)(
1
1

)](
2
1

)

+

[(
1
1

)(
1
0

)](
2
1

)

(5.18)

and the
(
2
1

)
can be identified to be describing 2 spin 3/2 states. In terms of the

fermions, the breaking that has occured is

{ψµ, χ12, χ34, χ56} → {ψµ, χ12}{χ34, χ56}

This shows that SUSY has broken from N = 4 to N = 2.
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The next state we consider is
[(

4
0

)

+

(
4
2

)

+

(
4
4

)]

φ̄a1/2φ̄
b
1/2 |0〉Ramond (5.19)

Once again, we have that

ψµ1/2 χ1,2 χ3,4 χ5,6 |0〉Ramond
b1 1 1 0 0

(5.20)

When we perform the GSO projection and have eiπb1·FS acting on the left hand
side of the state |s〉S (which is the combinatorial part) we find

[(
2
0

)

+

(
2
2

)]

+

or

[(
2
1

)

+

(
2
1

)]

−
(5.21)

meaning we have either even states (denoted by a positive chirality) or odd
states (denoted by a negative chirality). Now we consider the projections of the
right hand side (i.e on φ̄a1/2φ̄

b
1/2) we find

A :
[
{ψ̄1,...,5, η̄1, ȳ3,...,6}{ψ̄1,...,5, η̄1, ȳ3,...,6}

]

+

and {w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8}{w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8}
]

+

(5.22a)

or

B :
[
{ψ̄1,...,5, η̄1, ȳ3,...,6}−{w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8}+

]

overall =− (5.22b)

This means that the invariant states are
[(

2
0

)

+

(
2
2

)]

⊗ B and

[(
2
1

)

+

(
2
1

)]

⊗A (5.23)

because we have matched the results that cancel the positive or negative signs
on the brackets, therefore giving an overall neutral chirality state.

These produce the states that complete the N = 2 supersymmetric repre-
sentiations. The sector S is the SUSY generator.

5.1.2 Remaining Supersymmetries

To know how many supersymmetries are left, it is adequate to calculate the
number of gravitinos that are left in the massless spectrum. The state

|s〉Sleft
∂Xµ |0〉R (5.24)

gives the gravitons of the model. In this state it is |s〉Sleft
which counts the

number of gravitons.
If we have at leastN = 1, it is enough to check the spectrum from {1, . . . , b1, . . . bn}

and then the sectors S + {1, . . . , b1, . . . bn} will give the superpartners.

Two sectors ~α, ~β ∈ Ξ which are related by ~α = ~β + S are related by the
space time SUSY generator.

A convenient procedure which is easily implemented on a computer is to
analyse all the sectors that give spacetime fermions i.e α(ψµ) = 1. Then all
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the sectors with α(ψµ) = 0 which give the spacetime scalar are related by the
SUSY generators.

To know the massless spectrum content of a model it is therefore sufficient
to analyse the massless fermions.

5.1.3 New States from b1 Basis Vector

We have to find the new states from the sector b1 that are left after our GSO
projections. The states present from the definition of b1 are

b1 : ψ1,2 χ1,2 y3y4 y5y6 y3y4 y5y6 ψ̄1,...,5 η̄1
|±〉 |±〉 |±〉 |±〉 |±〉 |±〉 |±〉 |±〉
[(

12
0

)

+

(
12
1

)

+ . . . + . . . + . . . + . . . +

(
12
11

)

+

(
12
12

)]

(5.25a)
and it is by performing the GSO projections with the other basis vectors present
which determines which states are kept. For the GSO projection with the basis
vector 1 and the choice δb1C

(
b1
1

)
= +1, we have the GSO equation

eiπ1·Fb1 |s〉b1 = δb1C

(
b1
1

)

|s〉b1
= + |s〉b1

This means our GSO projection leaves the states

1 : 1 1 1 1 1 1 (11111) 1
[(

12
0

)

+

(
12
2

)

+

(
12
4

)

+ . . . + . . . + . . . + . . . +

(
12
12

)]

(5.25b)
and therefore the odd states have been projected out. This is because in the
exponential we need an even number of |−〉 states in order for the state to
remain. Performing the GSO projections on the S sector where in the GSO
projection δb1C

(
b1
S

)
= +1 is chosen gives

S : 1 1 10× 0′s
[(

2
0

)

+

(
2
2

)] [(
10

even

)]
(5.25c)

and choosing δb1C
(
b1
b1

)
= +1 and performing the GSO projection on the b1 sector

gives
b1 : 1 1 10× 1′s

[(
2
0

)

+

(
2
2

)] [(
10

even

)]
(5.25d)

In equation (5.25a) there are 212 states, in equation (5.25b) there are 211 states
and in equations (5.25 c,d) there are 210 states.

These are the states which are left after the GSO projections. We can write
these down as representations of the 4D gauge group, but this will not be par-
ticuarly illuminating currently.
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As mentioned previously, we also have the S + b1 sector

S + b1 : χ3,4 χ5,6 y3y4 y5y6 y3y4 y5y6 ψ̄1,...,5 η̄1 (5.26)

This gives the SUSY partners of b1, which are spacetime bosons.

More basis vectors can be added in a similar manner to the above procedure.
Upon introducing new vectors, there are new GSO projections on the previous
spaces. New vectors also means we obtain new massless states.

However, in practice, since we have gained the experience by constructing
previous models, we can speed this process up by first specifying the boundary
conditions, then the GSO phases and analyse the spectrum in one go.

This is how we will continue by adding two more basis vectors b2 and b3.

We should remark that at this point the analysis of the partition function
by hand becomes extremely tedious although not impossible. As we are mainly
interested in the massless spectrum, the partition function is not particuarly
useful to us. The massive spectrum only becomes useful for threshold correc-
tions, among other things.

5.2 Contruction of the Full NAHE Set

The NAHE set has the basis vectors {1, S, b1, b2, b3}. The basis vectors b2, b3
are defined as

b2 = {ψµ, χ34, y12, w56 | ȳ12, w̄56, ψ̄
1,...,5, η̄2}

b3 = {ψµ, χ56, w12, w34 | w̄12, w̄34, ψ̄
1,...,5, η̄3}

The boundary conditions for each fermion as defined in each basis vector can
be seen by the following table
INSERT TABLE
We have already checked the ABK rules for the basis vectors {1, S, b1}, but now
we must check them for b2 and b3.

5.2.1 ABK Rules of the NAHE Set

b1 · 1 = 4− 8 = −4 = 0 mod 4X (5.27a)

b2 · b1 = 1− 5 = −4 = 0 mod 4X (5.27b)

Nb2b2 · b2 = 2 · (4− 8) = −8 = 0 mod 8X (5.27c)

Nb2b2 · S = 2 · 2 = 4 = 0 mod 4X (5.27d)

b3 · 1 = 4− 8 = −4 = 0 mod 4X (5.27e)

b3 · S = 2X (5.27f)

b3 · b1 = 1− 5 = −4 = 0 mod 4X (5.27g)

b3 · b2 = 1− 5 = −4 = 0 mod 4X (5.27h)

b3 · b3 = −8X (5.27i)

We now need to work out the GSO coeffiecients.
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5.2.2 GSO Coefficients of the NAHE Set









1 S b1 b2 b3

1 −1 +1 −1 ±1 ±1
S +1 +1 +1 ±1 ±1
b1 −1 +1 −1 ±1 ±1
b2 ±1 ∓1 ±1 ±1 ±1
b3 ±1 ∓1 ±1 ±1 ±1









There are six new phases that have been introduced, which are the three in the
coloums b2, b3 and the rows 1, S, b1.

The next step is to analyze the massless spectrum.

5.2.3 Analyzing the Massless Spectrum

First we will consider the NS sector.

• The vector bosons which originated from the states ψµφ̄aφ̄b |0〉NS in equa-
tion (4.6) is now broken by GSO projections to the states

ψµ1/2 {ψ̄1,...,5ψ̄1,...,5} {η̄1ȳ3,...,6} {η̄2ȳ1,2w̄5,6} {η̄3w̄1,...,4} {φ̄1,...,8}
SO(10) SO(6)1 SO(6)2 SO(6)3 SO(16)

(5.28)

• The fermions
(χi, yi, wi) ∂X̄

µ |0〉NS (5.29)

have all been projected out.

• The scalars defined originally in equation (4.8) after the b1 GSO projec-
tions gave the states

χ1,2{w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8}{w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8} (5.30a)

χ1,2{ψ̄1,...,5, η̄1, ȳ3,4, ȳ5,6}{ψ̄1,...,5, η̄1, ȳ3,4, ȳ5,6} (5.30b)

χ34,56{ψ̄1,...,5, η̄1, ȳ3,4, ȳ5,6}{w̄1,...,6, ȳ1,2, η̄2, η̄3, φ̄1,...,8} (5.30c)

and after the b2 and b3 GSO projections the remaining states are

χ1,2{η̄2, w̄5,6, ȳ1,2}{η̄3, w̄1,...,4, φ̄1,...,8} χ1,2{ψ1,...,5}{η̄1, ȳ3,...,6}
χ3,4{ψ1,...,5}{w5,6, y1,2, η̄2} χ3,4{η̄1, ȳ3,...,6}{w1,...,4, η̄3, φ̄1,...,8}
χ5,6{ψ1,...,5}{w1,...,4, η̄3} χ5,6{η̄1, y3,...,6}{w5,6, y1,2, η̄2}

(5.31)
which is the massless spectrum from the NS sector.

S Sector
We now want to know how many gravitinos are left from the S sector.

S : {ψµ1/2 χ1,2 χ3,4 χ5,6} ∂X̄µ

|±〉 |±〉 |±〉 |±〉 (5.32)

In the 1 sector we find

{ψµ1/2 χ1,2 χ3,4 χ5,6} ∂X̄µ

1 : 1 1 1 1
(5.33)
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S :

[(
4
1

)

+

(
4
3

)]

The S sector is the same.
For the b1 basis vector

{ψµ1/2 χ1,2 χ3,4 χ5,6} ∂X̄µ

b1 : 1 1 0 0
(5.34)

(
2
1

)[(
2
0

)

+

(
2
2

)]

For the b2 basis vector

{ψµ1/2 χ1,2 χ3,4 χ5,6} ∂X̄µ

b2 : 1 0 1 0
(5.35)

(
1
1

)(
1
0

)(
2
0

)

+

(
1
0

)(
1
1

)(
2
2

)

so there is only one gravitino left.
For the b3 basis vector

{ψµ1/2 χ1,2 χ3,4 χ5,6} ∂X̄µ

b3 : 1 0 0 1
(5.36)

(
1
1

)(
1
0

)(
2
0

)

+

(
1
0

)(
1
1

)(
2
2

)

⇒ C

(
S
b3

)

= +1

Projected out ⇒ C

(
S
b3

)

= −1

Depending on the phase of C
(
S
b2

)
and C

(
S
b3

)
we can either project or keep the

remaining gravitino.
We can construct tachyon free N = 0 models but the cosmological constant is
not equal to zero.

b1 Sector
The b1 basis vector has the fermions

b1 = {ψµ1,2, χ12, y3y4, y5y6 | y3y4, y5y6, ψ̄µ1,...,5, η̄1} (5.37)

and we have the states

b1 {ψµ1,2, χ12, y3y4, y5y6 | y3y4, y5y6, ψ̄µ1,...,5, η̄1} GSO

1 :

[
12

even

]

+1

S :

[(
2
0

)

+

(
2
2

)] [
10

even

]

+1

b2 : 1 0 0 0 0 1 0 +1
(5.38)

(
2
0

)[(
4
0

)

+

(
4
2

)

+

(
4
4

)][(
5
0

)

+

(
5
2

)

+

(
5
4

)](
1
0

)

+

(
2
0

)[(
4
1

)

+

(
4
3

)][(
4
1

)

+

(
4
3

)][(
5
0

)

+

(
5
2

)

+

(
5
4

)]

+ other components due to CPT invariance

(5.39)
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The terms
[(

5
0

)
+
(
5
2

)
+
(
5
4

)]
can be interpreted as the 16 generations of SO(10)

and the terms
[(

5
1

)
+
(
5
3

)
+
(
5
5

)]
are the 1̄6 generations of SO(10).

However, the spectrum is chiral so we only have the 16 generations of SO(10)
present.

For the basis vector b3 we have the exact same result as for b2 given above
in equation (5.38). Once again, we can either keep all the generations from b1
or we can project them all depending on the relative phase of C

(
b1
b2

)
and C

(
b1
b3

)
.

If

C

(
b1
b2

)

= C

(
b1
b3

)

(5.40)

then we have the 16 generations from b1.

b2 and b3 Basis Vectors
For b2 which has the fermions

{ψµ, χ3,4, y1,2, w5,6 | ȳ1,2, w̄5,6, ψ̄1,...,5, η̄2} (5.41)

and b3
{ψµ, χ5,6, w1,2, w3,4 | w̄1,2, w̄3,4, ψ̄1,...,5, η̄2} (5.42)

we get a similar result as for the b1 vector, meaning we get the 16 generations
from both b2 and b3.

5.2.4 Permutation Symmetry of the b1, b2, b3 Basis Vectors

We should note the permutation symmetry

b1 → b2 → b3 → b1

{η̄1, ȳ3,...,6}
{χ1,2, y3,...,6} →

{η̄2, ȳ1,2, w̄5,6}
{χ3.4, y1,2, w5,6} →

{η̄3, w̄1,...,4}
{χ5,6, w1,...,4}

(5.43)

which play an important role.

5.3 Defining ξ Basis Vector

We have 48 generations from the three basis vectors b1, b2, b3. We also have the
sectors

S + b1 ; S + b2 ; S + b3 (5.44)

which are scalars.
We also have

1 + b1 + b2 + b3 → {φ̄1,...,8} periodic (5.45)

and all the others are anti-periodic.
We can define ξ = 1+ b1 + b2 + b3. By doing this we have the following spin

structures

C

(
ξ
1

)

C

(
ξ
S

)

C

(
ξ
b1

)

C

(
ξ
b2

)

C

(
ξ
b3

)

(5.46)

The first spin structure can be calculated by

C

(
ξ
1

)

= C

(
1 + b1 + b2 + b3

1

)

= e
iπ
2 1·ξC

(
1

ξ

)∗
(5.47)
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As 1 · ξ = 0− 8 = −8 we find

C

(
1

ξ

)

= δ1C

(
1

1

)

C

(
1

b1 + b2 + b3

)

= δ2
1
C

(
1

1

)

C

(
1

b1

)

C

(
1

b2

)

C

(
1

b3

)

(5.48)
and therefore

C

(
1

ξ

)

= δ3
1

C

(
1

1

)

C

(
1

b1

)

C

(
1

b2

)

C

(
1

b3

)

(−) − − − − = −1
(5.49)

We will now derive a general formula for the spin structures that are com-
posed of sectors with more than one basis vector. In general we have

C

(
~α
~β

)

= C

(
m1a1 + . . .+mnan
n1b1 + . . .+ nnbn

)

and so

C

(
~α

n1b1 + . . .+ nnbn

)

= δαC

(
~α

n1b1

)

C

(
~α

n2b2 + . . .+ nnbn

)

= δαC

(

~α
b1 + . . .+ b1
︸ ︷︷ ︸

)

C

(
~α

n2b2 + . . .+ nnbn

)

where the underbraced term is equal to n1.
Now we consider C

(
~α

n1b1

)
by

C

(
~α

n1b1

)

= δαC

(
~α
b1

)

C

(
~α

(n1 − 1)b1

)

= δ2αC

(
~α
b1

)2

C

(
~α

(n1 − 2)b1

)

= . . .

= δ(n1−1)
α C

(
~α
b1

)(n1−1)

C

(
~α

(n1 − (n1 − 1))b1

)

= δ(n1−1)
α C

(
~α
b1

)n1

and by using this result we therefore find (where the underbraced terms are
equal to k)

C

(

~α
n1b1 + . . .+ nnbn
︸ ︷︷ ︸

)

= δ(k−1)
α δ(n1−1)

α δ(nn−1)
α

︸ ︷︷ ︸
C

(
~α
b1

)n1

C

(
~α
b2

)n2

. . . C

(
~α
bn

)nn

= δ(k−k−1+n1+...+nn)
α C

(
~α
b1

)n1

. . . C

(
~α
bn

)nn

= δ(−1+n1+...+nn)
α C

(
~α
b1

)n1

. . . C

(
~α
bn

)nn
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Using rule (3) for the one loop phases, we find

C

(
~α
bj

)

= e
iπ
2 α·bjC

(
bj
~α

)∗

= e
iπ
2 α·bj δ

(−1+m1+...+mn)
bj

n∏

i=1

C

(
bj
bi

)∗mi

This leads to our final result, which is

C

(
~α
~β

)

= δ(−1+n1+...+nn)
α

n∏

j=1

e
iπ
2 α·bj ·nj δ

((−1+m1+...+mn)nj)
bj

n∏

i=1

C

(
bj
bi

)∗mi

(5.50)
Again, this result is simple to put into a computer and therefore calculating the
results can be done swiftly when utilizing this method.

5.3.1 GSO Projections of the ξ Basis Vector

We can now perform the GSO projections of the ξ basis vector with the other
basis vectors. We find

C

(
ξ
1

)

= −1 (5.51a)

C

(
ξ
S

)

= e
iπ
2 ξ·SC

(
S

1 + b1 + b2 + b3

)

=
δ3S C

(
S
1

)

C

(
S
b1

)

C

(
S
b2

)

C

(
S
b3

)

−1 +1 +1 +1 +1 = −1

(5.51b)

C

(
ξ
b1

)

= e
iπ
2 ξ·b1C

(
b1

1 + b1 + b2 + b3

)

=
δ3b1 C

(
b1
1

)

C

(
b1
b1

)

C

(
b1
b2

)

C

(
b1
b3

)

−1 −1 −1 −1 −1 = −1

(5.51c)

Similarly,

C

(
ξ
b2

)

= −1 and C

(
ξ
b3

)

= −1 (5.51d)

Now we can perform the GSO projection of the states which adhearing to the
needed results from equations (5.51a,b,c,d), for the vectors:

ξ φ̄1 . . . φ̄8

ψµ |±〉 . . . |±〉
~1 ~1 1 . . . 1

ψµ :

[(
8
0

)

+

(
8
2

)

+ . . .

(
8
8

)]

S 1 ~0

b1,2,3 1 ~0

(5.52)

These states transform as 27 = 128 of the SO(16) group.

120 + 128 = 248 → SO(16) → E8 (5.53)
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For the scalars:

{χ, y, w} |±〉 . . . |±〉
~1 : {}

[(
8
0

)

+

(
8
2

)

+ . . .

(
8
8

)]

S χ1,...,6 [ ]
b1 χ1,2 [ ]
b2,3 are all projected out

(5.54)

5.4 Extension of the NAHE Set

Before moving on to the case of the three generation models, we will first mention
a simple extension of the NAHE. This is not directly relevent to the realistic
models but it does illustrate the structure of these models and the relation
between (2, 2) and (2, 0) model. This extension is obtained by adding the basis
vector

x = {ψ̄1,...,5, η̄1, η̄2, η̄3} = 1 (5.55)

and all the other fermions are anti-periodic. We can fix the phases appropriately
but we will not cover how here.

With this additional basis vector and the appropriate choice of phases, the
gauge group is

E6 × U(1)2 × SO(4)3 × E8 (5.56)

The basis vector X produced the 16 + 1̄6 in 78 = 45 + 16 + 1̄6+ 1 and enhances
the gauge group to E6.

The SO(4)3 groups are produced by

{ȳ3,...,6} {ȳ1,2w̄5,6} {w̄1,...,4}
SO(4)1 SO(4)2 SO(4)3

(5.57)

The three world sheet complex fermions η̄1, η̄2, η̄3 produce the three U(1) cur-
rents.

One combination is embedded in E6, i.e

U(1)E6 = U(1)η̄1 + U(1)η̄2 + U(1)η̄3 (5.58)

and we have two orthogonal combinations

U(1)η̄1 − U(1)η̄2 (5.59a)

U(1)η̄1 + U(1)η̄2 − 2U(1)η̄3 (5.59b)

The important thing that we must note is that the x basis vector splits
{ȳ, w̄} from {η̄1, η̄2, η̄3}.

There is a symmetry between the left and right movers. We have N = 2 in
the right and left moving sectors. The two supercurrents are

TFL
= eiχi,i+1(yiwi ± iyi+1wi+1) (5.60a)

TFR
= eiη̄i(ȳiw̄i + iȳi+1w̄i+1) (5.60b)
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and the U(1) currents are generated in N = 2 by

U(1)L = χ1,2 + χ3,4 + χ5,6 (5.61a)

U(1)R = η̄1 + η̄2 + η̄3 (5.61b)

and for any choice of boundary conditions, the N = 2 supercurrent TF is well
defined.

However, we can generate this model in a different way.
We can start with

{1, S,X, ξ = 1 + b1 + b2 + b3} (5.62)

and make an appropriate choice of phases to give

N = 4 SO(12)× E8 × E8 (5.63)

We can now twist this by b1 and b2 to obtain

N = 1 SO(4)3 × E6 × U(1)2 × E8 (5.64)

which is the same group. This is infact the same way that we can choose any
set of basis vectors as long as they produce the same additive group and as long
as we are careful with the phases.

5.5 Matter Sector

To be complete, we should mention what happens in the matter sector.
For example, we can examine b1 after the projection of the NAHE set. The

vacuum was
(

2
0

)[(
4
0

)

+

(
4
2

)

+

(
4
4

)][(
5
0

)

+

(
5
2

)

+

(
5
4

)](
1
0

)

+

(
2
0

)[(
4
1

)

+

(
4
3

)][(
4
1

)

+

(
4
3

)][(
5
0

)

+

(
5
2

)

+

(
5
4

)]

+ other components due to CPT invariance

(5.65)

Since x = {~0L | ~0R ψ̄1,...,5
1 , η̄1, η̄2, η̄3
︸ ︷︷ ︸

,~0R} (where the underbraced term have 1)

then we can see in the b1 vacuum that we have either an even or odd number
of |−〉 among the fermions which are periodic in x. Therefore for any choice of
GSO projection half of these are projected out.

We will not go into any more detail here but the spectrum can be worked
out from this point.

5.6 Continuing the Extension of the NAHE Set

We find that
bj +X → 8× (10j + 1j + 1j) + (E8 × E8) (5.66)

The 10 + 1 combine with the 16 of SO(10) to form the 27 of E6.
So we have

8× 3(27) of E6 = 24 generations (5.67)
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The other 1j are singlets of E6 and are the twisted moduli with an equal number
to the number of generations. Also we find that the scalar representations from
the NS sector are completed to 3(27 + 2̄7) of E6 and equal the number of
untwisted moduli.
There are also E8 × E8 singlets charged under SO(4)3.

The final remark that should be made is that we can project the E6 gener-
ators by the choice of GSO projection

C

(
ξ
x

)

= ±1 (5.68)

One of these choices will produce the model that was just described.
The other choice will project the generators in ξ and x that produce the 128 in
E8 × E8. This can be seen by considering the GSO projection

eiπξ·FX = δx C

(
x
ξ

)

|s〉x (5.69)

as the exponential gives a +1 contribution and the phases on the right hand
side give a −1 contribution, therefore projecting all of the states out.

The gauge group that we then obtain is

N = 4 SO(12)× SO(16)× SO(16)

When we apply the b1, b2 projections we get

N = 4 SO(4)3 × SO(10)× U(1)3 × SO(16)

with 24× 16 of SO(10) and 3(10 + 10) + (1, 1).
A similar thing operates in the fermionic three generation models. The

important thing is that the x projection splits the {ȳ, w̄} (compactified space)
from the {η̄}.

The degeneracy of the Ramond vacua under the {y, w|ȳ, w̄} produces the
multiplicity of the generations.

The models ‘remember’ some of their (2, 2) structure. The important thing
for the extensions is the symmetry between {y, w|ȳ, w̄}. The structure that has
just been elaborated on is the key to the Gepner construction. The Gepner con-
struction could also split the gauge degrees of freedom from the internal CFT
degrees of freedom and find modular invariant solutions for the more compli-
cated minimal models. Now we see that also in the (2, 0) this structure can be
preserved.
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Chapter 6

Generation Models

We have analyzed the full massless spectrum of the NAHE set.
We have:

• N = 1 SUSY

• SO(10) observable gauge group

• 48 generations

The construction of the realistic models is really only starting after the
NAHE set.

The ψ̄1,...,5 have the gauge group SO(10). The states are

ψµψ̄1,...,5ψ̄1,...,5 |0〉NS (6.1)

which can be split to

SO(6) : ψµψ̄1,...,3ψ̄1,...,3 |0〉NS
SO(4) : ψµψ̄4,5ψ̄4,5 |0〉NS

(6.2)

and therefore the gauge group SO(10) breaks to SO(6)× SO(4).
By considering the GSO projection

eiπα·F |s〉NS = δα (6.3)

and supposing δα = −1⇔ α(φµ) = 1 then the states

ψµψ̄1,...,5 ∗ ψ̄1,...,5∗
ψµ ψ̄1,...,5 ∗ ψ̄1,...,5

ψµ ψ̄1,...,5 ψ̄1,...,5

(6.4)

(where the ∗ denotes the complex conjugate) have the following GSO projec-
tions:

• ψµψ̄1,...,5 ∗ ψ̄1,...,5∗

eiπ
(
1−{ 1

2 (−1)+ 1
2 (−1)}

)

= eiπ(1+1) = +1x x 6= δα (6.5)
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• ψµ ψ̄1,...,5 ψ̄1,...,5

eiπ
(
1−{ 1

2 (1)+ 1
2 (1)}

)

= eiπ(1−1) = +1x x 6= δα (6.6)

• ψµ ψ̄1,...,5 ∗ ψ̄1,...,5

eiπ
(
1−{ 1

2 (−1)+ 1
2 (+1)}

)

= eiπ = −1x x = δαX (6.7)

So only the state ψµ ψ̄1,...,5 ∗ ψ̄1,...,5 survives.
This can be interpreted as the SO(10) gauge group breaking to U(5) ≡ SU(5)×
U(1).

Suppose we have

(
ψ̄1 ψ̄2 ψ̄3 ψ̄4 ψ̄5

α 1 1 1 0 0
β 1

2
1
2

1
2

1
2

1
2

)

(6.8)

then
α⇒ SO(10)→ SO(6)× SO(4) (6.9a)

β ⇒ SO(6)× SO(4)→ SU(3)× U(1)B−L × SU(2)× U(1)T3 (6.9b)

This is how the gauge groups are obtained in the FFF.
Therefore, we can construct models with

SU(5)× U(1)

SO(6)× SO(4)

SU(3)× SU(2)× U(1)2
(6.10)

gauge groups.

We now need to consider the number of generations there are.
We will only analyze one of the sectors of b1 and b2 to see how the generations
can be obtained.

The number of generations is controlled by the boundary conditions of
{y, w|ȳ, w̄}

1. The boundary conditions of {ψµ, χ1,2, χ3,4, χ5,6} are fixed by requiring
N = 2 SUSY

2. We do not want to break SU(3)× SU(2), this means we want

ψ̄1,...,5 =





1 1 1 0 0
or / and

1
2

1
2

1
2

1
2

1
2





3. The number of generations is reduced by adding three additional basis
vectors

We should remark that these boundary condition allow 12 right movers which
can be real of complexified to form 6 complex fermions. So for these choices there
is no significance. These pairings play an important role in the phenomenology
of models.
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So we can choose the following pairing

{y3ȳ3, y4ȳ4, y5ȳ5, y6ȳ6 | y1ȳ1, y2ȳ2, w5w̄5, w6w̄6 | w1w̄1, w2w̄2, w3w̄3, w4w̄4}
(6.11)

6.1 Three Generation Model

We will now construct a three generation model which has the Standard Model
gauge group.
We need three additional basis vectors.

As we saw in the discussion of the E6 model, half of the generations are
projected by the vector x.

In the three generation model we have something similar.
We have a basis vector with

γ : → γ{ψ1,...,5, η̄1, η̄2, η̄3, φ̄
1,...,4} =

1

2
(6.12a)

γ{others} = {0, 1} (6.12b)

Then we have
2γ{ψ1,...,5, η̄1,2,3, φ̄

1,...,4} = 1 (6.13a)

2γ{others} = 0 (6.13b)

The effect of the ~2γ vector is the project half of the generations in the same
way that the vector X did. This will choose the sign under U(1)η̄j

to be either
±1/2.

The remaining degeneracies of the zero modes is due to the degeneracy under
{y, w|ȳ, w̄}.
The NAHE splits into three groups

{y3,...,6 | ȳ3,...,6}
b1 1 1 1 1
b2 0 0 0 0
b3 0 0 0 0

(6.14a)

⇒
[(

4
0

)

+

(
4
2

)

+

(
4
4

)]

b1

{y1y2, w5w6 | ȳ1ȳ2, w̄5w̄6}
b1 0 0 0 0
b2 1 1 1 1
b3 0 0 0 0

(6.14b)

⇒
[(

4
0

)

+

(
4
2

)

+

(
4
4

)]

b2

{w1...,4 | w̄1,...,4}
b1 0 0 0 0
b2 0 0 0 0
b3 1 1 1 1

(6.14c)
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⇒
[(

4
0

)

+

(
4
2

)

+

(
4
4

)]

b3

To reduce the number of generations we need to reduce this degeneracy by using
additional boundary condition basis vectors.
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