MATH 423 January 2011

Examiner: Prof. A.E. Faraggi, Extension 43774.

Time allowed: Two and a half hours

Full marks can be obtained for complete answers to FIVE questions. Only the best FIVE answers will be counted.

You may use a university approved pocket calculator and the constants:

$$
\begin{array}{rlrl}
c & =3 \times 10^{10} \frac{\mathrm{~cm}}{\mathrm{~s}} ; & & \hbar=1.054 \times 10^{-27} \mathrm{erg} \cdot \mathrm{~s} ; \\
G_{N} & =6.674 \times 10^{-8} \frac{\mathrm{~cm}^{3}}{\mathrm{~g} \cdot \mathrm{~s}^{2}} & & m_{e}=9.109 \times 10^{-28} \mathrm{~g} ; \\
m_{p} & =1.672 \times 10^{-24} \mathrm{~g} ; & & k=1.380 \times 10^{-16} \frac{\mathrm{erg}}{\mathrm{~K}} ; \\
m_{\text {Planck }}=2.17 \times 10^{-5} g ; & & m_{\text {sun }} \approx 2 \times 10^{33} \mathrm{~g} ;
\end{array}
$$

1. Consider the infinitesimal line element,

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=d t^{2}-d x^{2}
$$

(a) Write the metric $g_{\mu \nu}$ and its inverse in an explicit in matrix form.
[2 marks]
(b) Find the set of independent transformations of the form

$$
\begin{aligned}
t & \rightarrow t+\epsilon A(t, x) \\
x & \rightarrow x+\epsilon B(t, x),
\end{aligned}
$$

where ϵ is an infinitesimal constant and the functions A and B have to be determined by the requirement that $d s^{2}$ is invariant. State what each transformation represents in space time.
[18 marks]
2. The electromagnetic field strength tensor is given by:

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & B_{z} & -B_{y} \\
-E_{y} & -B_{z} & 0 & B_{x} \\
-E_{z} & B_{y} & -B_{x} & 0
\end{array}\right)
$$

where \vec{E} and \vec{B} are the electric and magnetic fields respectively. We define the tensor $T_{\lambda \mu \nu}$ by

$$
T_{\lambda \mu \nu}=\partial_{\lambda} F_{\mu \nu}+\partial_{\mu} F_{\nu \lambda}+\partial_{\nu} F_{\lambda \mu}
$$

(a) Derive the source free Maxwell equations.
[10 marks]
Additionally the electromagnetic current four vector is given by

$$
j^{\mu}=\left(c \rho, j^{1}, j^{2}, j^{3}\right)
$$

(b) Derive the Maxwell equations with sources.
3.
(a) The vacuum energy associated with the current acceleration of the universe is $\rho_{\mathrm{vac}}=7.7 \times 10^{-27} \mathrm{~kg} / \mathrm{m}^{3}$. Derive a fundamental length scale, ℓ_{vac} associated with this vacuum energy in terms of ρ_{vac}, the Planck constant \hbar, and the speed of light c. Express the numerical value for $\ell_{v a c}$ in $\mu \mathrm{m}$ where $1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$.
[10 marks]
(b) The Standard Bohr radius is $a_{0}=\frac{\hbar^{2}}{m e^{2}} \approx 5.29 \times 10^{-9} \mathrm{~cm}$, and arises from the electric potential $V=-\frac{e^{2}}{r}$. What would be the gravitational Bohr radius if the attraction force binding the electron to the proton was gravitational?
[10 marks]

4. Consider the action

$$
\begin{equation*}
S[x, e]=\frac{1}{2} \int e d \tau\left(\frac{1}{e^{2}}\left(\frac{d x^{\mu}}{d \tau}\right)^{2}-m^{2}\right) \tag{1}
\end{equation*}
$$

where τ is an arbitrary parameter and $e d \tau$ is an invariant line element.
(a) Perform variations of x^{μ} and of e to obtain the equations of motion for x^{μ} and e respectively.
[6 marks]
(b) For $m^{2}>0$, eliminate e by its equation of motion, and substitute the result back into (1). Show that you obtain the action for a free massive particle.
[7 marks]
(c) Instead of eliminating e by its equation of motion, you can set it to a constant value by reparameterisation. Derive the equation of motion and the contraint equation for the two cases $m^{2}>0$ and $m^{2}=0$.
[7 marks]
5. The Polyakov action is given by:

$$
S_{\mathrm{P}}=-\frac{T}{2} \int d^{2} \sigma \sqrt{-h} h^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu \nu}
$$

where $h=\operatorname{det}\left(h_{\alpha \beta}\right)$.
(a) For a 2×2 matrix

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \quad \text { and } \quad \delta A=\left(\begin{array}{ll}
\delta a_{11} & \delta a_{12} \\
\delta a_{21} & \delta a_{22}
\end{array}\right)
$$

show that

$$
\delta \operatorname{det} \mathrm{A}=\operatorname{det} \mathrm{A} \operatorname{Tr}\left(A^{-1} \delta A\right) .
$$

(b) Hence, derive from the Polyakov action the world-sheet energy momentum tensor $T_{\alpha \beta}$, which is defined by

$$
T_{\alpha \beta}=-\frac{2}{T} \frac{1}{\sqrt{-h}} \frac{\delta S}{\delta h^{\alpha \beta}}
$$

(c) In the conformal gauge $h_{\alpha \beta}=\eta_{\alpha \beta}$, the energy-momentum tensor takes the form

$$
T_{\alpha \beta}=\partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu}-\frac{1}{2} \eta_{\alpha \beta} \eta^{\gamma \delta} \partial_{\gamma} X^{\mu} \partial_{\delta} X_{\mu}
$$

Show that

$$
\begin{aligned}
\eta^{\alpha \beta} T_{\alpha \beta} & =0 \\
\partial^{\alpha} T_{\alpha \beta} & =0
\end{aligned}
$$

6. The equations of motion for a relativistic string in the conformal gauge are

$$
\left(\partial_{0}^{2}-\partial_{1}^{2}\right) X^{\mu}=0
$$

Solutions must satisfy the constraints

$$
\partial_{0} X^{\mu} \partial_{1} X_{\mu}=0, \quad \partial_{0} X^{\mu} \partial_{0} X_{\mu}+\partial_{1} X^{\mu} \partial_{1} X_{\mu}=0
$$

We consider closed strings with boundary conditions

$$
X^{\mu}\left(\sigma^{0}, \sigma^{1}\right)=X^{\mu}\left(\sigma^{0}, \sigma^{1}+\pi\right)
$$

(a) Show that equations of motion and constraints are solved by

$$
\begin{aligned}
X^{0} & =2 R \sigma^{0} \\
X^{1} & =R \cos \left(2 \sigma^{1}\right) \cos \left(2 \sigma^{0}\right) \\
X^{2} & =R \sin \left(2 \sigma^{1}\right) \cos \left(2 \sigma^{0}\right) \\
X^{i} & =0 \text { for } i>2
\end{aligned}
$$

Describe in words how the closed string moves.
(b) Compute the length, the mass and the momentum of the string.
[7 marks]
(c) Show that the string is at rest at time $X^{0}=0$. Express the total energy in terms of its length at time $X^{0}=0$ and interpret the result.
7. Consider the "lightlike" compactification, in which we identify events with position and time coordinates related by

$$
\begin{equation*}
\binom{x}{c t} \sim\binom{x}{c t}+2 \pi\binom{R}{-R} \tag{2}
\end{equation*}
$$

(a) Rewrite this identification using light-cone coordinates.
(b) Consider coordinates $\left(c t^{\prime}, x^{\prime}\right)$ related to $(c t, x)$ by a boost with veclocity parameter β. Express the identifications in terms of the primed coordinates.
[7 marks]
(c) Consider the family of indentifications given by

$$
\begin{equation*}
\binom{x}{c t} \sim\binom{x}{c t}+2 \pi\binom{\sqrt{R^{2}+R_{s}^{2}}}{-R} . \tag{3}
\end{equation*}
$$

Show that there is a boosted frame S^{\prime} in which the identification (3) becomes a standard identification (i.e. the space coordinate is identified but the time coordinate is not).

