MATH425-Quantum Field Theory
 Set Work: Sheet 6

1.

Consider a plane wave

$$
\psi(x)=v(p) e^{i p . x}
$$

where

$$
p^{0}=\sqrt{\mathbf{p}^{2}+m^{2}} .
$$

Show that this will be a solution to the Dirac equation if

$$
v(p)=N(p)\left(\frac{\frac{\sigma \cdot \mathbf{p}}{p^{0}+m} \chi}{\chi}\right)
$$

where χ is a 2 -vector and $N(p)$ is arbitrary. Suppose we pick two orthonormal 2 -vectors $\chi_{1,2}$ satisfying

$$
\chi_{r}^{\dagger} \chi_{s}=\delta_{r s}
$$

Show that if we pick $N(p)=\sqrt{p^{0}+m}$, then we have

$$
\overline{v_{r}(p)} v_{s}(p)=-2 m \delta_{r s} .
$$

2. We know that positive energy solutions of the Dirac equation are given by $\psi_{p}^{(r)}(x)=e^{-i p . x} u_{r}(p)$, where

$$
u_{r}(p)=\sqrt{p^{0}+m}\binom{\chi_{r}}{\frac{\sigma \cdot \mathbf{p}}{p^{0}+m} \chi_{r}}
$$

where $p^{0}=\sqrt{\mathbf{p}^{2}+m^{2}}$ and $\chi_{1,2}$ are orthonormal.
(a) Show that

$$
\overline{u_{r}(p)} u_{s}(p)=2 m \delta_{r s}
$$

(b) Taking $\chi_{1}=\binom{1}{0}, \chi_{2}=\binom{0}{1}$, show that if we define P_{+}by

$$
P_{+}=\frac{1}{2 m}\left(u_{1}(p) \overline{u_{1}(p)}+u_{2}(p) \overline{u_{2}(p)}\right)
$$

then we have

$$
P_{+}=\frac{1}{2 m}(\gamma \cdot p+m)
$$

Show, either from the definition together with

$$
\overline{u_{r}(p)} u_{s}(p)=2 m \delta_{r s},
$$

or from the result above, that

$$
P_{+}^{2}=P_{+} .
$$

Similarly, define

$$
P_{-}=-\frac{1}{2 m}\left(v_{1}(p) \overline{v_{1}(p)}+v_{2}(p) \overline{v_{2}(p)}\right)
$$

where $v_{r}(p)$ is as defined in Qu .3 , Homework 6. With the same choice for $\chi_{1,2}$, show that

$$
P_{-}=\frac{1}{2 m}(-\gamma \cdot p+m) .
$$

Notice that $P_{+}+P_{-}=1 . P_{+}$and P_{-}are projection operators onto the spaces of positive and negative energy states respectively.

