MATH425 - Quantum Field Theory Set Work: Sheet 3

1. The defining equation for the Lorentz group may be written

$$L^T \eta L = \eta. \tag{1}$$

Consider a 2-dimensional spacetime for which $\eta=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$. Show that the standard Lorentz transformation

$$L = \begin{pmatrix} \gamma & -\frac{\gamma v}{c} \\ -\frac{\gamma v}{c} & \gamma \end{pmatrix},$$

where $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$, satisfies the above condition.

2. We need to show that $\mathcal{L}_{+}^{\uparrow}$ is a group. This is done as follows:

(i) Use (1) to show that

$$L\eta^{-1}L^T = \eta^{-1}. (2)$$

(Hint: recall that for matrices $(AB)^{-1} = B^{-1}A^{-1}$.)

(ii) We now have from (1), (2)

$$\eta_{\alpha\beta}L^{\alpha}{}_{\mu}L^{\beta}{}_{\nu} = \eta_{\mu\nu}, \quad \eta^{\alpha\beta}L^{\mu}{}_{\alpha}L^{\nu}{}_{\beta} = \eta^{\mu\nu}. \tag{3}$$

Let ${\bf l}=(L^1{}_0,L^2{}_0,L^3{}_0)$ and ${\bf \bar l}=(\bar L^0{}_1,\bar L^0{}_2,\bar L^0{}_3).$ By putting $\mu=\nu=0$ in (3), show that $|{\bf l}|=\sqrt{(L^0{}_0)^2-1}$ and $|{\bf \bar l}|=\sqrt{(\bar L^0{}_0)^2-1}.$

(iii) By considering $(\bar{L}L)^0_0 = \bar{L}^0_{\alpha}L^{\alpha}_0$, show that

$$(\bar{L}L)_0^0 = \bar{L}_0^0 L_0^0 + \bar{l}.l.$$

(iv) Use the Schwartz inequality

$$|\overline{l}.l| \leq |l||\overline{l}|$$

to show

$$(\bar{L}L)^0{}_0 \ge \bar{L}^0{}_0L^0{}_0 - \sqrt{(\bar{L}^0{}_0)^2 - 1}\sqrt{(L^0{}_0)^2 - 1}.$$

(v) Show that

$$(x-y)^2 \ge 0 \Rightarrow x^2y^2 - 2xy + 1 \ge (x^2 - 1)(y^2 - 1) \Rightarrow (xy - 1)^2 \ge (x^2 - 1)(y^2 - 1)$$

 \Rightarrow either $xy - 1 \ge \sqrt{x^2 - 1}\sqrt{y^2 - 1}$ or $xy - 1 \le -\sqrt{x^2 - 1}\sqrt{y^2 - 1}$.

Deduce that if $x, y \ge 1$ then xy - 1 is positive and we must have

$$xy - \sqrt{x^2 - 1}\sqrt{y^2 - 1} \ge 1.$$

Finally combine with (iv) to deduce that if $\bar{L}^0_0 \ge 1$ and $L^0_0 \ge 1$, then $(\bar{L}L)^0_0 \ge 1$.

- (vi) Use the fact that $\det(\bar{L}L) = \det \bar{L} \det L$ to deduce that $\det \bar{L} = \det L = 1 \Rightarrow \det(\bar{L}L) = 1.$
- (vii) We can now deduce that $L \in \mathcal{L}_+^{\uparrow}$ and $\bar{L} \in \mathcal{L}_+^{\uparrow} \Rightarrow (\bar{L}L) \in \mathcal{L}_+^{\uparrow}$. Together with the obvious fact that $1 \in \mathcal{L}_+^{\uparrow}$, this most of what we need to show that \mathcal{L}_+^{\uparrow} is a group.
- (viii) We still need to show that $L \in \mathcal{L}_+^{\uparrow} \Rightarrow L^{-1} \Rightarrow \mathcal{L}_+^{\uparrow}$. Note that $(1) \Rightarrow L^{-1} = \eta^{-1}L^T\eta$. So clearly $(L^{-1})^0{}_0 = L^0{}_0$. Moreover, $\det L^{-1} = \det \eta^{-1} \det L^T \det \eta = 1$. QED.