MATH425 - Quantum Field Theory Set Work: Sheet 11

- 1. (i) Write down the Feynman rules in momentum space for a real scalar field theory with interaction $\mathcal{L}_I(\phi) = -\frac{\lambda}{3!}:\phi^3$:
 - (ii) Suppose the quanta of the field are called ϵ . Consider the interaction

$$\epsilon(p_1) + \epsilon(p_2) \to \epsilon(p_3) + \epsilon(p_4).$$

where p_i are the momentum 4-vectors for each particle. The T-matrix is defined by

$$S = 1 + i(2\pi)^4 \delta(p_1 + p_2 - p_3 - p_4)T,$$

where S is the S-matrix. Draw the connected Feynman diagrams which contribute to $\langle \mathbf{p}_3 \mathbf{p}_4 | T | \mathbf{p}_1 \mathbf{p}_2 \rangle$ at $O(\lambda^2)$.

(iii) Decomposing p_i as

$$p_i = (p_i^0, \mathbf{p}_i),$$

let θ be the angle between \mathbf{p}_1 and \mathbf{p}_3 in the centre-of-mass frame. Show that to $O(\lambda^2)$ we have

$$<\mathbf{p}_3\mathbf{p}_4|T|\mathbf{p}_1\mathbf{p}_2>=$$

$$\lambda^{2} \left[\frac{1}{2|\mathbf{p}|^{2}(1-\cos\theta)+m^{2}} + \frac{1}{2|\mathbf{p}|^{2}(1+\cos\theta)+m^{2}} - \frac{1}{4(m^{2}+|\mathbf{p}|^{2})-m^{2}} \right],$$

where \mathbf{p} is the momentum in the centre of mass frame.