QUANTUM FIELD THEORY

1. Relativistic Quantum Mechanics

Basics

After quantum mechanics was first formulated, the most urgent problem was to devise

a relativistic generalisation of Schrodinger’s equation. The Klein-Gordon equation was the

first attempt. First let us review special relativity in order to establish our notation. We

write the position 4-vector
0.1 .2 .3
m:(m ’x ’m ’m):(Ct7X)’

and we define the Minkowski metric

1 0 0 0
o -1 0 o
=109 0 -1 o0
0 0 0 -1

The scalar product of two 4-vectors is defined by

z.y = nuzhy”,
and the Lorentz group consists of linear transformations preserving z.y:

z—=z z'*=L%z"
y—y y? =Ly
'y = 2.y = Napt’yP = nag L LP aty” =nuaty”  forall z* y”
= Nap L, LP, =1,
We define
L={L: naﬁLauLﬂV = 77/w}
Lr={LeL:L%>1}
Lr={LeL:L%<-1}
LT ={LeL:detL=+1}
L~ ={LeL:detL = —1}.
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The Lorentz group splits up into disconnected components El, [,T_, Ei, cr. L',_TF is called
the “proper orthochronous Lorentz group”. Any element of El may be reached from L =1
by continuously varying the elements of L € L. Special relativity requires that theories

should be invariant under transformations
ot — ' = LF2Y, Lell. (1.6)

We shall call E_TF the Lorentz group and L the full Lorentz group. Since we can build
up any L € E_T|_ by a sequence of infinitesimal transformations, it is sufficient to check
invariance under these:

L*, =6, 4+ €y, (1.7)

where €, is small. Then
naﬁLauLBv = Nuv = NMpw + €pv + €vp = M- (1.8)

So the condition for L=14+€¢€ L is

€ur = —€up, (1.9)

i.e. € is antisymmetric.

The Klein-Gordon Equation

In non-relativistic quantum mechanics, p - —iAV, £ — ih%. The relation
2

P 15 2 . O
—E=H= ——"_ = ih—— 1.1
2m 2mV ¥ =ih ot’ (1.10)

the Schrodinger equation. In special relativity, the 4-vector p* is given by p* = (%,p).

But O* = (12, V). So we can identify p* — $h0* which is Lorentz covariant. In special

cotr
relativity
2
mc mv
E= R P= R
c? cz (1.11)
E2
so p°=— —p?=m??

Following the example of non-relativistic quantum mechanics, it is tempting to use p* —

thO* to translate this relation into the wave equation
_h282¢ :m2c2¢

2.2 1.12
or <32+mh2c )¢:o. (112)
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This is the Klein-Gordon equation. We shall now go on to discuss the problems which

arise in trying to interpret this as a relativistic Schrédinger equation.

Solutions
A basic set of solutions is formed by the “plane wave” solutions ¢ = Ae % k
constant. We have 5
o= o—¢=—ikFAe™™" = —ikte
Oz, (1.13)
*p = — E*¢.
For a solution we need k? = m}:fz. We have
pl'¢ = iho* ¢ = hkF¢. (1.14)

¢ describes an e-state of momentum with e-value Ak* and the condition k% = m,;cz is the

same as the condition p? = m2c?, the “mass-shell condition”. Since we have
E? E
p2 =— - p2 =m2? = — = ++/m2c? + p2, (1.15)
c c
we see that some of the solutions to this equation correspond to negative energy states.
From now on we set i = ¢ = 1 and restore them where necessary (by dimensional
arguments).

We write the general solution to the K-G equation in the form
8(@) = [ d'pglpe .
Then (&% +m?)p=0= [ atp(~p? + m¥)g(p)e "+ =0

= (p* — m®)g(p) =0
1

= g(p) = @) f(p)s(p* —m?)
1 4 —ip.x 2 2
So  ¢(z) BCE /d pe”P75(p* —m?) f(p)
1 3 1 —ip.x ip.x
=g | P [+ . 1+6)f_<p>e }
where p° = +/p2 + m?2, and
f+(®) =f(+vp? +m?,p), (1.17)



‘We have used here some rules for §-functions:

/f d(z — a)dz =f(a)

[ @iz - / FP )60 g (1.18)

F’(a)

where a is a root of F', i.e. F(a)=0.

If there is more than one root a;, we get

/f z))dz = Z |F, (1.19)

The f, term corresponds to +ve energy states, while the f_ term corresponds to —ve

energy states (because i%eip‘w = —peiP-T),
If we don’t want —ve energy solutions we could try just to throw away the —ve energy
ones. However, in the presence of interactions it is impossible to prevent transitions to

—ve energy states.

Probabilities

Non-relativistically the probability density is given by [4(z)|?> = p(z), which has the
important property that it is conserved. Le. if ¢ is normalised such that [ p(x, t)dz =1

at t = 0, it’s true for all ¢. We see this as follows: We establish a conserved current

o + divj =0,

. (1.20)
where j=— 2= ["Vy) - yVy’]



Then (1.20) follows from the Schrédinger equation provided the potential V is real. Inte-
grating (1.20), we have

to to 8p to
[ / p(x,t)d?’x} = / Ld3xdt = — / divjd*z
t1 t1 ot ty

. (1.21)
:—/ {/ j.dS}dt—>0 as V — oo,
t 1%
provided j — 0 sufficiently fast as |x| — oo.
Defining j# = (j°,j) where j° = cp, we can write (1.20) as % =0 = 9,j*. This

equation is relativistically invariant, i.e. if it holds in one frame it holds in any other,
provided that j# transforms as a 4-vector, i.e. like z*.

Relativistically we need to show that the statement
/ P(x)dPx =1 (1.22)

is frame-independent. We have j'*(z) = LF,j%(z), 2'* = L*,x¥, and we need to show
that (1.22)= [ j%d®x’ = 1. This also follows from 9,j* = 0. To see this we apply the

divergence theorem in 4D to the region between z° = 0 and z’® = 0.

0:/ ) (%j“:/j“nudS (1.23)
region

where n,, is the unit normal to the 3-surface. The normal to z° =0is (1,0,0,0), and the

normal to z° = L%, 2¥ =0 is n, = g‘g: = L%,. Then from (1.23),

/ LOVjIJd.gXI o / de3X :0,
z'0=0 z9=0

ie. /j'0d3 ':/j0d3x.
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We need to find j such that 9,j# = 0. We have

(0* +m*)¢p =0
= ¢*(0* + m?)¢p =0
and  ¢(8% + m?)¢* =0 (1.25)
Subtracting: ¢*8%¢ — ¢p0%¢* =0
= 0,j* =0 where j! =i(¢*0 P — po'¢*) = ip*OH¢.
With this definition of probability density,
p(z) = 16" 0. (1.26)

Non-relativistically,

plz) =l ()2
<1,y >= / o7 (@) (@)de

[ pd®x = 1 is the same as saying |[1||> =< 9,9 >= 1. So now the natural thing is to
define
< ¢1,¢2 >=i/¢f30¢2d3X,

612 = i / 6" Bodd .

Unfortunately, p and ||#||? are not obviously positive. In fact, ||¢||? is positive if we restrict

attention to +ve energy solutions.

00) =gz | gy fe(p)e
6] =i / 00 3(z)d°x

s [ x| [ i@ o | [ @t

1 1 1 . N -
:(271-)6 /d3p—0/d3p'ﬁ(p’0+p0)f+(p)f+(p’)/d3xe (P'—-p). (2o =t = 0)

2p
:(271r)3/d3 ﬁ/dgplzp/o(ploﬂ )f+(@)f1(p)é(p — P')

(1.27)



If

1 3 1 —ip.x ip.x
6= G | Ppg [Fe @) + ()]

then . ,
191F = Gy [ P 5@ = I7-@)F].

Effect of Lorentz transformations

Consider translating a state (of momentum p):

¢p(z) = e P,
If we translate by a displacement a then wave function of new state is
bplz —a) = =P,

Similarly considering a Lorentz transformation L, the new state has momentum Lp, and

¢Lp(x) :e—i(Lp).x
:6—ip.(L_la:)

=¢p (L™ ).

Construction of the Dirac equation

Dirac believed that equations of motion in quantum mechanics should be linear in %.

On the other hand, relativistically p?> = m? and p* — i0* seems = KG equation. Dirac’s

approach was to factor the KG equation, writing
—(0* + m?) = (i7" 8, + m)(iv*0, — m)

The v* are not ordinary numbers; they are matrices describing some sort of internal degrees

of freedom. Then the KG equation can be replaced by

(iy" 0, — m)yp = 0.
to be the KG equation. Have
(=" ~+*0,0, — m?)p =0.
V0,0, =37 18,0, + 377" 0,0,
=3 {7",7"} 9,9,
where  {7", 7"} =1"7" + "7,
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the anticommutator. We need

% {7u’ '7V} 6N8V¢ 582¢’
Le. {y*,7"}=2n"".

v

or Yy =—9"* for p#v,

The Dirac equation can be written as

0 0%

1y Bt + 1y.Viy — myp =0
= z%—f = — iv%7. Vo + myOy
= — 1.V + B9

where
a=+", B=+"m.

The Dirac equation is of the form
Y

Y _ g
"ot ¥

where

H=—-iaV+=ap+p.

Then
H=HT¢)a¢:a:{, ﬂ:ﬂT

. ,yoT _ ,yo’ ,yo,yz' _ (7071')1' Z’Y“’YOT _ ,.yiT,YO
ie. A0y =~ =123
This can be summarised by
POyt = 4.
This, together with
{v* 7"} =2

are the defining properties of the Dirac v matrices. Given that spacetime is 4-dimensional,

the s need to be at least 4 x 4 matrices. A possible representation for the v is

I 0 ; 0 ot .
0 2 7
v _<0 —Ig)’ v _<—0i 0)’ 1=123
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The o* are the Pauli matrices which satisfy

clo? = 5ij =+ ’iéijk()’k.

Can check that defining properties of Dirac v matrices are satisfied.

The equation
(iv"0, —m)y =0

is called the Dirac equation.

Equivalence of different representations

Suppose we have two different sets of 4 x 4 matrices satisfying the above defining

conditions, so we have

{v*, 7"} =20, AOqHy0 =1
(YA} =20, A0y =y

For the Dirac equation to yield unambiguous results we need to show that the two repre-
sentations lead to the same physical consequences. We need to show that there is a unitary

transformation 1’ = U such that if

(iv*0, —m)p =0
then (iv'*9, — m)y' =0.

This follows from the theorem

Theorem

If
{7y =AM =20

where v#, v'# are 4 x 4 matrices, then there exists a matrix M such that
v = M~*M -1

Moreover, M is uniquely determined up to a factor. In particular, if v# = M~y*M !, then
M = \y.

If in addition
YOty = At Oy A0 = el
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then M can be taken to be unitary, and we have v* = M~y*MT or y* = MT+'*M. So
(iv"0, — m)Y = 0 = (iMTy* M8, —m)h =0
= (Y0 —m)My = 0 = (iy"0, —m)y’ =0,

where ¢/ = M.

Lorentz transformation properties of the Dirac equation

Firstly we want to show that the Dirac equation preserves its form in different frames.
Eventually we shall be able to use the transformation properties to show that the Dirac
equation is describing particles of spin ;.

We start with the Dirac equation for 9 (z):

(172 ) v 0.

o o™ 8 ., 9

dzrv Oz dx'» T Y oxm’

So we can write the Dirac equation as

If o'* = L*,z", we have

3}
(iy”L”VW - m> P(x) = 0.

Now defining
v =LHY,

we have

0
<i,)/,u i m> Y(x) =0.

{v'*, P} ={L* v, LP 4"}
=L*,LP , {v*, 7"}
=210, LP " = 2P,

But

By Pauli’s theorem, we must have
V" =Lty = S(L) T S(L).

(N.B. S(L) is not unitary.) So we have

S(L)~? (W - m> S(L)y(z) = 0.

oz’
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So if 9 (x) satisfies the Dirac equation, so does
¥'(a) = S(L)p(x) =S(L)p(L~'a'),

where LH,v* =S(L)"'y*S(L),

and where z'* = L*,x¥. We interpret 1'(z’) as the Lorentz-transformed version of ¥ (z).

Note that S(L) is only defined up to a scalar factor, which doesn’t change the state.
L near 1
For L near the identity, we have

L“I/ :6“’1/ + 6Nu,

where €., +€,, =0.

Then let
S(L) = 14 +ie"%,,, where X,, =-%,,.
From
LF,y" = S(L)"'y*5(L),
we have

T4ty =(1— ieApZAp) v (1+ ieApZAp) +0(é?),
so et Y o (Y35, — Zap7"),
ie. %ekp(é“xyp — 0" ) =i [y, Ta,),
So  5(8"x7, = 8" p1a) =ilv", B,

since the equation holds for any antisymmetric e. The equation is satisfied by (see Home-

work 3) '
i

Z)\p 8[7)079]
1 1
=— —0), Where o),= 5[’7}0%];

4

so we have S(L) =1— ie‘“’aw.
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Angular momentum

To understand the angular momentum of v, consider taking for L a small rotation
through an angle # about an axis n. Then
LFo=1L", =0
0X=—x X nb

= sz:IJJ ="' — e,-jkw’nkﬂ

€ = — ejpn™0 = —€"
So S(L)=1- %eijknkeaij
1 .
=1+ geijk’nk[")/z,’)’]]G.

l
i i . o 0
Now [’)’ 379] = _2Z€ijl ( 0 0.l>

in the given representation, so (using €;jx€;j; = 20k1)

y k
S(L) =1 — -n* <% Ok) 0

2 o
=1 —146n.S,
1/ck 0
k_—
where S =3 < 0 Jk>’

and since [30*, 1o07] =ie;, 20",
we have [S%, 7] = ie;;,S".
1

The e-values of S% are 3, —1, 1 —1. Consider a scalar field ¢(z). In a Lorentz-transformed

frame we have

¢ (z') = p(z) = ¢(L7'2"), or equivalently ¢'(z) = ¢(L '2).

We have S _
(Lz)" =z" — eijkwjnkt‘),
so (L7'z)" =z + e;pxIn0,
and so  ¢'(z) =¢p(z* + e;jpx'n*0)
(z?) + eijka:jnkGE)—(ﬁ. +0(6%)
oz*

¢(z) —On.(x x V)¢
¢(z) —ifn.(x X p)o

(1 —in.L)¢p(x).

So ¢ = —ifn.Lo,
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i.e. the generator of the change in ¢ corresponding to a rotation is the component of L in

that direction. Now for the Dirac field 1 (z),

P (z) =S(L)y(L' )
=(1—4n.S)(1 — ifn.L)y(z)
=(1—146n.J)y(r) whereJ =L+ S.

The angular momentum is defined to be the generator of rotations, so here J = L + S
is the angular momentum. We have [L;,S;] = 0, and both L and S satisfy the angular
momentum conservation relations. S has to do with the way the components of 1 are

mixed by a rotation and is “internal”. We identify S with the spin. We have ($%)? = 1

for each ¢ and so S? = 3 = 1(1 +1). So this corresponds to spin 1.

Parity

So far we have dealt only with [,1. Now consider

1 0 0 0
0 -1 0 O
P= 0 0 -1 0
0 0 0 -1

For S(P) we need

These equations are satisfied by

or by S(P) = —°. We have

V' (ct,x) = m°(ct, —x), n==+1.

7 is called the intrinsic parity of the particle and is totally irrelevant until you consider

systems in which the types/numbers of particles change.

Probability current and bilinear forms
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To give a probabilistic interpretation to the Dirac wave-function 1) we must construct

a conserved current j#. We have
(i'Y'uau —m)y =0
Yt (—iy*19, — m) =0.
Using v#T = 4%9#~°, we have
—ipy0y*8, — myTy® = 0.

We define the Dirac adjoint ¢ = 17y°. So we have

B(iy B +m) =0
= @7“3“%0 + @7“3“%0 =0
So = Py = Bt = 0

ex

and j™* is our conserved current. Then

p =3 =y P =T (7°) %y = Ty
4
= ¥l
a=1

which is positive definite as a probability density should be. Moreover, for j# = 1y*¢ to

be satisfactory it must be a Lorentz vector, j™%(z') = L¥,j"(x). Now
§™ (@) =91 (2)S(L) 'y " S(L)y ()
and since S(L)"'y*S(L) =L*,v"
we have S(L)Ty#1S(L)1=! =L+ 4T
so, using  yHT =40HA0
we have S(L)'/%v#4°S (L)1~ =L#,~%4"~°
or 7°S(L)1 9y S(L)1 710 =Lk y" = S(L) "'y S(L),
and so  S(L)y°S(L)Ty°y#4°S(L)1=14°S(L)~1 =*
Defining X:S(L)’YOS(L)T’YO
we have X~*X 1 =4H,

So, from Pauli’s Theorem we have
X = S(L)Y°S(L)T° = k1y.

14



Taking the Hermitian conjugate (and using 7°T = 7°)) we have
Y’ S(L)Y°S(L) = k*1a,
and then multiplying by «° on the left and on the right, and using (7°)? = 1, we have
S(L)y’S(L)1y° = k* 14,
so we must have k = k*. We also have
|det S(L)|? = k*,
and since (not proved) det S(L) = 1 we have k = +1. For L € El we have k = +1. So
S(L)1n® =A08(1) Y,

and

so that j* is a vector.

We now define

N N 3

We can show
(V) =1, +*T=7°

and {y°,v"} =0.

s_ (0 1
7‘(10'

S(L)"'4°S(L) =(det L)y"
=~ for LEEL

In the representation we are using,

It can be shown that

It is also easy to show that

S(P)"17°8(P) = —".

15



We can then show that under a Lorentz transformation

¥'(@)y (2') =9 (2)S(L) T S(L)y(z) = Y(2)y(z),
¥ (2)7°¢' (@) =9 (2)S(L)"'°S(L)y(2) = 9(2)7°¢ ()
P (@) (') =L (a)y" (@),
P (@ )Py (') =LF 4 (2) Py (@),

while under a parity transformation

P (@) (') =¢(2)S(P) ' S(P))(z) = ¢(2)y(),
P (@)Y (¢') =9 () S(P)"'° S(P)ip(x) = ()7 ()
P (@) () =P, ()7 ¢ (),
P (@)Y (') =P, () y° 7 9 (x).

Quantities with the above transformation properties are called respectively scalar, pseu-
doscalar, vector and axial (or pseudo) vector.
Solutions of the Dirac equation
Consider the plane wave ¥(z) = u(p)e~"?-2. It will satisfy the Dirac equation
(i7y.0 —m)yp =0
if  (v.p —m)u(p) =0.
Multiplying by (v.p + m), we find
(7-p —m)(v-p — m)u(p) =0
= 317" 7" Hpupy — m?)u(p) =0

So we still seem to have —ve energy solutions. It is conventional for reasons which will
become apparent later to reverse the direction of the momentum for the —ve energy states.

So we have

+ve energy u(p)e”P* p° = /p2 +m?
—ve energy v(p)eP® p° = v/p? +m2.

It is straightforward Fourier analysis to show that these are a complete set of solutions for

the Dirac equation.
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We can explicitly construct u(p): In our representation,

0
__(p"-m —op
yp—m= ( op —p— m)

where each entry is a 2 x 2 block. Now write

=(§) e = (§): - (2):

(v-p —m)u(p) =0

Then

becomes
(p° —m)¢ =o.pn,

o.pé =(p° + m)n.

Given &, define

_ o.p ¢
n_po-i-m
(0.p)?

then pn =
o.p7 p0+m£

Now o'o/pip; =p? (0'0? = i + ieijpo™)

2
po—i-'rn£

()2 _m2£
=

=(p° —m)¢

So o.pn=

so we have a consistent solution. The general form of u(p) is

ur) =N ( oF ).

po+m X

We can get a basic set by choosing two 2-spinors X, (r=1,2) such that x{x, = 6,,. Then

we have
Y (z) =e =P u,(p)

:e_ip.m< Xr > N(p)

17



is a basic set of +ve energy states, r being the “spin label”. Then
<o) 5= [P = [au i
:/%T)sz;f)d?’x

:ei(po—plo)a;o /e_q;(p_p’).xd:}XN(p)*N(p/){ TX +XT 0’.po’,p’ X }
rAS T(p0+m)(p/0+m) s

7
=(2 35 ! —i(po—plo)zON *N(p { T .+ t g.po.p S}.
(2m)°6(p — p')e (p)*N(p') { xixs + X0 BT T,

Now
s(p—p)f(p,p") =d(p—p')f(P,P)
This is because
/d3p’5(p -p)f(p,p) = /d3p’5(p - p)f(p,p) = f(p,P),
and functions containing J-functions are actually defined by integrals like this. So we can

set p’ = p and correspondingly p’® = p°, obtaining (using (o.p)? = p?)

2
(") ) < —(97)38(p — 1 2 i _IplF
U =3 - IV P {1+ 5P

Now (p° +m)? + [p[> =(»°)® + 2mp® + m® + (»°)* — m* = 2p°(° +m)
0

r (s 2p
So <D, pl >=br 5 0P = p')|N(p)*(2m)°.

Recall with ¢,(z) = e~P-* we have
< o 5= [ By(a) 06y (@)d°x = 2°(2m)5(p — B,
So choose N (p) = 1/p® + m so that
<0, 9l >=6,,2p°(21)%8(p — D).

We now have

T(Mus (p) = 2mdbys.

(See Homework 5.) A general solution of the Dirac equation is
d3p 2 . .
vie) = [ 58S {ur e 1 ) + 0P ()
r=1
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Negative energy states and the hole interpretation

The Dirac equation has +ve definite probability density unlike the KG equation, but
it still has —ve energy states.

Spin % particles are fermions and we can only have at most one fermion in each state
(the Pauli exclusion principle).

Dirac supposed that the vacuum corresponded not to all states empty, but to having
all of the —ve energy states full (the sea of —ve energy electrons).If a positive energy state
is full, we observe it as a positive energy particle of mass m and charge —e. If a —ve energy
state is unoccupied, we observe it as a (positive energy) particle of mass m, charge +e—the
antiparticle of the electron, or positron.

This picture predicts electron-positron annihilation and pair production.

Because you need to fill all the —ve energy states and talk about multi-particle systems

to make sense of the Dirac equation, it doesn’t really describe a single particle.

2. Quantisation of Free Fields

Finite-dimensional systems

First we review the mechanics of a system with a finite number of degrees of freedom,
n say. In Lagrangian mechanics such a system is described by n generalised co-ordinates
q1 - - - ¢ and n generalised velocities ¢ ... ¢,. The equations of motion can be derived from
a variational principle

ta
5 / dtL(q, 6,t) = 0

t1

subject to g.(t1) = q,(ﬂl), qr(t2) = q7(-2), 1 < r < n. This leads to the Euler-Lagrange

d (oL oL _
dt \d¢; ) dq;

equation

If a particular co-ordinate ¢, is absent from L, then p, = % is constant. In general
Dr = % is called the momentum conjugate to q,. If g—;‘r = 0, we say ¢, is ignorable.

If L has no explicit time dependence then by multiplying by ¢; and summing over j

we can deduce

¢;p; — L= q'jg—ql; — L =constant.

(028 ) = 0 (2 2Ly, O,
9q; T dt 0q; 0q; J 04, J

—0.]
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This is the energy conservation equation.

The Hamiltonian is defined by

H = quj - L(qa (ja t)

We regard H = H(q,p,t). We need to “invert” p, = g—é to get ¢, = ¢r(q,p,t). We may

deduce the Hamiltonian equations of motion:

(N.B some care using the chain rule is required, since derivatives of L are implicitly defined
with g or ¢ constant, while derivatives of H are implicitly defined with ¢ or p constant.)

If H = H(q,p,t) has no explicit ¢t-dependence, i.e. H = H(q,p), then

dH OH,  0H,

—— = o—di+ P =0,
dt 8qiq+8pip

i.e. H is conserved. The corresponding quantum-mechanical system is obtained by invent-

ing operators q;, p; such that
(9, pi] = ihds; = ih{q:, D5},

where {, } is the Poisson bracket, defined for two classical dynamical variables a, 8 by

da 88 da 9P
Oqr Opr  Opy Oqr

{a, B} =

Then for any two quantum variables

[, B] = ih{a, B} + O(h2).

In the co-ordinate representation,

0
; = —th—.

In the Schrodinger representation the state vectors vary with time as specified by the
Schrodinger equation, e.g.
oY

20V _ g
zhat P,
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and the dynamical variables <+ constant operators. To pass to the Heisenberg picture, we

introduce a unitary operator defined by

oUu
,h— = HU.
7 5 U

(If H is constant then U = e~ a .) The Heisenberg picture wave function is given by

Yy =U'yp
and is constant in time. We define the Heisenberg picture operators by
ag =Ulal.

THen
<,ap >= < Uy, aUvg >
= < Y, UlaUyy >
=< YH,ag) >.

Moreover a g satisfies the equation of motion

30&]{
1)
ot

= [aH,HH].

In fact the classical equations of motion may be written in the analogous form

da
— = H}.
dt {a7 }

Classical Field Theories

A classical field ¢(x,t) may be regarded as corresponding to one degree of freedom
at each point in space, so that x in ¢(x,t) <> ¢ in ¢;. For a classical field theory the

Lagrangian is a functional of the fields ¢(x,t):

Mm=/a¢m@fm

and the action is

/ " GLg) = / L6, 04).

131
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We obtain the equation of motion by equating to zero the variation of the action corre-

sponding to variations in ¢ satisfying
Sp=0 at t=ty,ts.

s / L(p, 0"¢)d z = / {Z—idm %5(0“@} d'z

(0(8"¢ =0"6¢.)

:/M{a—ﬁ‘éw{ oeg1) 1
Sl

L[ or ] or_
oomg)] 9
E.g., if £ = 2(0¢)*> — 2m?¢?, the equation of motion becomes (02 + m?)¢ = 0, i.e. the
KG equation.

Then

So as d¢ is independent for each (x,1),

We introduce a generalised momentum

oL
m(x) = 8—¢

The Hamiltonian density is defined by

H = d(z)n(z) - L,

H = /d3xq§xt (x,1) /’Hd3

For the KG field 7 = qS and

then

H =10+ 1(Vg)? + Im?¢%

The total energy [ Hd3x should be conserved and the zero components of some 4-vector

P*#. To construct this, we introduce the energy-momentum tensor

oL
0(0,¢)

22

TH = ¢ — L.



Then we have
PH = / TH0d’x

and
H="P= / T%43x.

TH¥ is conserved in the sense that

o, T"" =0.
oL oL
0, T" =0"¢pd, { ——— 0,0t p———
| ¢ {M@@}+  0,9)
oL oc
- {5¢  3(0nd) a”‘w}
=0

using the equations of motion.]
The conservation of T* implies P* = [ TH%d®x transforms as a 4-vector and is time-
independent (just as for j™*(z) earlier).

P* is the energy-momentum vector.

23



Quantisation of the K-G field (real scalar field)

The Lagrangian
£ = 300" - jme?
leads to the K-G equation

(0% + m?)¢p = 0.
The generalised momentum is given by
oL .
= —F = ¢_
¢

We can write
= 16° - L7 - 4
The analogues of the commutation relations
[q“pg] = ihdyj, [Qia%'] = [pi’pj] =0

are

[p(x,t), 7(x',t)] =ihdé(x — x'),
[p(x,1), d(x',1)] =
[m(x,t), m(x',t)] =

Note that these are all at the same time ¢. These are called equal time canonical commu-
tation relations (CCRs). We always assume from now on that we are in the Heisenberg
picture (without explicitly writing a subscript H). The equations of motion should take
the form

iha = [, H].

We have
H= /Hd?’a: =H = /[%dﬁ + 1(V¢)? + Im?¢?|d%z.
To see that the CCRs are appropriate, consider
[6(x,1), H] =[¢(x, 1), /[%W(X’,t)2 +3(Vo(x',8)* + gmP(x', 1)) d%2']
—3 [ {[¢<x), 7)2] + 800, (V'6())%] + m216(x), 61}
[$(x), p(x")] = 0 =[p(x), V'$(x)] =
So =4 [ {rG)[600, 7))+ [60), 6 m(x)

:ih/w(x')5(x —x")d*x’
=ihm(x) = ihd(x) OK.
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(Note we have suppressed t for brevity here.) We also have

[m(x,t), H] = — [/ dx {3n(x')? + 3(Vo(x)? + mPe(x')?} , m(x)
=} [TV 9, 700+ V90, 7V 9)
— m? [ @ {86 [6x), 7)) + [9x), m()]6(x)}
- ih/d3x' {V'¢(x).V'§(x —x) + m*¢(x')5(x — x') }
=it [ @ {(V)6(x)5(x — x') = m(x)6(x ~ )}
=ih {V?¢(x) — m’¢(x)}

=ihd(x) using K-G equation
=ihw(x)
as required. So the equations of motion are verified.

To see the connection between the quantised field and its particle interpretation, we

need to look at the Fourier transformed field. We derived this earlier in the form

¢(-’IJ) = # /dﬁ)ﬁ [f+(p)e—ip.m +f (p)e’ip.z:]

For ¢ to be hermitian we require

f+(P) =a(p)
1 3 1 —ip.T ip.T
Then ¢(x) :(2703 /d p@ [a(p)e +al (p)e”]

Recall that we showed that with ¢,(x) = e~"P-*, we have
< ¢p, $p >= 2p°(2m)%5(p — P').
We therefore have
< e T ¢ >=a(p) = /[pocb(x, t) +im(x,t)]eP " d*x,
— <o g >at(p) = [(p°0(x,1) — in(x D]e P 7dx
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from which we obtain using the CCRs

la(p), a’ (p)] =2p°3(p — P')(27)?,
la(p), a(p’)] =0,
[ (p), a' (p)] =0.

We now have to define the space on which these operators act. We start by defining the

“vacuum state” such that
a(p)|0 >=0 for allp,< 0|0 >= 1.
Single particle states are defined by
Ip>=a'(p)|0>.

Then
< p'lp >= < 0la(p)a’(p)|0 >

Two-particle states are defined by

Ip1, P2 >= a'(p1)al (p1)]0 > .
Clearly
IP1,P2 >= P2, P1 > as [a(p1),a(pa)] = 0.

It can be shown (see Homework 6) that

< P1;Palp1, P2 >=
(2m)5(2p9)(209){5(p1 — P1)3(P2 — Ph) + 6(p1 — P5)3 (P2 — PY)}-
We also have
< 0lp >= < 0]a’(p)|0 >= [< 0la(p)[0 >]" =0

and similarly < p|pi1p2 >=0.

26



An n-particle state is defined by

[p1ip2 .. -Pn >= aT(pl)aT(pz) . aT(pn)|0 >,

which is symmetric under permutations of p;...p,. It is this symmetry which is the
defining characteristic of bosons and leads to wave-functions which are symmetric under
interchange of particles.

We have

< PiPh...PplPiP2... Py >=0 for m#n,

= Z H 2p)(27)*6(Ply(ry — Pr)-

perms of 1,.n7=1

If
‘H.,, =space of n particle states

=space spanned by {|p1...pn >,

then the total space
H=+H,

which is the space of states of an indefinite number of bosons. We define a number operator

3
N = s [ el (Plao)

which satisfies
[N,a'(p)] = a'(p)
and hence

N|p1...Pn >=n[pP1...Pn >
(see Homework 6). So N counts the number of particles. We may interpret

1 1

N(p) = (2’/1')3 @GT (p)a(p)

as the number density in momentum space, and therefore the total momentum should be
given by
Pt = / N(p)p"d’p

1 d’p "
:(271')3 /ﬁaj(p)a’(p)p
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We should also be able to derive this directly from the earlier expression for the energy-

momentum tensor 7T#". In particular

PO —H =} [18? + (Vo) + m?)d’a.

/¢d3x—2

/ P50 ) +al (p)e? ]

72 13
d —
/¢ X = @r
/ P'o 0 ip' a(p')e”?'® 4 ipal (p')e'® ””]

d3 — zpa p)e” x—z’paT(p)eip'I]

Now

1 —ip.x ip.T
d°p— [a(p)e P + al (p)e™*]

d3x
2pY

d’p 5 [—ip’a(p)e " + ipal (p)e™]

/d3p’— [zp a(p')e” " —ip a*(p')eip"””] ,
D
and so, using
/d3xe—ip.1:e—ip'.:c — (27T)3e—i(p0+p'0)5(p + p/)’

and (p°)? = p? +m?, we find

0 1 1 3 1 0\2 ) 2 0\2 2 2
B =5 e /d P oz (P + p7 - mia(pla(p) + [=(p7)" +p" +m Ja'(p)a’ (p)

+[(0°)* + p* + m*)(a’ (p)a(p) + a(p)a’ (p))}
11 1

=375 | P30 (@ B)a(p) + ap)a (p).

In general we find

%(%)3 / dgpﬁp“[af(p)a(p) +a(p)a’(p)]

s 1 1 36,0
~ g | EPgrlal ®)a@) + 2% 6(0)L

The §(0) means that we get an infinite answer. We merely discard this infinity to get
the previous result. This is not as arbitrary as it appears. The trouble merely comes
from the ordering of a and a' in H, which we could have adjusted freely before passing to
the quantum-mechanical expression. If we’d had sufficient foresight to do this, we could

have obtained the earlier expression straightaway. We need to write H so that all the
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annihilation operators a stand to the right of all the creation operators a. This process
is called normal ordering or Wick ordering and is denoted by colons.

Write
¢(z) = ¢ (z) + ¢ (2)

where
60(e) = [ Grat)e
~ s [ 90— ) at),
606) = [ Gl )
:<271r>3 [ i~ m*)o)er=a(p)

The normal-ordered product

:9(2)? = [0 (@) + 67 ()] + 267 (2)9 ().

Define
H =[xy (6 + (V9) + mi6?) s
_ 1 d’p ot _
=7 | el ®lan’ = [ FoNeEp’
Can show

[P, ¢(z)] = —i0"¢(z) Check

from which it follows that

e—ia.P(b(x)eia.P — ¢(«T _ a)-

Arbitrary-time commutators and singular distributions

The CCRs specify thecommutators of ¢(x1), ¢(z2) if the times of the operators are
the same.
Now consider [¢(z1), ¢(z2)] without this restriction.

The answer is a complex-valued function, not an operator.
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Let

[p(21), d(z2)] =iA(z1, 22)
N e_i“'P[gb(wl),gb(xz)]ei“'P :ie—m.PA(wl’@)em.P
[e—ia.P¢(w1)eia.P, e—ia.P¢(w2)eia.P] =iA(z1, z2)
[p(z1 — a), d(z2 — a)] =iA(z1 — a, T2 — a) = iA(z1, T2)

= A(x1,22) =A(x1 — 22,0) (a = zq).
With a slight change of notation,

[9(z1), ¢(z2)] =iA(z1 — z2)
=0 (21), ¢ (w2)] + 807 (1), ¢ (w2)]
1 dg_pe—ip.(ml—mz) . 1 / d?’_peip.(ml—mg).

(2m) J 2p° (2m)* J 2p°
g i ik 0 /
- _ et ik.x _ _ik.x — k2 2
So A(z) Gn)? / 570 (e e, k +m
g 4y, —ik.z_(1.0)5(1.2 2
=— k°)o(k* —
E /d ke e(k”)o( m*)
where €(n)=+1 (n>0)
=—1 (n<0).

Can show

(b) ==A=-4(x)
(c) A(Lz)=A(z)
(d) A(z)=0 for z* <0.
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Proofs:

(a) Get in / L (R — m2)5(k? — m2) =0.

() [6ar), yg(aa)] =i g (@1~ 22)
Put 2% =z) =t
.O0A
= iy g (@1 = 22) = [$(x1,2), p(x2,8)] = = §(x1 — Xa).
2

)
(2m)3

1
(2m)3
Write k' =L 'k, e(k”®) = ¢(k°) for Le Ll

i
(2m)3

=A(z).

(d) [¢(z),¢(0)] =0 if z°=0.

(¢) A(Lz)=-

/d4ke—ik.Lm6(k0)5(k2 _ m2)

/d4ke—iL1k.$6(kO)5(k2 . mZ).

= A(Lz) =—

/d4kle—ik'.m6(k10)6(kl2 _ m2)

If 2 <0 thereis a L € EI_ such that Lz = ' where z’. Then
[p(2"), p(0)] = 0 = iA(z") = iA(Lx) = iA(x).

A useful formula is

1 'k ke
Alz) = (2m)4 /c k2 —m2° '

The integral is defined by a contour integral in the complex k° plane followed by a real

d3k integral.

Poles at k° = £vk2 4+ m?2. Proof:
Collapse onto poles.
2mi d3k —ik.x ik.x
_(27r)4/2_k0(e —e).

Again obvious that (6% + m?)A(z) = 0.
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We can use the contour integrals to construct Green functions for
(0% +m®)p = j
appropriate to various boundary conditions.

(0% + m?)G(x) =6(x)

1 d4k —ik.x
Ge =g /c k2 —m2©

1 .
2 2 _ 41, —ik.x
(0° +m*)Ge =@t /cd ke

= §(x)

if C is any contour from —oo to +o0o near the real axis in the k° plane. Different choices

of C correspond to different boundary conditions.

(a)

1 'k
A (CB) - _ / e—zk.:r,
adv 2 )4 k2 — m2
(2m) Codv m
If e=*-® — 0 exponentially as k* — —ico then A, 4, (z) = 0. Write k° = —ip = P’ 5 ()

exponentially as p — oo if z° > 0. So
Aygy(@) =0 for 2°>0
(@ + m?)A g, (2) =5().

To solve
(8% + m?)p =j

d — dout (), z° — 400

where (8% + m?)poyt =0

d(x) =dout (z) + /j(w')AadV(ac —a)d*’.
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1 d*k

4 2 _ 2
(2m) cretk m

Apet(z) =0 for z° <0
(0% +m?) Aret (z) =0(x).

Avet(z) = —

To solve
(0° + m*)¢ =j
(b — ¢in(w)a -’1"0 — =0
where (9% + m?)¢;, =0
8(0) =0 (@) + [ 3 Aretlo — 2
(c)

1 d4k )
A — —Zk.ﬂ:.
r(2) (2m)4 /CF K2 —m2°
On the right, kX = vk2 + m?2 + ie. Equivalently, displace pole downwards to k° =
VK2 +m? —ie.

1 d*k )
A — —zk.m'
r(@) (2m)4 /Cp k2 —m2 +ic"
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Implicitly we take € — 0. For z° > 0 as in the discussion of A, gy We may close the contour

towards k% — —ioo.

1 i

Ap(z) =— (27)4 /C+ k2 — m2e "
1 d3k
(2m)4 2%0°
= —i[¢! (), (0))-

For z° < 0 we may close the contour towards k% — +ico.

1 d4k —ik.x
Ap(z)=- (2m)4 /c— k2 —m2°

T ent ) 2w©

= —i[[¢M(0), ¢ (z)].

_ —ik.x

Now
< 0[¢(2)$(0)|0 >= < 0] (z)¢((0)[0 >

= <06 (), 7 (0)]]0 >
=iA(z) if 2°>0.
< 0]¢(0)¢(2)[0 >= < 0[[¢(0), o) ()]0 >
=A(z) if z°<0.
Define the time-ordered product by
T{p(z1), p(z2)} =(z1)$(w2) (2] > )
=¢(z2)p(z1) (2] < x3).

Then
< 0[T{¢(z), $(0)}|0 >=iAp(z),

< 0[T{¢(z1), p(x2)}|0 >=iAp(z1 — T2).
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The Dirac field
We saw that the K-G field described bosons, because of the CCRs
[a(p), a’ (p")] =20"(p — ) (27)?,
[a(p), a(p")] =0,
[a (p), o' (p")] =0.
p,p’ >=|p’,p>.

To obtain fermions we would need

p,p’ >=—p’.,p >

which would result if af(p)af(p’) = —af(p)a’(p’), i.e.

{a'(p),a’(p")} = 0.

It turns out that the Dirac equation requires such anti-commutation relations to ensure
positive energy, and therefore describes fermions. The Dirac equation can be obtained

from the Lagrange density
L =(i, 0" = m)ip
or L' =3iv, 0" — map.

These two Lagrange densities differ by a total derivative i%(‘)“ (¥y,v), and so give the same

equations of motion (the second one is hermitian). The generalised momentum is given by

% = i@VO)a = in-

Note that this does not involve 1,1')! We postulate the anti-commutation relations
{Ya(x,1),ipg(x',t)} = id(x — x")dag,
which can be written
{’(/Ja(X, t)a aﬂ(x,a t)} = (5(X - X,)’Ygﬁ'
We supplement this with the assumption that
{¥a(x,1), Y (x',1)} = {9a(x,1),ds(x',1)} = 0.
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We shall see shortly that this leads to positive energy. Then

H = / d>x[—irhy.Vp + mapyp].
The CCRs should lead to the correct equations of motion. We should have

0= o H] = =i [ 1600, B YT 9G]+ m [ (1), 56y ()
= —i[y*7.VY(x)]a + mh 9 (x)]a

which is indeed the Dirac equation for ¢. [We have used here

[, BC] = {¢, B}C — B{¢,C}.]
We may rewrite H using the Dirac equation as

H = /d3xai70801/).
The energy-momentum tensor is given by
THY = GahpyH 0¥ ep.

Using the general solution of the Dirac equation, we introduce annihilation and creation

operators:

- Z / R f (D) P20 (p) + 0r ()b ()

and so

pE Z / 5 {tr(p)e™*al(p) +vr(p)e by (p)} -

The anticommutation relations of the s and s lead to (see Homework 7)

{a,(p),al(p")} =(27)%6,+20°5(p — P’),
{b-(p), bl (p")} =(27)36,.:2p% (p — P'),
{a.(p),as(p")} = {al(p),al(®")} ={a-(p), bl (P)} = {a.(p),bs(P')} = 0.

We may calculate P* from TH*¥ (again see Homework 7):

2p

Py a7 | S lal(®)e. (@)~ b @)

36



This differs by an infinite constant from

2
Py
s=1

which we would have obtained straightaway if we had normal ordered, defining

/ %pﬂ [} (p)as(p) + b1 (P)ba(D)]

1
(2m)3
P“:/:T“O:d3x

and defined
:bbT := —bTb, :bTb:=bT0,

etc. The vacuum state |0 > satisfies
ar(p)|0 >= b.(p)|0 >
for r = 1,2 and for all p. A general state is of the form
ail (ky)... a:[m (km)bl1 (p1)--- bln(pn)|0 >= k171, ... Ky Tm; P1S1 - - - PnSn >,

which is interpreted as a state with fermions of momenta k; ...k, and helicities ry ...7,,
respectively, together with antifermions of momenta p;...p, and helicities s;...s, re-

spectively.
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3. Interacting fields
We now wish to study interactions between fields, and self-interactions. Then the
equation of motion will be derived from a Lagrangian density

L=Lo+ Ly,

where L is a sum of free Lagrangian densities for each field concerned, i.e. %(8@,)2 — %mﬁqﬁ%
for each scalar field ¢, and 1,.(iy#8, — m, )i, for each fermion field. £ (the interaction

Lagrangian density) contains interactions between fields, and self-interactions, such as
A3 3 wa 57 Bl (7T

We could also have higher powers of ¢, vector fields, derivatives etc.

A simple explicit example:

Lo =3(09)" — 3m*¢”

From this we obtain the CCRs. Firstly

m(x,t) = g_; = ¢(x,t)

provided that £ contains no time derivatives. Then the standard CCRs

[b(x,t), m(x,t)] =ihd(x — x'),
[p(x,1), p(x',1)] =0,
[7(x,t), 7(x",t)] =0

still hold (i.e. lead to the correct equations of motion) provided L; is just linear in 9.
However, to expand ¢(x,t) in terms of a'(p) and a(p), we needed the free-field equation
of motion; but the equations of motion are now complicated and non-linear.

The interaction picture

Usually in elementary quantum mechanics we use the Schrodinger picture, where the

wave-function (or state vector) is time-varying, and the observables are time-independent.
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On the other hand, in discussing free-field quantum field theory we have used the Heisen-
berg picture in which the state vectors are fixed and the dynamical variables evolve ac-

cording to the Heisenberg equation

zh% = [¢,H], etc.

In interacting quantum field theory (treated perturbatively) it is convenient to adopt a

compromise between the two pictures. The interaction picture is defined as follows:

L=Ly+ Ly
H=nd—L
=(nd— Lo) — L1
=Ho+H;, where H;=-L;=V.
So H =H,+ Hj,

where Hj :/d3x[%¢2 + 2(Ve)? + tm?¢?,
HI = —/d?’xEI.

Suppose at t = 0,

Ys(t) =U(t)¥u(0)
Whereihd—U = HU.
dt

ag = U tal.
If H is constant,
U=e &
Define
iHQt
Pr(t) =e 7 1Ps(t)
d ] t —1 t
h% —e " Hie %" Y1
=Hyr.

iHgt —iHgt
oy =e R qge &

qu
h— = Hy].
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Thus in the interaction picture dynamical variables move as though they were free. In
particular ¢ will satisfy the free-field equations. The complicatd additional ¢-dependence
resulting from Hj is shifted onto the states.

The field ¢7 is called the “in” field because it evolves according to the free equation

from what it was before interaction.

The S-matriz

The usefulness of the interaction picture (perturbation theory) depends on the inter-
action being negligible at very early and very late times. Then the Heisenberg fields are
free fields and we can analyse the state of the system in terms of the particle states of the
field (“in”field at t — —o0, “out” field at t — +00).

.i_

b —Pin ~ Qjp, 0y, 3 t— —00,

T
OH —Pout ~ Gout: Qo @S t— —o0.
It is an assumption that ¢y behaves like a free field as ¢ — 400 (sometimes called the
asymptotic assumption).
Consider the relation between the Heisenberg and interaction pictures.

—i1Ht

¢u(t) =€ e
bin () = ’H°t¢se‘15’°i
= ¢ (t) =U(t) ¢ (®)U ()
where U(t) = e e TR
so z’h% " (H — Ho)e -
e n Hie 7 U(t)
=HU(t),

iHgt —iHgt
where HI—e R Hre &

For large ¢t we have

6110 = bout() =55 [ P [aoutP)e ™7 + ol P

1 , ]
¢in(t) :(271')3 /d?’pﬁ [ain(p)e—w.z + a;n(p)ezp.z] ’

bout (t) :U(t)T¢in(t)U(t)-



Let

S =U(c0),
then T
agut = STay, S, af = STal S,
ajp = SaoutST, air = SaoutST‘

Thus if |out > denotes a certain state built up from the creation operators of the out-field
in a certain way, we can write |out >= ST|in > where [in > is the state made up out of

the creation operators of the in-field in the same way (assuming S|0 >= 0). For example,

|k1,k2,011t >= aout(kl)aout(k2)|0 >
=(S"a;, (k1)S) (S a5, (k2)S)[0 >
:STain(kl)ain(k2)|0 >
:Slel, kz, n>.
Suppose we have a certain state in the Heisenberg picture which has a certain structure in

terms of in-field creation operators. To see what it looks like after scattering we have to

expand in terms of out-field states,

lin >= Zcout/|out' > .

The probability of a transition to a given out state |out’ > is given by | < out’|in > |?
where |out’ >= ST|in’ >, |in’ > being the state created in the same way as |out’ > but by

in-field operators. So
< out’[in >= < in’|S|in >

= < out’|S|out >
where |out > is the state created in the same way as |in > but by out-field operators.
To be specific, the probability of a transition from the state of two particles coming
in with momenta p;, p2 to two particles coming out with momenta ki, ks, is given by
< kl, kz, Ollt|p1, P2, n>=< kl, k2, in|S|p1, P2, in >

=< kl,kg,out|5|p1,p2,0ut > .

We need an expression for the S-matrix in terms of the in-fields. We have

ih— = HU
2 dt Y,
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where H; is the interaction Hamiltonian calculated in terms of in-fields. Integrating from

—o0 to t, and using U(—o0) =1,

Ut)=1- %/ dt' Hy(t)U(t").

— 00

Now substitute this solution into its own RHS, and iterate.

_1+Z<oo> / dty /tl dts .. / Gt H (4 Hi () . Hr(t).

For instance, if £ = —%gb:”, this is an expansion in powers of A; A is called the coupling

Ut) =1 — %/t dtr (1) + (—1>2/t dt, /tl dta 7 (1) F () U (1)

constant. The integral in the second term can be written as

/ dt / dto Hy(th)Hr(t2) + / dts / dt Hi(t2) Hr (t1)

- /_ ) dtydtsT{H; (1) Hr(t2)}.

In general,
U(t)=1+§:(——> / dtydty ... At T{H 1 (0) Fr(80) . Fy(t)},
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where
T{a(t1),...a(ty)} = oz(tp(l)) e oz(tp(n)),

where p is a permutation of 1,...n such that £, >t if ¢ < j. Thus

n

S=U(x)=1+ i (—%)n l' /oo dtydty ... dt,T{H(t1)H1(t,) ... Hi(t,)}.

Since

H](t) = —L](t) = —/d3X£1,

we have

S=1+ Z (%) E/ d*zid*z, . .. d433nT{EI(as1)£I(:nn) o Lr(zg)}-
n=1

— o0

Here L is calculated from the in-fields. We can write this in shorthand form as
i [ 4
S =Texp 5 d*zLi(x) | .

Feynman diagrams in position space

The thing we need to calculate is:
/ doyd'zs .. o, T{L1(21)L1(zn) . Lr(zn)},

(where we assume that £ is normal ordered) or rather its matrix elements between particle

states of the in-field, e.g. the contribution to
<pj...p.,,in|S|p1...Pn,in >.

To do this, we use Wick’s Theorem. The simplest version of Wick’s Theorem is

T{p(z1)P(x2)} = iAp(z1 — T2)+ : P(21)P(22) :
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T{p(z1)p(w2)} =d(x1)P(x2)0(z] — x5) + B(x2)P(x1)0(z5 — 1)
=™ (21)¢) (2) + ¢ (21)p ™ (22)
+ ¢ (2) ¢ (1) + 617 (1)) (22)
+ (6 (1), ¢ (22)10(2) — 29) + [0 (22), 67 (21)16(25 — 29)
=iA(z1 — x2)+ : p(x1)d(z2) : .
T{¢(z1)...d(@n)} =: d(z1) ... P(2n) :
+ %ﬁ ;iAF(xp(l) —2p2)) : A(Tp(3)) - - D(Tp(n)) :

11 1 , .
T 2291 (n = 2)1 > iAF(Ep(1) — Tp2) JIAR(T(3) — Tp(a)
P

: ¢(.’L‘p(5)) ... ¢($p(n)) e
The sums are over all permutations p of 1,...n. Note Ap(z1 — z2) = Ap(z2 — z1). E.g.
T{¢(z1)d(z2)$(z3)} =: d(z1)P(22)P(23) : +iA(z1 — 22)¢(T3) + 2terms.

T{p(x1)p(22)d(x3)p(24)} = : P(21)P(22)P(23)P(24) :
+ iA(z1 — z2) : P(x3)P(x4) + Sterms
+ iA(z1 — 22)iA(z3 — x4) + 2terms.
A typical problem:

2nd order contribution:

-2
7
A= /d4$1d4wz§ < p3p4|T{L1(z1)Lr(22) }P1P2 >,
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where

‘We need to calculate

t@(x1)P(T1)P(21) = 2 P(x2)P(T2)P(T2) :
T{ LR CAL AL )}.

The calculation of
T{: ¢(y1) --- d(yn) 2 $(21) ... P(2n) 1}
is the same as

T{p(y1)--- d(yn)p(21) - - - d(2n)}

but missing out those terms involving Ar(y; — y;) or Ap(z; — 2;).

3! 3! = P(21)P(w2)® :

T {1 P(x1)P(z1) (1) : : P(x2)P(w2)P(22) 1} :;! ;!

11, 2 2
b L A — ) o))
+ %[iAF(wl —z2)]* : p(a1)d(2) :

1
+ é[iAF(wl —z2)]?.
Now

¢ (@) lp1 >=¢) (z)al (p1)|0 >

1 d3p —ip.x
:(2w)3/ﬁa(f))e Pa1(p1)[0 >

:ﬁ %e—m[a(p>,a*(pl>1|o>

¢ (z)|pr >=e"P12|0 > .
So < pi1]¢7)(z) = < 0]ePr®,
¢ (1)) (22)[p1 >=¢) (z1)e~P122|0 >= 0,
S (z1)... 0 (@n)|p1.. . Pm >=0 if n>m.
¢ (21)9™) (w2)[p1p2 >=¢™) (21)¢H) (z2)a! (p1)a’ (p2)|0 >

:e—i(p1.$1+p2.a:2)|0 > +e—i(p1.$2+p2.11)|0 > .
¢ (z)[p1p2 >=e"P|py > +e P> 7|py >
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So

< p3,p4|T{: ¢($1)¢(§!1)¢(931) e ¢($2)¢(§!2)¢(932) :}|p1p2 ~—0

+e—i(P1+p2)~mzei(P3+p4)-$1,L'AF(x1 _ 1172) + ei(P4—p1)-$2ei(Ps—Pz)-mZ'AF(ml _ 332)

+ei(p4_p2)'””2ei(p:"_pl)"“iAF(xl —x2)+ 3 terms with z; <> 2
1 , .
+ 5 <Pap2> eP3TLeTPLT2 [ A L(11 — 29)]2+3 similar terms
+4 terms with z1 < 2o

1.,
+8[ZAF($1 — 5132)]3 < ps3,p4|P1P2 > -

< Pp3, Pa|P1P2 >= < 0la(p3)a(ps)a’ (p1)a’(p2)|0 >
= < p4|p2 >< p3|p1 > + < palp1 >< p3|p2 > -
So

A :(i)\)2 /e_i(plﬂ’z)'m?ei(p3+p“)'m1z'AF(azl — mg)d4m1d4a:2
+ (i)\)z /ei(p“_pl)'“ei(m_m)"“iAF(a:l — :1:g)d4:v1d4:z:2

+ (iX)? /ei(p“_p?)'“ei(p:‘_pl)'“iAF(a:l — azg)d4$1d4w2

i\)2 . .
+ (22) < p4|p2 > /eZpe":”le_Zpl':”z[iAF(:vl — x9)]2d*z1d*zy + 3 similar terms
(iIN?1 [ 374 g4
+ B 6 [ZAF(afl — 21:2)] d*x1d 1172(< p4|p2 >< p3|p1 >4+ < p4|p1 >< p3|p2 >).

These terms can be represented diagramatically:
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We can write down rules for reconstructing A from the diagrams: Label the vertices
by “dummy variables” zi,...x,. For each diagram we write down:

a factor of (—i)\) for each vertex.

a propagator iAp(z; — x;) for each line joining z; to z;.

a factor e*P® for each incoming external line of momentum p arriving at vertex .

a factor e’P-® for each outgoing external line of momentum p exiting at vertex z.

a factor (27)32p?8(p; — p;) for each line going straight through.

a combinatorial symmetry factor ﬁ where |G| is the order of the symmetry group of

the diagram keeping external lines fixed.

For —%gﬁ" we have n lines meeting at a vertex.

Finally integrate d*z; for all i.

To obtain < pf ... p%|S|p1 - .. pr > we sum the integrals corresponding to all diagrams

of the form:
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Feynman rules in momentum space

Usually one uses rules in momentum space. Technique is to substitute Fourier integrals

for the propagator functions. Have

1 e—ip.md4p
A =
r(@) (2m)4 /p2 —m?2 + e

with the implicit limit € — 0. We may then do all the x integrations.

1 d4pijeipij.a:ie—pij.a:j
2m)4 pz; —m? +ie

A(LE, - xj) = (

e.g.

We regard p;; as a momentum flowing from z; to z;. Then at a given vertex z get

/d4we—i(2pj)-$ — (27r)45(2pj)

where ) " p; = sum of momenta fed in at  (momentum out counted with a —ve sign) and
we interpret p;; as a momentum flowing internally from z; to z;. 6(>_ p;) only contributes

when > p; =0, i.e. when we have momentum conservation at the vertex.

D1+ Ppa1 =pi2

P12 + P2 =p23
D23 =P34 + P3
P34 =pa + P41

= Pp1 + P2 =p3 + P4
pa1 =k = pr2o=k+p1 = p3 =k +p1+p2=p3a=k+p1+p2—p3

= ps1 =k +p1 +p2 — p3 — pa.
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The effect of the 4 d-functions associated wth the 4 vertices is to produce one overall

energy-momentum conservation J-function.

5> pi—> ps)

together with (in this case) expessions for the momenta in the propagators in terms of one
independent loop momentum.

In general, we start with P 4-momenta if there are P propagators and we get V' ¢-
functions, where V' is the number of vertices. For a planar graph V — P+ L = 1. Replace
P integrations and V' d-functions by L integrations over independent loop momenta and 1
overall energy-momentum conserving d-function. We also use V— P+ L = 1 to redistribute
factors of (2m)%. We have

(21) 4P (2pi) 3V = (21)4— 4L,

We associate (27)* with 6(3p; — Y p;), and =iz with each loop integration.
J (2m)

Feynman Rules in Momentum Space

—iA for a vertex
Im for a propagator with momentum p flowing along it

—(2,1)4 Ik d*k for each independent loop

(2m)*6(>_ pi — Y. py)—overall momentum conservation.

Calculation of a T-matrix element

We define the T-matrix by

S=1+i2m)*> pi—> pj)T.

The Feynman rules for T are the same as those for S without (2m)*5(>" p;—>_ p;), and with
a factor of (—i). However, we consider all the “disconnected” diagrams to be comprised
within the “1”. They obviously do not correspond to real interactions between the particles,

and in fact can be considered as quantum corrections to the Feynman propagator.
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Consider the real scalar field theory with
A
Lr= —3° @
Suppose the quanta of the field are called €. Consider

e(p1) + €(p2) — €(p3) + €(pa)

and calculate T to lowest non-trivial order in ).

For two to two scattering it is useful to define the following invariants:

s=(p1 +P2)2 =(ps3 +p4)2,

s is the square of the total energy in the center of mass (CM) frame. (In the CM
frame let
P:p1+p2:>P2:PO2—P2:P02

since P = 0 in the CM frame by definition.) We can show (even in the case of unequal

masses, with p? = m?) that
s+t+u= me (= 4m? for equal masses).

For our 3 diagrams using the momentum space Feynman rules there is no loop momentum

integration to do; we just have to enforce momentum conservation at each vertex. We have

(—i\)?i N (—iX\)?i N (—7»\)27;} .

< p3p4|T|p1p2 >= (—i) [3 —m2  t—m2 T u—m2

Then in the centre-of-mass frame we have

_(E . E . E' . E'
P11 = p1 y P2 = —p1 y D3 Ps y D3 —ps3 3
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where
E=./p?+m? FE =,/p2+m?

But energy conservation = 2E = 2E’ = |p3| = |p1. So
s =(p1 +p2)? = 4E* = 4(p{ +m?)

(p1 —p4)2 =—(p1+ P3)2 = —2|p1|2(1 + cos ),

(p1 —p3)? = —(p1 — p3)® = —2|p1/*(1 — cosb).

~
|

u

So
< p3p4|T|p1p2 >=

1 1 1
2
+ —
2|p|2(1 —cosf) + m2  2|p|2(1 +cosf) +m? 4(m?+ |p|?) — m?

o1



