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3. Consider the plane wave (z) = v(p)e®-*. It will satisfy the Dirac equation
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In our representation,
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where each entry is a 2 X 2 block. Now write
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so we have a consistent solution. The general form of v(p) is
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where x is a 2-vector and N(p) is arbitrary. Suppose we pick two orthonormal 2-
vectors x1,2 satisfying

XiXs = Ops-

2



vr(p)vs(p) = v} (p)r°
1 (0)7%0s(p) =N (p)* N (p) (x} 522
g ) ()

(P)(erof T) 1l 0q g
D, em X
=|N(p)|? (0.p)? e N
o) [xt TP N
(pO + m)2 Xs — XIX5:|
N () {xipiz
@ +m)E X~ xixs}
_ 2
N () Pls B P )’
o (p° + m)?
—IN 2 b 2 _m?
N ()28, P = = (0 +m)”
(p° + m)?
PO s i
(p0+m)2 = —2m5m

if we take N
(p) fred 0
P+ m.



