MATHA425 Quantum Field Theory Solutions 5
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3. Consider the plane wave 1) (x) = v(p)e?-®. It will satisfy the Dirac equation
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In our representation,
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so we have a consistent solution. The general form of v(p) is
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where x is a 2-vector and N(p) is arbitrary. Suppose we pick two orthonormal 2-
vectors x1,2 satisfying
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We have
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if we take N(p) = /p® + m.



