## MATH431 - Modern Particle Physics <br> Set Work: Sheet 4;

1. Consider the Lagrangian

$$
L(q(t), \dot{q}(t), t)
$$

and variation of

$$
q(t) \rightarrow q(t)+\delta(q(t))=q(t)+\epsilon h(q(t), t)
$$

where $\epsilon$ is an infinitesimal constant. Show that if the Lagrangian is invariant under the variation then the charge defined as

$$
\epsilon Q \equiv \frac{\partial L}{\partial \dot{q}} \delta q
$$

is conserved.
2. The potential function of a two-dimensional harmonic oscillator is

$$
V(x, y)=\frac{1}{2} k\left(x^{2}+y^{2}\right)^{2}
$$

(i) Write down the Lagrangian of this system.
(ii) Write down the Euler-Lagrange equations of motion.
(iii) Write down the Hamiltonian.
(iv) Write down the Lagrangian and Hamiltonian in polar coordinates $(r, \phi)$ with $(x=r \cos \phi, y=r \sin \phi)$.
(v) How many constants of the motion are there?

What are they?
3. Prove

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\operatorname{divj} & =0 \\
\text { where } \quad \mathbf{j} & =-\frac{i \hbar}{2 m}\left[\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right]
\end{aligned}
$$

using the standard non-relativistic Schrödinger equation.
4. Assume a five-dimensional space-time $(t, \mathbf{x}, y)$, where $x=(t, \mathbf{x})$ are the usual four-dimensional space-time coordinates and $y$ is the coordinate of an additional compact extra dimension, $-R / 2 \leq y \leq R / 2$.
Consider the free Klein-Gordon equation (KG) in this space-time,

$$
\left(\partial_{\sigma} \partial^{\sigma}+m^{2}\right) \phi=0
$$

where $\sigma=0,1,2,3,4$ and $\mathbf{x}=\left\{x^{1}, x^{2}, x^{3}\right\}$ and $y=\left\{x^{4}\right\}$, i.e. $\partial_{\sigma} \partial^{\sigma} \equiv \partial_{\mu} \partial^{\mu}-$ $\partial^{2} / \partial y^{2}$, with $\partial_{\mu} \partial^{\mu}=\partial_{0}^{2}-\nabla^{2}$ the usual d'Alembert operator. The general
solution of KG equation is obtained by a Fourier expansion and by imposing appropriate boundary conditions.

Show that

$$
\phi(x, y)=\sum_{n=1}^{\infty} \phi_{n}(x) \operatorname{cs}\left(\frac{n \pi y}{R}\right)
$$

where $\operatorname{cs}(n \pi y / R)=\cos (n \pi y / R)$ if $n$ is odd and $\operatorname{cs}(n \pi y / R)=\sin (n \pi y / R)$ for even $n$, is a solution of the KG equation, provided that the Fourier coefficients $\phi_{n}(x)$ are solutions of a four-dimensional Klein-Gordon equation. Determine the mass spectrum as seen by a four-dimensional observer, and show that for $m=0$ the masses are equally spaced. What is this infinite set of massive particles called?

