MATH431 - Modern Particle Physics Set Work: Sheet 2

1. Suppose that we live on a two dimensional surface with a line element on it given by

$$ds^2 = d\theta^2 + \sin^2\theta d\phi^2$$

(a convenient notation is $\theta^{\mu} \equiv (\theta, \phi) \ (\mu = 1, 2))$

a. Write the metric $g^{\mu\nu}$ in an explicit matrix form. Write $g_{\mu\nu}$ in matrix form.

b. Find the set of infinitesimal transformations of the form

$$\theta^{\mu} \to \theta^{\mu} + \epsilon \zeta^{\mu}(\theta, \phi)$$

for which the line element ds^2 is invariant.

c. Define the operators

$$J = \zeta^{\mu} \frac{\partial}{\partial x^{\mu}}$$

(summation over the index μ) show that all three independent operators satisfy

$$[J_i, J_j] = i\epsilon_{ijk}J_k$$

d. What is the geometric meaning of this example

2. Let \vec{J} and \vec{K} be the generators of rotations and boosts, respectively.

a. Show that

$$\vec{J}^2 - \vec{K}^2$$
 and $\vec{J} \cdot \vec{K}$

are Lorentz invariants (*i.e.* that they commute with all the generators of the Lorentz group).

b. Assume a representation (j_1, j_2) of $SU(2) \times SU(2)^{\dagger}$. How many states are there in this representation. How do they decompose under $SU(2)_J$

3. Consider a massive particle moving with velocity $v = \tanh \eta$ along the x-axis. Show that, if E is the energy of the paticle and p its momentum along the propagation direction, then

$$\eta = \frac{1}{2} \ln \frac{E+p}{E-p}.$$

Verify that under a second boost in the direction of motion with veclocity v', η' transforms additively.

4. Consider the infinitesimal line element,

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = dt^{2} - dx^{2}.$$

a. Write the metric $g_{\mu\nu}$ and its inverse in an explicit in matrix form.

b. Find the set of independent transformations of the form

$$t \to t + \epsilon A(t, x)$$

 $x \to x + \epsilon B(t, x) ,$

where ϵ is an infinitesimal constant and the functions A and B have to be determined by the requirement that ds^2 is invariant. State what each transformation represents in space time.