MATH431 - Modern Particle Physics
 Set Work: Sheet 2

1. Suppose that we live on a two dimensional surface with a line element on it given by

$$
d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}
$$

(a convenient notation is $\theta^{\mu} \equiv(\theta, \phi)(\mu=1,2)$)
a. Write the metric $g^{\mu \nu}$ in an explicit matrix form. Write $g_{\mu \nu}$ in matrix form.
b. Find the set of infinitesimal transformations of the form

$$
\theta^{\mu} \rightarrow \theta^{\mu}+\epsilon \zeta^{\mu}(\theta, \phi)
$$

for which the line element $d s^{2}$ is invariant.
c. Define the operators

$$
J=\zeta^{\mu} \frac{\partial}{\partial x^{\mu}}
$$

(summation over the index μ) show that all three independent operators satisfy

$$
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}
$$

d. What is the geometric meaning of this example
2. Let \vec{J} and \vec{K} be the generators of rotations and boosts, respectively.
a. Show that

$$
\vec{J}^{2}-\vec{K}^{2} \text { and } \vec{J} \cdot \vec{K}
$$

are Lorentz invariants (i.e. that they commute with all the generators of the Lorentz group).
b. Assume a representation $\left(j_{1}, j_{2}\right)$ of $S U(2) \times S U(2)^{\dagger}$. How many states are there in this representation. How do they decompose under $S U(2)_{J}$
3. Consider a massive particle moving with velocity $v=\tanh \eta$ along the x-axis. Show that, if E is the energy of the paticle and p its momentum along the propagation direction, then

$$
\eta=\frac{1}{2} \ln \frac{E+p}{E-p} .
$$

Verify that under a second boost in the direction of motion with veclocity $v^{\prime}, \eta^{\prime}$ transforms additively.
4. Consider the infinitesimal line element,

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=d t^{2}-d x^{2}
$$

a. Write the metric $g_{\mu \nu}$ and its inverse in an explicit in matrix form.
b. Find the set of independent transformations of the form

$$
\begin{aligned}
t & \rightarrow t+\epsilon A(t, x) \\
x & \rightarrow x+\epsilon B(t, x),
\end{aligned}
$$

where ϵ is an infinitesimal constant and the functions A and B have to be determined by the requirement that $d s^{2}$ is invariant. State what each transformation represents in space time.

