MATH431 - Modern Particle Physics Set Work: Sheet 1

1. The defining equation for the Lorentz group may be written

$$L^T \eta L = \eta. \qquad (1)$$

Consider a 2-dimensional spacetime for which $\eta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Show that the standard Lorentz transformation

$$L = \begin{pmatrix} \gamma & -\frac{\gamma v}{c} \\ -\frac{\gamma v}{c} & \gamma \end{pmatrix},$$

where $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$, satisfies the above condition.

- **2.** We need to show that $\mathcal{L}_{+}^{\uparrow}$ is a group. This is done as follows:
 - (i) Use (1) to show that

$$L\eta^{-1}L^T = \eta^{-1}.$$
 (2)

(Hint: recall that for matrices $(AB)^{-1} = B^{-1}A^{-1}$.)

(ii) We now have from (1), (2)

$$\eta_{\alpha\beta}L^{\alpha}{}_{\mu}L^{\beta}{}_{\nu} = \eta_{\mu\nu}, \quad \eta^{\alpha\beta}L^{\mu}{}_{\alpha}L^{\nu}{}_{\beta} = \eta^{\mu\nu}.$$
(3)

Let $\mathbf{l} = (L^{1}_{0}, L^{2}_{0}, L^{3}_{0})$ and $\overline{\mathbf{l}} = (\overline{L}^{0}_{1}, \overline{L}^{0}_{2}, \overline{L}^{0}_{3})$. By putting $\mu = \nu = 0$ in (3), show that $|\mathbf{l}| = \sqrt{(L^{0}_{0})^{2} - 1}$ and $|\overline{\mathbf{l}}| = \sqrt{(\overline{L}^{0}_{0})^{2} - 1}$.

- (iii) By considering $(\bar{L}L)^0{}_0 = \bar{L}^0{}_\alpha L^\alpha{}_0$, show that $(\bar{L}L)^0{}_0 = \bar{L}^0{}_0 L^0{}_0 + \bar{\mathbf{l}}.\mathbf{l}.$
- (iv) Use the Schwartz inequality

$$|\overline{\mathbf{l}}.\mathbf{l}| \le |\mathbf{l}||\overline{\mathbf{l}}|$$

to show

 \Rightarrow

$$(\bar{L}L)^0_0 \ge \bar{L}^0_0 L^0_0 - \sqrt{(\bar{L}^0_0)^2 - 1}\sqrt{(L^0_0)^2 - 1}$$

(v) Show that

$$(x-y)^2 \ge 0 \Rightarrow x^2y^2 - 2xy + 1 \ge (x^2 - 1)(y^2 - 1) \Rightarrow (xy-1)^2 \ge (x^2 - 1)(y^2 - 1)$$

either $xy - 1 \ge \sqrt{x^2 - 1}\sqrt{y^2 - 1}$ or $xy - 1 \le -\sqrt{x^2 - 1}\sqrt{y^2 - 1}$.

Deduce that if $x, y \ge 1$ then xy - 1 is positive and we must have

$$xy - \sqrt{x^2 - 1}\sqrt{y^2 - 1} \ge 1.$$

Finally combine with (iv) to deduce that if $\overline{L}_{0}^{0} \geq 1$ and $L_{0}^{0} \geq 1$, then $(\overline{L}L)_{0}^{0} \geq 1$.

(vi) Use the fact that $\det(\bar{L}L) = \det \bar{L} \det L$ to deduce that

 $\det \bar{L} = \det L = 1 \Rightarrow \det(\bar{L}L) = 1.$

(vii) We can now deduce that $L \in \mathcal{L}_{+}^{\uparrow}$ and $\overline{L} \in \mathcal{L}_{+}^{\uparrow} \Rightarrow (\overline{L}L) \in \mathcal{L}_{+}^{\uparrow}$. Together with the obvious fact that $1 \in \mathcal{L}_{+}^{\uparrow}$, this most of what we need to show that $\mathcal{L}_{+}^{\uparrow}$ is a group.

(viii) We still need to show that $L \in \mathcal{L}_{+}^{\uparrow} \Rightarrow L^{-1} \Rightarrow \mathcal{L}_{+}^{\uparrow}$. Note that $(1) \Rightarrow L^{-1} = \eta^{-1}L^{T}\eta$. So clearly $(L^{-1})^{0}_{0} = L^{0}_{0}$. Moreover, det $L^{-1} = \det \eta^{-1} \det L^{T} \det \eta = 1$. QED.

Consider two Lorentz vectors a^{μ} and b^{μ} . Write the Lorentz transformations $a^{\mu} \rightarrow a'^{\mu}$ and $b^{\mu} \rightarrow b'^{\mu}$ under a boost along the *x*-axis. Verify that $a^{\mu}b_{\mu}$ is invariant under these transformations.

4.

(a) Give the Lorentz transformations for the components a_{μ} of a vector under a boost along the x^1 axis.

(b) Show that the object $\frac{\partial}{\partial x^{\mu}}$ transforms under a boost along the x^1 axis as the a_{μ} vector considered in (a) do. This checks, in a particular case, that partial derivatives with respect to upper-index coordinates x^{μ} behave as a four-vector with lower indices, which is why they are written as ∂_{μ} .

(c) Show that, in quantum mechanics, the expression for the energy and momentum in terms of derivatives can be written compactly as $p_{\mu} = i\hbar \frac{\partial}{\partial x^{\mu}}$.