## MATH431 - Modern Particle Physics <br> Set Work: Sheet 1

1. The defining equation for the Lorentz group may be written

$$
\begin{equation*}
L^{T} \eta L=\eta \tag{1}
\end{equation*}
$$

Consider a 2-dimensional spacetime for which $\eta=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Show that the standard Lorentz transformation

$$
L=\left(\begin{array}{cc}
\gamma & -\frac{\gamma v}{c} \\
-\frac{\gamma v}{c} & \gamma
\end{array}\right)
$$

where $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$, satisfies the above condition.
2. We need to show that $\mathcal{L}_{+}^{\uparrow}$ is a group. This is done as follows:
(i) Use (1) to show that

$$
\begin{equation*}
L \eta^{-1} L^{T}=\eta^{-1} \tag{2}
\end{equation*}
$$

(Hint: recall that for matrices $(A B)^{-1}=B^{-1} A^{-1}$.)
(ii) We now have from (1), (2)

$$
\begin{equation*}
\eta_{\alpha \beta} L^{\alpha}{ }_{\mu} L^{\beta}{ }_{\nu}=\eta_{\mu \nu}, \quad \eta^{\alpha \beta} L_{\alpha}^{\mu} L_{\beta}^{\nu}=\eta^{\mu \nu} . \tag{3}
\end{equation*}
$$

Let $\mathbf{l}=\left(L^{1}{ }_{0}, L^{2}{ }_{0}, L^{3}{ }_{0}\right)$ and $\overline{\mathbf{l}}=\left(\bar{L}^{0}{ }_{1}, \bar{L}^{0}{ }_{2}, \bar{L}^{0}{ }_{3}\right)$. By putting $\mu=\nu=0$ in (3), show that $|\mathbf{l}|=\sqrt{\left(L^{0}{ }_{0}\right)^{2}-1}$ and $|\overline{\mathbf{l}}|=\sqrt{\left(\bar{L}^{0}{ }_{0}\right)^{2}-1}$.
(iii) By considering $(\bar{L} L)^{0}{ }_{0}=\bar{L}^{0}{ }_{\alpha} L^{\alpha}{ }_{0}$, show that

$$
(\bar{L} L)^{0}{ }_{0}=\bar{L}_{0}^{0} L^{0}{ }_{0}+\overline{\mathrm{l}} .1 .
$$

(iv) Use the Schwartz inequality

$$
|\overline{\mathbf{1}} .1| \leq|\mathbf{1}||\overline{\mathbf{l}}|
$$

to show

$$
(\bar{L} L)^{0}{ }_{0} \geq \bar{L}^{0}{ }_{0} L^{0}{ }_{0}-\sqrt{\left(\bar{L}_{0}^{0}\right)^{2}-1} \sqrt{\left(L^{0}\right)^{2}-1}
$$

(v) Show that

$$
(x-y)^{2} \geq 0 \Rightarrow x^{2} y^{2}-2 x y+1 \geq\left(x^{2}-1\right)\left(y^{2}-1\right) \Rightarrow(x y-1)^{2} \geq\left(x^{2}-1\right)\left(y^{2}-1\right)
$$

$\Rightarrow$ either $\quad x y-1 \geq \sqrt{x^{2}-1} \sqrt{y^{2}-1} \quad$ or $\quad x y-1 \leq-\sqrt{x^{2}-1} \sqrt{y^{2}-1}$.
Deduce that if $x, y \geq 1$ then $x y-1$ is positive and we must have

$$
x y-\sqrt{x^{2}-1} \sqrt{y^{2}-1} \geq 1
$$

Finally combine with (iv) to deduce that if $\bar{L}^{0}{ }_{0} \geq 1$ and $L^{0}{ }_{0} \geq 1$, then $(\bar{L} L)^{0}{ }_{0} \geq$ 1.
(vi) Use the fact that $\operatorname{det}(\bar{L} L)=\operatorname{det} \bar{L} \operatorname{det} L$ to deduce that

$$
\operatorname{det} \bar{L}=\operatorname{det} L=1 \Rightarrow \operatorname{det}(\bar{L} L)=1
$$

(vii) We can now deduce that $L \in \mathcal{L}_{+}^{\uparrow}$ and $\bar{L} \in \mathcal{L}_{+}^{\uparrow} \Rightarrow(\bar{L} L) \in \mathcal{L}_{+}^{\uparrow}$. Together with the obvious fact that $1 \in \mathcal{L}_{+}^{\uparrow}$, this most of what we need to show that $\mathcal{L}_{+}^{\uparrow}$ is a group.
(viii) We still need to show that $L \in \mathcal{L}_{+}^{\uparrow} \Rightarrow L^{-1} \Rightarrow \mathcal{L}_{+}^{\uparrow}$. Note that (1) $\Rightarrow L^{-1}=\eta^{-1} L^{T} \eta$. So clearly $\left(L^{-1}\right)^{0}{ }_{0}=L^{0}{ }_{0}$. Moreover, $\operatorname{det} L^{-1}=$ $\operatorname{det} \eta^{-1} \operatorname{det} L^{T} \operatorname{det} \eta=1$. QED.
3.

Consider two Lorentz vectors $a^{\mu}$ and $b^{\mu}$. Write the Lorentz transformations $a^{\mu} \rightarrow a^{\prime \mu}$ and $b^{\mu} \rightarrow b^{\prime \mu}$ under a boost along the $x$-axis. Verify that $a^{\mu} b_{\mu}$ is invariant under these transformations.

## 4.

(a) Give the Lorentz transformations for the components $a_{\mu}$ of a vector under a boost along the $x^{1}$ axis.
(b) Show that the object $\frac{\partial}{\partial x^{\mu}}$ transforms under a boost along the $x^{1}$ axis as the $a_{\mu}$ vector considered in (a) do. This checks, in a particular case, that partial derivatives with respect to upper-index coordinates $x^{\mu}$ behave as a four-vector with lower indices, which is why they are written as $\partial_{\mu}$.
(c) Show that, in quantum mechanics, the expression for the energy and momentum in terms of derivatives can be written compactly as $p_{\mu}=i \hbar \frac{\partial}{\partial x^{\mu}}$.

