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1a

3 = (2, 1/3) + (1,−2/3)

under SU(2)×U(1). The proton and neutron form an isospin doublet with SU(2)I charge
+1/2 and −1/2, repectively.Then,

+1 = α
1

2
+ β

1

3

0 = α(−
1

2
) + β

1

3

which gives α = +1, β = +3/2

1b The decomposition of the sextet, octet and decuplet of SU(3) in terms of SU(2)×U(1)
is:

6 = {(3, 2/3) + (2,−1/3) + (1,−4/3)}

8 = {(2, +1) + (3, 0) + (1, 0) + (2,−1)}

10 = {(4, +1) + (3, 0) + (2,−1) + (1,−2)}

The electric charges of the states are:

6 = {(2, 1, 0) + (0,−1) + (−2)}

8 = {(2, 1) + (1, 0,−1) + (0) + (−1,−2)}

10 = {(3, 2, 1, 0) + (1, 0,−1) + (−1,−2) + (−3)}

2a. 4 diagonal generators.

λ3 =











1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











, λ8 =











1 0 0 0 0
0 1 0 0 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 0











,

λ15 =











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −3 0
0 0 0 0 0











, λ24 =











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4











.
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This basis corresponds to the decomposition SU(5) → SU(4) × U(1). Another basis

λ3 =











1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











, λ8 =











1 0 0 0 0
0 1 0 0 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 0











,

λ15 =











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −1











,

λ24 =











2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 −3 0
0 0 0 0 −3











,

which corresponds to the decomposition SU(5) → SU(3) × SU(2) × U(1)

2b. D = 24.

2c.

5 = (3, 1, 1/3) + (1, 2,−1/2)

under SU(3) × SU(2) × U(1).
2d.

5̄ = (3̄, 1,−1/3) + (1, 2, 1/2)

5 × 5̄ = {(3, 1, 1/3) + (1, 2,−1/2)} × {(3̄, 1,−1/3) + (1, 2, 1/2)} =

24 + 1 = {(8, 1, 0) + (1, 3, 0) + (1, 1, 0) + (3, 2, 5/6) + (3̄, 2,−5/6)}+ (1, 0)

3. The solution of problem 3 is in the file set17sols8q3.pdf

4a. To show that orbital angular momentum is a constant of the motion we have to show
that it commutes with the Hamiltonian, i.e.

[

L̂i, Ĥ
]

= 0,

where the L̂i’s are the components of the angular momentum operator in the x, y
and z directions. For a free particle the Hamiltonian is given by H = ~p2/(2m) and
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the orbital angular momentum is given by ~L = ~r × ~p. Hence, for example, for Lz (we
drop the hats from now on) we have

[Lz, p
2] = [xpy − ypz, p

2

x + p2

y + p2

z]

= [x, p2

x]py − [y, p2

y]px

= (px[x, px] + [x, px]px)py − (py[y, py] + [y, py]py)px

= (2ih̄pxpy − 2ih̄pypx) = 0

where we used the commutation relations [xi, pj ] = ih̄δij . Similar results are obtained
for Lx and Ly. Hence, the orbital angular momentum commutes with the Hamiltonian
and is a contant of the motion.

4b. Similarly to show that the orbital angular momentum is not a constant of the mo-
tion for a Dirac particle, we have to show that it does not commute with the Dirac
Hamiltonian,

H = ~α · ~p + βm = αipi + βm

where summation over i is assumed.

[Lz, H] = [x, H]py − [y, H]px = ih̄(αxpy − αypx) = ih̄(~α × ~p)z

hence
[~L, H] = ih̄~α × ~p 6= 0

and consequently orbital aangular momentum does not commute with the Hamiltonian
and is not a constant of the motion.

4c. The total angular momentum for a Dirac particle is

~J = ~L + ~S

where ~L is the orbital angular momentum and ~S is the spin angular momentum. we
saw in part b that [~L, H] = ih̄~α × ~p hence we need to find ~S such that

[~S, H] = −ih̄~α × ~p

We take
~S =

1

2
~Σ

with

Σj =

(

σj 0
0 σj

)

where σj are the Pauli matrices and the 0 entries are 2 × 2 zero matrices. It is easy to
verify that

[
1

2
~Σ, H] = −ih̄~α × ~p

and therefore [ ~J, H] = 0 and the total angular momentum ~J is a constant of the motion.
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