MATH328 Modern Particle Physics Solutions 4

1. Considering the Lagrangian

$$
L(q(t), \dot{q}(t), t)
$$

and the variation

$$
\begin{aligned}
q(t) & \rightarrow q(t)+\delta(q(t))=q(t)+\epsilon h(q(t), t) \\
\dot{q}(t) & \rightarrow \dot{q}(t)+\frac{d}{d t}(\delta(q(t)))
\end{aligned}
$$

Variation of the action gives rise to the Euler-Lagrange equation of motion

$$
S(t)=\int d t L(q(t), \dot{q}(t), t) \Rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=0
$$

since L is invariant under the variation

$$
\begin{gathered}
L\left(q+\delta q, \dot{q}+\frac{d}{d t} \delta q, t\right)=L+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \frac{d}{d t} \delta q+\cdots=L \\
\Longrightarrow \quad \frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \frac{d}{d t} \delta q=0
\end{gathered}
$$

Now take

$$
\begin{aligned}
\epsilon \frac{d Q}{d t} & =\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right)=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q+\frac{\partial L}{\partial \dot{q}} \frac{d \delta q}{d t}=\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \frac{d}{d t} \delta q=0 \\
\Longrightarrow \frac{d Q}{d t} & =0
\end{aligned}
$$

where we have used the Euler-Lagrange equation to go from the second to third equality. Therefore, we have that

$$
Q(t)=\frac{\partial L}{\partial \dot{q}} h(q(t), t)
$$

is conserved.
2. The Lagrangian of the given two-dimensional potential is

$$
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-\frac{1}{4} k\left(x^{2}+y^{2}\right)^{2} .
$$

(ii) The Euler-Lagrange equations are

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}=m \ddot{x}+k\left(x^{2}+y^{2}\right) x=0 \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{y}}-\frac{\partial L}{\partial y}=m \ddot{y}+k\left(x^{2}+y^{2}\right) y=0
\end{aligned}
$$

(iii) The Hamiltonian is

$$
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{4} m w^{2}\left(x^{2}+y^{2}\right)^{2} \quad \text { with } \quad w=\sqrt{\frac{k}{m}} .
$$

(iv) In polar coordintes we derive:

$$
\begin{gathered}
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-\frac{1}{4} k r^{4}, \\
p_{r}=\frac{\partial L}{\partial \dot{r}}=m \dot{r} \\
p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=m r^{2} \dot{\phi}
\end{gathered}
$$

Hence we get

$$
\begin{aligned}
H & =\sum_{i} p_{i} \dot{q}_{i}-L=m \dot{r}^{2}+m r^{2} \dot{\phi}^{2}-\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)+\frac{1}{4} m w^{2} r^{4} \\
& =\frac{1}{2} m\left(\dot{r}^{2}+m r^{2} \dot{\phi}^{2}\right)+\frac{1}{4} m w^{2} r^{4} \\
& =\frac{p_{r}{ }^{2}}{2 m}+\frac{p_{\phi}{ }^{2}}{2 m r^{2}}+\frac{1}{4} m w^{2} r^{4}
\end{aligned}
$$

(v) There are two constants of the motion.

Since the Hamiltonian does not depend explicitly on time, the energy is a constant of the motion with $E=H\left(q_{0}, p_{0}\right)$. Since it does not depend explicitly on ϕ, also p_{ϕ} is a constant of the motion, corresponding to conservation of the angular momentum w.r.t. the symmetry axis.
3. With $\rho=|\psi|^{2}=\psi^{*} \psi$, we have

$$
\frac{\partial \rho}{\partial t}=\frac{\partial \psi^{*}}{\partial t} \psi+\psi^{*} \frac{\partial \psi}{\partial t}
$$

Now from the Schrödinger equation,

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{x})\right) \psi \tag{1}
\end{equation*}
$$

and so, taking the complex conjugate

$$
\begin{equation*}
-i \hbar \frac{\partial \psi^{*}}{\partial t}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{x})\right) \psi^{*} \tag{2}
\end{equation*}
$$

(assuming that $V(\mathbf{x})$ is real.) Multiplying (1) by ψ^{*} and (2) by ψ and subtracting, we have

$$
i \hbar\left(\psi^{*} \frac{\partial \psi}{\partial t}+\frac{\partial \psi^{*}}{\partial t} \psi\right)=-\frac{\hbar^{2}}{2 m}\left(\psi^{*} \nabla^{2} \psi-\psi \nabla^{2} \psi^{*}\right)=-\frac{\hbar^{2}}{2 m} \nabla \cdot\left[\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right]
$$

and so

$$
\frac{\partial \rho}{\partial t}=\frac{i \hbar}{2 m} \nabla \cdot\left[\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right]
$$

i.e.

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\operatorname{divj} & =0 \\
\text { where } \quad \mathbf{j} & =-\frac{i \hbar}{2 m}\left[\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right]
\end{aligned}
$$

4. Inserting the given solution

$$
\phi(x, y)=\sum_{n=1}^{\infty} \phi_{n}(x) \operatorname{cs}\left(\frac{n \pi y}{R}\right)
$$

into the five-dimensional Klein-Gordon equation and carrying out $\partial^{2} / \partial y^{2}$, one obtains a four-dimensional Klein-Gordon equation for each of the Fourier coefficients $\phi_{n}(x)$:

$$
\left(\partial_{0}^{2}-\nabla^{2}+m^{2}+\left(\frac{n \pi}{R}\right)^{2}\right) \phi_{n}(x)=0
$$

Therefore the given $\phi(x, y)$ is a solution of the five-dimensional Klein-Gordon equation if the $\phi_{n}(x)$ are solutions of the four-dimensional equations. The masses m_{n} of the fields ϕ_{n} are given by

$$
m_{n}^{2}=m^{2}+\left(\frac{n \pi}{R}\right)^{2}
$$

If the five-dimensional mass m is zero, we get the equally spaced mass spectrum

$$
m_{n}=\frac{n \pi}{R}
$$

The infinite set of particles are called Kaluza-Klein tower.

