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1. Considering the Lagrangian
L(q(t),4(1),t)

and the variation
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Variation of the action gives rise to the Euler-Lagrange equation of motion
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since L is invariant under the variation
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where we have used the Euler—Lagrange equation to go from the second to third equality.

Therefore, we have that
oL
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is conserved.

2. The Lagrangian of the given two-dimensional potential is
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(ii) The Euler-Lagrange equations are
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(iii) The Hamiltonian is
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(iv) In polar coordintes we derive:
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(v) There are two constants of the motion.
Since the Hamiltonian does not depend explicitly on time, the energy is a constant
of the motion with £ = H(qo,po). Since it does not depend explicitly on ¢, also py
is a constant of the motion, corresponding to conservation of the angular momentum
w.r.t. the symmetry axis.



3. With p = |¢|? = ¢*1), we have
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Now from the Schrédinger equation,
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and so, taking the complex conjugate
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(assuming that V(x) is real.) Multiplying (1) by ¢* and (2) by ¢ and subtracting, we
have
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4. Inserting the given solution

olx,y) = de s (“2)

into the five-dimensional Klein-Gordon equation and carrying out 92 /dy?, one obtains
a four-dimensional Klein-Gordon equation for each of the Fourier coefficients ¢,,(x):

(63 — V2 +m? 4 (%)2) dn(z) = 0.

Therefore the given ¢(x,y) is a solution of the five-dimensional Klein-Gordon equation
if the ¢, (x) are solutions of the four-dimensional equations. The masses m,, of the

fields ¢,, are given by
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If the five-dimensional mass m is zero, we get the equally spaced mass spectrum
nmw
m, = —.

R

The infinite set of particles are called Kaluza-Klein tower.
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