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1.
ds2 = dt2 − dx2

− dy2 (1)

a.

gµν =





1 0 0
0 −1 0
0 0 −1



 , gµν =





1 0 0
0 −1 0
0 0 −1





b. The line element is invariant under 3 translations (dt, dx and dy). 2 boosts (dtdx,
dtdy) and 1 rotation (dxdy).
The generators associated with the transformations are: i∂t = p0, i∂x = p1 and

i∂y = p2, are the generators of translations. K1 and K2 are the boost generators and J3

is the generator of rotations in the x − y plane.
c.

Wµ = −
1

2
ǫµνρσJνρPσ

W 0 = −
1

2
ǫ0ijkJijPk = −JkPk

W i = −
1

2
ǫi0jkJ0jPk −

1

2
ǫij0kJj0Pk −

1

2
ǫijk0JjkP0 =

1

2
ǫ0ijkJ0jPk +

1

2
ǫ0ijkJ0jPk +

1

2
ǫ0ijkJjkP0 =

ǫijkKjPk + J iP0

where Ki = J i0 = −J0i ; J i =
1

2
ǫijkJjk

Ki = −Ji0 = J0i ; Ji =
1

2
ǫijkJjk = −J i

In the case of the two dimensional line element eq. (1)

~K = (K1, K2, 0) ~J = (0, 0, J3)

for m2 = 0 → Pµ = (p, 0, p, 0)

W 0 = 0

W 1 = J1P0 + ǫ1jkKjPk = 0 + ǫ123K2P3 + ǫ132K3P2 = 0

W 2 = J2P0 + ǫ2jkKjPk = 0 + ǫ231K3P1 + ǫ213K1P3 = 0

W 3 = J3P0 + ǫ3jkKjPk = J3P0 + ǫ312K1P2 + ǫ321K2P1 = (J3 + ǫ312K1)P0

For m2 > 0 → P = (m, 0, 0, 0)
W 0 = 0

W 1 = 0

W 2 = 0

W 3 = J3m
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2.
a.

WσP σ = −
1

2
ǫσµνλJµνPλP σ

=
1

2
ǫµνλσJµνPλP σ

=
1

2
ǫµνσλJµνP σPλ

= −
1

2
ǫµνλσJµνPλP σ,

where in the second line we permuted σ three times across; in the third line we changed
the dummy summation indices; in the fourth line we again permute λ and σ and exchange
Pλ and P σ. Hence, the second line is equal to minus the fourth line, which can only hold
if they vanish.
b.

We use the identity
[A, BC] = [A, B]C + B [A, C] ,

where A, B and C are operators. Hence, we have

[Jρσ, WµWµ] = ηµν [Jρσ , WνWµ]

= ηµν ([Jρσ, Wν ] Wµ + Wν [Jρσ, Wν ])

= ηµν (i (ησνWρWµ − ηρνWσWµ + ησµWνWρ − ηρµWνWσ))

= iηµνησνWρWµ − iηµνηρµWνWσ + iηµνησµWνWρ − iηµνηρνWσWµ

= iδµ
σWρWµ − iWρWµ + iWσWρ − iWσWρ = 0,

where we used that
ηµνησν = δµ

σ, etc

That WµWµ commutes with Pλ is obvious because [Pν , Wρ] = 0.
3. In polar coordinates

x = r cos φ

y = r sin φ

radial speed is therefore ṙ and tangential speed is rφ̇. So the kinetic energy T =
1

2
m(ṙ2 + r2φ̇2) and the Lagrangian is given by

L =
1

2
m(ṙ2 + r2φ̇2) − V

Hence
∂L

∂ṙ
= mṙ

∂L

∂r
= mrφ̇2

−
∂V

∂r

2



so the Euler–Lagrange equation for r is

m
dṙ

dt
− mrφ̇2 +

∂V

∂r
= 0

Similarly,
∂L

∂φ̇
= mr2φ̇

∂L

∂φ
=

∂V

∂φ

So the Euler–Lagrange equation for φ is

m
d

dt
(r2φ̇) +

∂V

∂φ
= 0

If the potential is axisymmetric, ∂V/∂φ = 0. The last equation then states that the
angular momentum mr2φ̇ is constant. If the motion is circular ṙ = 0 = r̈ and the
radial equation becomes

−m
v2

r
= −

∂V

∂r
,

wherev = rφ̇ is the speed. The force ∂V/∂r is equal to m times the centripetal
acceleration −v2/r.

4.

ṗ0 = −
∂H

∂q0

Therefore, p0 is constant in time if H does not depend on q0.
An axisymmetric potential does not depend on φ so pφ is a constant of the motion.
In polar coordinates

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

The kinetic energy is given by

1

2
m

[

ṙ2 + (rθ̇)2 + (r sin θφ̇)2
]

and the potential energy is V

L =
1

2
m

[

ṙ2 + (rθ̇)2 + (r sin θφ̇)2
]

− V

pr =
∂L

∂ṙ
= mṙ

pθ =
∂L

∂θ̇
= mr2θ̇

pφ =
∂L

∂φ̇
= mr2 sin2 θφ̇
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H =
∑

i

piqi − L = mṙ2 + mr2θ̇2 + mr2 sin2 θφ̇2
−

1

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) + V

=
1

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) + V

=
pr

2

2m
+

pθ
2

2mr2
+

pφ
2

2mr2 sin2 θ
+ V

ṗφ = −
∂H

∂φ
= −

∂V

∂φ
= 0

⇒ angular momentum about the symmetry axis is conserved.
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