MATH431 Modern Particle Physics Solutions 2
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We want to find functions
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such that ds? remains invariant under the transformations.
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we demand that ds? remains invariant.
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demanding that the additional terms vanish we obtain the following constraints
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= f"(¢) + f(#) = —sin? 0g’(h) = constant = c
we solve the two differential equations for f and g
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and obtain for A and B
A= f'(¢p) =acos¢p —bsing
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We are left with three parameters a, b and d, which we denote as «, § and y respectively,
A= acos¢+ fsing
cos 6

B = —Sing(asind)—ﬁcoséf)) +

we are left with three degrees of freedom. Note that we set 3 = —b.
c. we want to find the generator associated with each degree of freedom. The generators
are given by summing
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calculating the commutation relations with the generators defined by J; = —i.J; we

then obtain o .
which is the SU(2) algebra.
d. the metric ds? is the metric on a surface of a sphere.
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J4 and J_ generate the algebra SU(2)®@SU(2)". J? and J? are the Casimir operators
of SU(2) and SU(2)', respectively, and are therefore invariants of the Lorentz group.
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J?— K2 =2(Jt2+ J?)
J K =—i(J2 - J?%)

Therefore J2— K2 and J-K are Lorentz invariants as well, being the sum and difference
of Lorentz invariants.
b. For the representation (ji,j2) of the SU(2) ® SU(2)" algebra the number of states is
(271 + 1)(2j2 + 2).
The total spin is given by 71 + jo. Therefore the composition j; ® jo breaks under
SU(2); with the following spin states

1+ G @i+ —1D @ |j1 — jol

3.
In the rest frame of the particle, ¥ = m and p'= 0. Performing a boost along the
r—axis, F and p” transform as ¢t and z, with v = tanhn, v = coshn and the Lorentz
transformations take the form

t — (coshn)t + (sinhn)z
x — (sinhn)t + (coshn)x

The variable 7 is called the rapidity. Then, after a boost £ = mcoshn and p = msinhn.

Therefore,
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Performing another boost with rapidity n’ in the same direction,

E — Ecoshn + psinhn/
p — Esinhn’ 4+ pcoshn’’
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we require invariance of ds?. Expanding to first order in ¢ we impose that the coefficients
of the addtional terms vanish. These yield the constraints on the functions A and B.
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= Ax)=cx+a
B(t)=ct+b

we obtained three constants of integration a, b and c. These correspond to a shift in time
a, a shift in space b, and a boost c.



