MATH431 Modern Particle Physics Solutions 1

1.

$$
\begin{aligned}
L & =\left(\begin{array}{cc}
\gamma & -\frac{\gamma v}{c} \\
-\frac{\gamma v}{c} & \gamma^{2}
\end{array}\right) \\
\Rightarrow L^{T} & =L . \\
\text { So } \quad L^{T} \eta L & =\left(\begin{array}{cc}
\gamma & -\frac{\gamma v}{c} \\
-\frac{\gamma v}{c} & \gamma^{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
\gamma & -\frac{\gamma v}{c} \\
-\frac{\gamma v}{c} & \gamma
\end{array}\right) \\
& =\left(\begin{array}{cc}
\gamma & -\frac{\gamma v}{c} \\
-\frac{\gamma v}{c} & \gamma
\end{array}\right)\left(\begin{array}{cc}
\gamma & -\frac{\gamma v}{c} \\
\frac{\gamma v}{c} & -\gamma
\end{array}\right) \\
& =\left(\begin{array}{cc}
\gamma^{2}-\left(\frac{\gamma v}{c}\right)^{2} & -\gamma \frac{\gamma v}{c}+\gamma \frac{\gamma v}{c} \\
-\gamma \frac{\gamma v}{c}+\gamma \frac{\gamma v}{c} & \left(\frac{\gamma v}{c}\right)^{2}-\gamma^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\gamma^{2}\left(1-\frac{v^{2}}{c^{2}}\right) & 0 \\
0 & -\gamma^{2}\left(1-\frac{v^{2}}{c^{2}}\right)
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\eta,
\end{aligned}
$$

since

$$
\gamma^{2}=\frac{1}{1-\frac{v^{2}}{c^{2}}}
$$

2(i). Taking the inverse of (1), we have

$$
\left(L^{T} \eta L\right)^{-1}=\eta^{-1} \Rightarrow L^{-1} \eta^{-1}\left(L^{T}\right)^{-1}=\eta^{-1}
$$

Multiplying on the left by L and on the right by L^{T}, we find

$$
\begin{aligned}
L L^{-1} \eta^{-1}\left(L^{T}\right)^{-1} L^{T} & =L \eta^{-1} L^{T} \\
\eta^{-1} & =L \eta^{-1} L^{T}
\end{aligned}
$$

as required.
(ii) Putting $\mu=\nu=0$ in (3), we have

$$
\begin{gathered}
\eta_{\alpha \beta} L^{\alpha}{ }_{0} L^{\beta}{ }_{0}=1, \quad \eta^{\alpha \beta} L_{0}^{0}{ }_{\alpha} L^{0}{ }_{\beta}=1 \\
\text { i.e. }\left(L^{0}{ }_{0}\right)^{2}-\left(L^{1}{ }_{0}\right)^{2}-\left(L^{2}{ }_{0}\right)^{2}-\left(L^{3}{ }_{0}\right)^{2}=1, \\
\left(\bar{L}_{0}^{0}\right)^{2}-\left(\bar{L}_{0}^{0}{ }_{1}\right)^{2}-\left(\bar{L}^{0}{ }_{2}\right)^{2}-\left(\bar{L}^{0}{ }_{3}\right)^{2}=1 \\
\Rightarrow\left(L_{0}^{0}\right)^{2}-|\mathbf{l}|^{2}=1, \quad\left(\bar{L}_{0}^{0}\right)^{2}-|\overline{\mathbf{l}}|^{2}=1 \\
\Rightarrow|\mathbf{l}|=\sqrt{\left(L_{0}^{0}\right)^{2}-1}, \quad|\overline{\mathbf{l}}|=\sqrt{\left(\bar{L}_{0}{ }_{0}\right)^{2}-1 .} .
\end{gathered}
$$

(iii)

$$
\begin{aligned}
(\bar{L} L)^{0}{ }_{0} & =\bar{L}^{0}{ }_{\alpha} L^{\alpha}{ }_{0} \\
& =\bar{L}^{0}{ }_{0} L^{0}{ }_{0}+\bar{L}^{0}{ }_{1} L^{1}{ }_{0}+\bar{L}^{0}{ }_{2} L^{2}{ }_{0}+\bar{L}^{0}{ }_{3} L^{3}{ }_{0} \\
& =\bar{L}^{0}{ }_{0} L^{0}{ }_{0}+\overline{\mathrm{l}} .1
\end{aligned}
$$

(iv)

$$
\begin{aligned}
&|\overline{\mathbf{l}} . \mathbf{l}| \leq|\mathbf{l}||\overline{\mathbf{l}}| \Rightarrow-|\mathbf{l}||\overline{\mathbf{l}}| \leq \overline{\mathbf{l}} . \mathbf{l} \leq|\mathbf{l}||\overline{\mathbf{l}}| \\
& \Rightarrow \quad(\text { using (iii) }) \quad(\bar{L} L)^{0}{ }_{0}-\bar{L}^{0}{ }_{0} L^{0}{ }_{0} \geq-|\mathbf{l}||\overline{\mathbf{l}}| \\
& \Rightarrow(\bar{L} L)^{0}{ }_{0} \geq \bar{L}^{0}{ }_{0} L^{0}{ }_{0}-|\mathbf{l}||\overline{\mathbf{l}}| \\
& \text { i.e. (using (ii)) } \quad(\bar{L} L)^{0}{ }_{0} \geq \bar{L}^{0}{ }_{0} L^{0}{ }_{0}-\sqrt{\left(L^{0}{ }_{0}\right)^{2}-1} \sqrt{\left(\bar{L}^{0}{ }_{0}\right)^{2}-1}
\end{aligned}
$$

(v)

$$
\begin{gathered}
(x-y)^{2} \geq 0 \Rightarrow x^{2}-2 x y+y^{2} \geq 0 \Rightarrow-2 x y \geq-x^{2}-y^{2} \\
\Rightarrow x^{2} y^{2}-2 x y+1 \geq x^{2} y^{2}-x^{2}-y^{2}+1 \\
\Rightarrow x^{2} y^{2}-2 x y+1 \geq\left(x^{2}-1\right)\left(y^{2}-1\right) \Rightarrow(x y-1)^{2} \geq\left(x^{2}-1\right)\left(y^{2}-1\right) \\
\Rightarrow \text { either } \quad x y-1 \geq \sqrt{x^{2}-1} \sqrt{y^{2}-1} \quad \text { or } \quad x y-1 \leq-\sqrt{x^{2}-1} \sqrt{y^{2}-1}
\end{gathered}
$$

If $x, y \geq 1$ then $x y-1$ is positive, and we must have the first inequality, implying

$$
x y-\sqrt{x^{2}-1} \sqrt{y^{2}-1} \geq 1
$$

Writing $L^{0}{ }_{0}=x, \bar{L}^{0}{ }_{0}=y$, we have from (iv)

$$
(\bar{L} L)^{0}{ }_{0} \geq \bar{L}_{0}^{0} L_{0}^{0}-\sqrt{\left(L^{0}{ }_{0}\right)^{2}-1} \sqrt{\left(\bar{L}^{0}{ }_{0}\right)^{2}-1} \geq 1
$$

(vi) Obviously if $\operatorname{det} \bar{L}=\operatorname{det} L=1$, then

$$
\operatorname{det}(\bar{L} L)=\operatorname{det} \bar{L} \operatorname{det} L=1
$$

(vii) We have now shown that if $L \in \mathcal{L}_{+}^{\uparrow}, L \in \mathcal{L}_{+}^{\uparrow}$, then $\bar{L} L \in \mathcal{L}_{+}^{\uparrow}$. It is clear that $1 \in \mathcal{L}_{+}^{\uparrow}$.
(viii) We can write (1) as

$$
\left(\eta^{-1} L^{T} \eta\right) L=\eta^{-1} \eta=1
$$

which shows that $L^{-1}=\eta^{-1} L^{T} \eta$, i.e. $\left(L^{-1}\right)^{\mu}{ }_{\nu}=\eta^{\mu \alpha}\left(L^{T}\right)_{\alpha}{ }^{\beta} \eta_{\beta \nu}=\eta^{\mu \alpha} L^{\beta}{ }_{\alpha} \eta_{\beta \nu}$. So $\left(L^{-1}\right)^{0}{ }_{0}=\eta^{00} L^{0}{ }_{0} \eta_{00}=L^{0}{ }_{0}$. Moreover,

$$
\operatorname{det} L^{-1}=\operatorname{det} \eta^{-1} \operatorname{det} L^{T} \operatorname{det} \eta=(-1) \operatorname{det} L(-1)=\operatorname{det} L=1
$$

So $L^{-1} \in \mathcal{L}_{+}^{\uparrow}$. The remaining group property is associativity, $\left(L_{1} L_{2}\right) L_{3}=L_{1}\left(L_{2} L_{3}\right)$, which is true for all matrices. So $\mathcal{L}_{+}^{\uparrow}$ is a group.
3.

The two inertial frames are moving relative to each other in the direction of the x axis at constant speed v. Denoting $\beta=v / c$, where c is the speed of light, and $\gamma=1 / \sqrt{1-\beta^{2}}$ the Lorentz transformations between the two frames are given by

$$
\begin{aligned}
{a^{\prime}}^{0} & =\gamma\left(a^{0}-\beta a^{1}\right) \\
{a^{\prime^{1}}}^{2} & =\gamma\left(-\beta a^{0}+a^{1}\right) \\
{a^{\prime 2}}^{\prime 2} & =a^{2} \\
a^{\prime^{3}} & =a^{3}
\end{aligned}
$$

or in matrix form

$$
\begin{gathered}
\left(\begin{array}{c}
a_{\prime^{0}}^{{a^{\prime}}^{1^{2}}} \\
a_{\prime^{2}} \\
{a^{\prime}}^{3}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a^{0} \\
a^{1} \\
a^{2} \\
a^{3}
\end{array}\right) \\
b^{\prime^{0}}=\gamma\left(b^{0}-\beta b^{1}\right) \\
b^{\prime^{1}}=\gamma\left(-\beta b^{0}+b^{1}\right) \\
b^{\prime^{2}}=b^{2} \\
b^{\prime^{3}}=b^{3}
\end{gathered}
$$

which can be written similarly in matrix form. Lowering the indices on the left-hand side changes the sign on the spatial components on the right-hand side

$$
\begin{aligned}
b_{0}^{\prime} & =\gamma\left(b^{0}-\beta b^{1}\right) \\
b_{1}^{\prime} & =-\gamma\left(-\beta b^{0}+b^{1}\right) \\
b_{2}^{\prime} & =-b^{2} \\
b_{3}^{\prime} & =-b^{3}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \quad a^{\prime \mu} b_{\mu}^{\prime}=a^{\prime 0} b_{0}^{\prime}+a^{1} b_{1}^{\prime}+a^{2} b_{2}^{\prime}+a^{\prime 3} b_{3}^{\prime}+ \\
& a^{\prime \mu} b_{\mu}^{\prime}=\gamma\left(a^{0}-\beta a^{1}\right) \gamma\left(b^{0}-\beta b^{1}\right)-\gamma\left(-\beta a^{0}+a^{1}\right) \gamma\left(-\beta b^{0}+b^{1}\right)-a^{2} b_{2}-a^{3} b_{3} \\
& =\gamma^{2}\left[a^{0} b^{0}\left(1-\beta^{2}\right)-a^{1} b^{1}\left(1-\beta^{2}\right)\right]-a^{2} b_{2}-a^{3} b_{3} \\
& =a^{0} b^{0}-a^{1} b^{1}-a^{2} b^{2}-a^{3} b^{3}=a^{0} b_{0}+a^{1} b_{1}+a^{2} b_{2}+a^{3} b_{3} \\
& =a^{\mu} b_{\mu}
\end{aligned}
$$

4.

Lorentz transformations, derivatives and quantum operators
a.

$$
\begin{align*}
& a_{0}=a^{0}, a_{1}=-a^{1}, a_{2}=-a^{2}, a_{3}=-a^{3} \\
& a_{0}^{\prime}=a^{\prime 0}=\gamma\left(a^{0}-\beta a^{1}\right)=\gamma\left(a_{0}+\beta a_{1}\right) \tag{1}\\
& a_{1}^{\prime}=-a^{1}=-\gamma\left(-\beta a^{0}+a^{1}\right)=\gamma\left(\beta a_{0}+a_{1}\right) \\
& \text { and } a_{2}^{\prime}=a_{2}, a_{3}^{\prime}=a_{3}
\end{align*}
$$

b.

Suppose we have a function $f\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ which we express as a function of $x^{\prime 0}, x^{11}, x^{\prime 2}, x^{\prime 3}$ by expressing x^{μ} as a function of $x^{\prime \mu}$. The standard chain rule for partial differentiation says that

$$
\frac{\partial f\left(x^{\nu}\left(x^{\prime \mu}\right)\right)}{\partial x^{\prime \mu}}=\sum_{\nu=0}^{3} \frac{\partial f}{\partial x^{\nu}} \frac{\partial x^{\nu}}{\partial x^{\prime \mu}} \quad \text { for } \quad \mu=0,1,2,3
$$

Using the summation convention and writing as an operator equation we get

$$
\frac{\partial}{\partial x^{\prime \mu}}=\frac{\partial x^{\nu}}{\partial x^{\prime \mu}} \frac{\partial}{\partial x^{\nu}}
$$

We need x as a function of x^{\prime}, the inverse of the Lorentz transformation that gives x^{\prime} as a function of x. For a boost along the x^{\prime} axis, the inverse is a boost with the opposite speed, so

$$
x^{0}=\gamma\left(x^{\prime 0}+\beta x^{1}\right), x^{1}=\gamma\left(\beta x^{\prime 0}+x^{\prime 1}\right), x^{2}=x^{\prime 2} x^{3}=x^{\prime 3}
$$

Hence

$$
\frac{\partial x^{0}}{\partial x^{\prime 0}}=\gamma, \quad \frac{\partial x^{0}}{\partial x^{\prime 1}}=\gamma \beta, \quad \frac{\partial x^{1}}{\partial x^{\prime 0}}=\gamma \beta, \quad \frac{\partial x^{1}}{\partial x^{\prime}}=\gamma
$$

and

$$
\frac{\partial}{\partial x^{\prime 0}}=\gamma\left(\frac{\partial}{\partial x^{0}}+\beta \frac{\partial}{\partial x^{1}}\right), \quad \frac{\partial}{\partial x^{\prime 1}}=\gamma\left(\beta \frac{\partial}{\partial x^{0}}+\frac{\partial}{\partial x^{1}}\right), \quad \frac{\partial}{\partial x^{\prime 2}}=\frac{\partial}{\partial x^{2}}, \quad \frac{\partial}{\partial x^{\prime 3}}=\frac{\partial}{\partial x^{3}}
$$

which is the same as as (1) with $a_{\mu}=\frac{\partial}{\partial x^{\mu}}$
c.

The operator for momentum \vec{p} is $-i \hbar \vec{\nabla}$, i.e.

$$
\begin{equation*}
p^{1}=-i \hbar \frac{\partial}{\partial x_{1}}, p^{2}=-i \hbar \frac{\partial}{\partial x_{2}}, p^{3}=-i \hbar \frac{\partial}{\partial x_{3}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{1}=i \hbar \frac{\partial}{\partial x^{1}}, p_{2}=i \hbar \frac{\partial}{\partial x^{2}}, p_{3}=i \hbar \frac{\partial}{\partial x^{3}} \tag{6}
\end{equation*}
$$

The Schrödinger equation says

$$
i \hbar \frac{\partial \psi}{\partial t}=H \psi
$$

where H is the energy operator. Since $p^{0}=\frac{E}{c}$ and $x^{0}=c t$, this can be written as

$$
\begin{equation*}
p_{0}=i \hbar \frac{\partial}{\partial x^{0}} \tag{7}
\end{equation*}
$$

If we write (5) and (7) in terms of p_{μ}, we remove the sign difference between the 0 component and the others.

$$
p_{\mu}=i \hbar \frac{\partial}{\partial x^{\mu}}
$$

which transforms as a Lorentz covariant vector, as we have shown in (b).

