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1.

L =

(

γ −γv
c

−γv
c

γ

)

⇒ LT =L.

So LT ηL =

(

γ −γv
c

−γv
c

γ

)(

1 0
0 −1

)(

γ −γv
c

−γv
c

γ

)

=

(

γ −γv
c

−γv
c

γ

)(

γ −γv
c

γv
c

−γ

)

=

(

γ2 −
(

γv
c

)2
−γ γv

c
+ γ γv

c

−γ γv
c

+ γ γv
c

(

γv
c

)2
− γ2

)

=





γ2

(

1 − v2

c2

)

0

0 −γ2

(

1 − v2

c2

)



 =

(

1 0
0 −1

)

= η,

since

γ2 =
1

1 − v2

c2

.
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2(i). Taking the inverse of (1), we have

(LT ηL)−1 = η−1 ⇒ L−1η−1(LT )−1 = η−1

Multiplying on the left by L and on the right by LT , we find

LL−1η−1(LT )−1LT =Lη−1LT

η−1 =Lη−1LT ,

as required.

(ii) Putting µ = ν = 0 in (3), we have

ηαβL
α

0L
β

0 = 1, ηαβL0
αL

0
β = 1

i.e.
(

L0
0

)2
−
(

L1
0

)2
−
(

L2
0

)2
−
(

L3
0

)2
= 1,

(

L̄0
0

)2
−
(

L̄0
1

)2
−
(

L̄0
2

)2
−
(

L̄0
3

)2
= 1

⇒
(

L0
0

)2
− |l|2 = 1,

(

L̄0
0

)2
− |̄l|2 = 1

⇒ |l| =

√

(L0
0)

2
− 1, |̄l| =

√

(

L̄0
0

)2
− 1.

(iii)
(L̄L)00 =L̄0

αL
α

0

=L̄0
0L

0
0 + L̄0

1L
1
0 + L̄0

2L
2
0 + L̄0

3L
3
0

=L̄0
0L

0
0 + l̄.l

(iv)

|̄l.l| ≤ |l||̄l| ⇒ − |l||̄l| ≤ l̄.l ≤ |l||̄l|

⇒ (using (iii)) (L̄L)00 − L̄0
0L

0
0 ≥ −|l||̄l|

⇒ (L̄L)00 ≥ L̄0
0L

0
0 − |l||̄l|

i.e. (using (ii)) (L̄L)00 ≥ L̄0
0L

0
0 −

√

(L0
0)

2
− 1

√

(

L̄0
0

)2
− 1.

(v)
(x− y)2 ≥ 0 ⇒ x2 − 2xy + y2 ≥ 0 ⇒ −2xy ≥ −x2 − y2

⇒ x2y2 − 2xy + 1 ≥x2y2 − x2 − y2 + 1

⇒ x2y2 − 2xy + 1 ≥ (x2 − 1)(y2 − 1) ⇒ (xy − 1)2 ≥ (x2 − 1)(y2 − 1).

⇒ either xy − 1 ≥
√

x2 − 1
√

y2 − 1 or xy − 1 ≤ −
√

x2 − 1
√

y2 − 1.

If x, y ≥ 1 then xy − 1 is positive, and we must have the first inequality, implying

xy −
√

x2 − 1
√

y2 − 1 ≥ 1.
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Writing L0
0 = x, L̄0

0 = y, we have from (iv)

(L̄L)00 ≥ L̄0
0L

0
0 −

√

(L0
0)

2
− 1

√

(

L̄0
0

)2
− 1 ≥ 1.

(vi) Obviously if det L̄ = detL = 1, then

det(L̄L) = det L̄detL = 1.

(vii) We have now shown that if L ∈ L↑
+, L ∈ L↑

+, then L̄L ∈ L↑
+. It is clear that 1 ∈ L↑

+.

(viii) We can write (1) as
(η−1LT η)L = η−1η = 1,

which shows that L−1 = η−1LT η, i.e. (L−1)µ
ν = ηµα(LT )α

βηβν = ηµαLβ
αηβν . So

(L−1)00 = η00L0
0η00 = L0

0. Moreover,

detL−1 = det η−1 detLT det η = (−1) detL(−1) = detL = 1.

So L−1 ∈ L↑
+. The remaining group property is associativity, (L1L2)L3 = L1(L2L3),

which is true for all matrices. So L↑
+ is a group.

3.
The two inertial frames are moving relative to each other in the direction of the x axis

at constant speed v. Denoting β = v/c, where c is the speed of light, and γ = 1/
√

1 − β2

the Lorentz transformations between the two frames are given by

a′
0

= γ(a0 − βa1)

a′
1

= γ(−βa0 + a1)

a′
2

= a2

a′
3

= a3

or in matrix form








a′
0

a′
1

a′
2

a′
3









=







γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1













a0

a1

a2

a3







b′
0

= γ(b0 − βb1)

b′
1

= γ(−βb0 + b1)

b′
2

= b2

b′
3

= b3
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which can be written similarly in matrix form. Lowering the indices on the left–hand side
changes the sign on the spatial components on the right–hand side

b′0 = γ(b0 − βb1)

b′1 = −γ(−βb0 + b1)

b′2 = −b2

b′3 = −b3

Then
a′µb′µ = a′0b′0 + a′1b′1 + a′2b′2 + a′3b′3+

a′µb′µ = γ(a0 − βa1)γ(b0 − βb1) − γ(−βa0 + a1)γ(−βb0 + b1) − a2b2 − a3b3

= γ2
[

a0b0(1 − β2) − a1b1(1 − β2)
]

− a2b2 − a3b3

= a0b0 − a1b1 − a2b2 − a3b3 = a0b0 + a1b1 + a2b2 + a3b3

= aµbµ

4.
Lorentz transformations, derivatives and quantum operators

a.

a0 = a0, a1 = −a1, a2 = −a2, a3 = −a3

a′0 = a′0 = γ(a0 − βa1) = γ(a0 + βa1)

a′1 = −a′1 = −γ(−βa0 + a1) = γ(βa0 + a1)

and a′2 = a2, a
′
3 = a3

(1)

b.
Suppose we have a function f(x0, x1, x2, x3) which we express as a function of x′0, x′1, x′2, x′3

by expressing xµ as a function of x′µ. The standard chain rule for partial differentiation
says that

∂f(xν(x′µ))

∂x′µ
=

3
∑

ν=0

∂f

∂xν

∂xν

∂x′µ
for µ = 0, 1, 2, 3

Using the summation convention and writing as an operator equation we get

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν

We need x as a function of x′, the inverse of the Lorentz transformation that gives x′ as a
function of x. For a boost along the x′ axis, the inverse is a boost with the opposite speed,
so

x0 = γ(x′0 + βx′1), x1 = γ(βx′0 + x′1), x2 = x′2x3 = x′3
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Hence
∂x0

∂x′0
= γ,

∂x0

∂x′1
= γβ,

∂x1

∂x′0
= γβ,

∂x1

∂x′1
= γ

and

∂

∂x′0
= γ(

∂

∂x0
+ β

∂

∂x1
),

∂

∂x′1
= γ(β

∂

∂x0
+
∂

∂x1
),

∂

∂x′2
=
∂

∂x2
,

∂

∂x′3
=
∂

∂x3

which is the same as as (1) with aµ = ∂
∂xµ

c.
The operator for momentum ~p is −ih̄~∇, i.e.

p1 = −ih̄
∂

∂x1

, p2 = −ih̄
∂

∂x2

, p3 = −ih̄
∂

∂x3

(5)

and

p1 = ih̄
∂

∂x1
, p2 = ih̄

∂

∂x2
, p3 = ih̄

∂

∂x3
(6)

The Schrödinger equation says

ih̄
∂ψ

∂t
= Hψ

where H is the energy operator. Since p0 = E
c

and x0 = ct, this can be written as

p0 = ih̄
∂

∂x0
(7)

If we write (5) and (7) in terms of pµ, we remove the sign difference between the 0 com-
ponent and the others.

pµ = ih̄
∂

∂xµ
,

which transforms as a Lorentz covariant vector, as we have shown in (b).
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