MATH431 - Modern Particle Physics Set Work: Sheet 6; Due:

1. The Dirac wave function for the ground state of the hydrogen atom has the following for (in the standard Dirac matrix representation):

$$\psi(r,\theta,\phi) = R(r) \begin{pmatrix} 1\\0\\ia\cos\theta\\iae^{i\phi}\sin\theta \end{pmatrix},$$

where $a \approx \alpha/2$.

(a)Investigate whether ψ is an eigenstate of L_z .

(b) Find the expectation value of L_z and comment on the result.

(c) Show that ψ is an eigenstate of J_z and find its eigenvalue.

[Don't forget to normalize for one electron]

2. (a) Consider the Dirac equation in four dimensions

$$(i\gamma^{\mu}\partial_{\mu} - m)\,\psi(x) = 0$$

where ψ is a Dirac spinor. Show that each of the four components of the Dirac spinor satisfies the Klein-Gordon equation.

(b) Derive the conservation equation $\partial_{\mu}J_{V}^{\mu}=0$ for the four vector current density $J_{V}^{\mu}=\bar{\psi}\gamma^{\mu}\psi$, using the covariant form of the Dirac equation and the relation $(\gamma^{\mu})^{\dagger}=\gamma^{0}\gamma^{\mu}\gamma^{0}$.

(c) Show that the axial 4-vector current density $J_A^\mu=\bar\psi\gamma^\mu\gamma^5\psi$ is not conserved but instead satisfies the covariant equation

$$\partial_{\mu}J_{A}^{\mu}=2im\bar{\psi}\gamma^{5}\psi.$$

3. Derive the *Gordon decomposition* of the Dirac transition current:

$$\bar{\psi}_f \gamma^{\mu} \psi_i = \frac{1}{2m} \bar{\psi}_f [(p_f + p_i)^{\mu} + i \sigma^{\mu\nu} (p_f - p_i)_{\nu}] \psi_i ,$$

where $\sigma^{\mu\nu}=\frac{1}{2}i(\gamma^{\mu}\gamma^{\nu}-\gamma^{\nu}\gamma^{\mu})$. [Hint: Use the Dirac equations $\bar{\psi}_f(\not p_f-m)=(\not p_i-m)\psi_i=0$.]

4. Consider an electron in a positive constant magnetic field along the z-axis.

(a) write down the vector potential.

(b) Write down the Dirac equation in terms of the two spinor components $\psi = (\phi, \chi)$

(c) Assuming a solution of the form

$$\psi = (\phi(\vec{x}), \chi(\vec{x}))e^{-iEt}$$

solve the Dirac equation in the presence of the constant magnetic field and find the energy eigenvalues.