MATH431 - Modern Particle Physics Set Work: Sheet 5;

1. The potential function of a two-dimensional harmonic oscillator is

$$V(x,y) = \frac{1}{2} k (x^2 + y^2)^2$$
.

- (i) Write down the Lagrangian of this system.
- (ii) Write down the Euler-Lagrange equations of motion.
- (iii) Write down the Hamiltonian.
- (iv) Write down the Lagrangian and Hamiltonian in polar coordinates (r, ϕ) with $(x = r \cos \phi, y = r \sin \phi)$.
- (v) How many constants of the motion are there? What are they?

2. Two-particle states are defined by

$$|\mathbf{p}_1, \mathbf{p}_2\rangle = a^{\dagger}(\mathbf{p}_1)a^{\dagger}(\mathbf{p}_1)|0\rangle$$
.

Show that

$$<\mathbf{p}_{1}',\mathbf{p}_{2}'|\mathbf{p}_{1},\mathbf{p}_{2}>$$

= $(2\pi)^{6}(2p_{1}^{0})(2p_{2}^{0})\{\delta(\mathbf{p}_{1}-\mathbf{p}_{1}')\delta(\mathbf{p}_{2}-\mathbf{p}_{2}')+\delta(\mathbf{p}_{1}-\mathbf{p}_{2}')\delta(\mathbf{p}_{2}-\mathbf{p}_{1}')\}.$

3. (a) Let A_{μ} be the electromagnetic vector potential. The electromagnetic field strength tensor is defined as

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}.$$

Show that Maxwell's equation in four vector notation can be derived from the electromagnetic Lagrangian given by

$$L_{e.m.} = -\frac{1}{4} F_{\alpha\beta} F^{\alpha\beta}.$$

Show that $L_{e.m.}$ is invariant under the transformation $A_{\mu} \to A_{\mu} - \partial_{\mu} \Lambda$, where Λ is a scalar function.

- (b) Show that imposing a local U(1) symmetry forbids the photon from attaining a mass.
 - **4.** Defining $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$, show that

$$\gamma^{5\dagger} = \gamma^5$$
$$\{\gamma^5, \gamma^\mu\} = 0.$$

5. By inserting $(\gamma^{\mu})^2 = 1$ for some $\mu = 0, 1, 2, 3$, write each of $\gamma^0 \gamma^1 \gamma^2$ and $\gamma^0 \gamma^1 \gamma^3$ as a product $\gamma^5 \gamma^{\nu}$ for some $\nu = 0, 1, 2, 3$.

6. Show that

$$\operatorname{tr}[\gamma_{\mu}\gamma_{\nu}] = 4\eta_{\mu\nu}.$$

Now show that

$$\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma} = 2\eta_{\mu\nu}\gamma_{\rho}\gamma_{\sigma} - 2\eta_{\mu\rho}\gamma_{\nu}\gamma_{\sigma} + 2\eta_{\mu\sigma}\gamma_{\nu}\gamma_{\rho} - \gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\gamma_{\mu}.$$

Hence show that

$$tr[\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}] = 4[\eta_{\mu\nu}\eta_{\rho\sigma} - \eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho}]$$