MATH431 Modern Particle Physics Solutions 9

la The case in the absence of electric source was solved in problem set 5 question 2. From
the Euler-Lagrange eq. of motion the second term gives
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1b In the Lorentz gauge we impose 9,,A* = 0. The derivative of the mass term %m2AMA“
with respect to A” gives m?AY. Hence

(0,0 A” + m?A¥) = j
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with p?2 <0 and A > 0
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Inserting into the Lagrangian we have

Take
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with —p? = v2 )\ we get
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cubic and quartic interaction terms + constant
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hence the Lagrangian describes one massive scalar field and two massless Goldstone bosons.

3 The Lagrangians of the two massive fields are:
Ly = (8,8,) (0"®,) — m20] @,
Lo = (8,82)T(0"®y) — m2®]®,
the total Lagrangian is £ = £; + L5. Hence £ is not invariant under the exchange
P — Dy
Combining ® = (¥, P3) the Lagrangian
L= (0,0)1(0'®) — 1) >®Td — \(DTD)?

preserves the symmetry which is spontenousely broken in the vacuum for u? < 0.

4 Considering the Lagrangian
L(q(t),4(t),t)
and the variation

q(t) — q(t) + 6(q(t)) =q(t) + €eh(q(t),?)
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Variation of the action gives rise to the Euler-Lagrange equation of motion
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since L is invariant under the variation
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= 6_q5Q+8—q'£5q_0
Now take
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where we have used the Euler—Lagrange equation to go from the second to third equality.

Therefore, we have that
oL
t) = —h(q(t),t
Q(t) = Ghla(t).1)

is conserved.



