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1. With p = [4]? = 9*9, we have
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Now from the Schrédinger equation,
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and so, taking the complex conjugate
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(assuming that V(x) is real.) Multiplying (1) by ¥* and (2) by ¢ and subtracting, we
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The generalised momentum
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The Hamiltonian density is defined by
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For the KG field m = qS and

then
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We write
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then using
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So equation of motion becomes
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3. Inserting the given solution
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into the five-dimensional Klein-Gordon equation and carrying out 6% /0y?, one obtains
a four-dimensional Klein-Gordon equation for each of the Fourier coefficients ¢, (z):
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Therefore the given ¢(z, y) is a solution of the five-dimensional Klein-Gordon equation
if the ¢, (x) are solutions of the four-dimensional equations. The masses m, of the

fields ¢,, are given by
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If the five-dimensional mass m is zero, we get the equally spaced mass spectrum
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The infinite set of particles are called Kaluza-Klein tower.



