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Chapter 1

Field theory review problems

1.1 Identities for Majorana spinors

First, note that

γT

5C = iγT

3 γ
T

2 γ
T

1 γ
T

0C

= Ciγ3γ2γ1γ0

= Ciγ0γ1γ2γ3 = Cγ5 (1.1)

where in the next to last step we used that distinct γ matrices anticommute and it takes six

re-orderings to do the reversal of indices that we made.

To be general, consider ψ̄1γµ1
. . . γµn

γm5 ψ̄2, a product containing n = 0, 1, 2 gamma ma-

trices and m = 0, 1 factors of γ5. Reversing the order of the objects, this is

ψ̄1γµ1
. . . γµn

γm5 ψ̄2 = −ψT

2 (γT

5 )mγT

µn
. . . γT

µ1
ψ̄T

1

= ψ̄2C(γT

5 )mγT

µn
. . . γT

µ1
ψ̄T

1

= (−1)nψ̄2γ
m
5 γµn

. . . γµ1
Cψ̄T

1

= (−1)nψ̄2γ
m
5 γµn

. . . γµ1
ψ1

= (−1)n+mnψ̄2γµn
. . . γµ1

γ5ψ1 . (1.2)

This gives the first 4 relations directly. For the last, note that the order of the γ matrices is

reversed in the above; this gives a minus sign due to the γ’s being combined in a commutator

(odd in the order).

Next, we do the same with Hermitian conjugation;

(

ψ̄1γµ1
. . . γµn

γm5 ψ2

)†
= ψ†

2γ
m
5 γ

†
µn
. . . γ†µ1

βψ1 . (1.3)
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Move the β across the gamma matrices, producing one minus sign for each γµ or γ5;

= (−1)m+nψ†
2βγ

m
5 γµn

. . . γµ1
ψ1 (1.4)

and move the γ5, if any, across the γ matrices, giving (−1)mn;

= (−1)m+n+mnψ̄2γµn
. . . γµ1

γm5 ψ1 . (1.5)

Combining these with the previous results, and remembering the − sign for reversing the

order of the γ matrices in the commutator, gives the results quoted. Namely, we have the

simple expression,

(

ψ̄1γµ1
. . . γµn

γm5 ψ2

)†
= (−1)m+2(n+mn)ψ̄1γµ1

. . . γµn
γm5 ψ2 . (1.6)

Only the m matters as the other piece is even.

1.2 O(N) scalar theories

GUY: CHECK IF THIS IS COMPLETE.

1.2.1 N = 2 case

The symmetry ensures that terms with odd powers of fields are absent, and terms quadratic

in the fields do not contain φ1φ2; and we can re-scale the fields to give canonical kinetic

terms; so the most general renormalizable Lagrangian is

1

2

(

(∂µφ1)
2 + (∂µφ2)

2 +m2
1φ

2
1 +m2

2φ
2
2

)

+
1

4

(

λ1φ
4
1 + λ12φ

2
1φ

2
2 + λ2φ

2
2

)

. (1.7)

This can be rewritten as

∂µψ
∗∂µψ +

m2
1 +m2

2

2
ψ∗ψ +

m2
1 −m2

2

4
(ψ2 + ψ∗2)

+
λ1 + λ2 − λ12

16

(

ψ4 + ψ∗4
)

+
λ1 − λ2

4

(

ψ3ψ∗ + ψψ∗3
)

+
3λ1 + 3λ2 + λ12

8
(ψ∗ψ)2 . (1.8)

The transformation rules for ψ and ψ∗ under rotation by angle θ between φ1 and φ2 are

ψ′ = φ′
1 + iφ′

2 = (φ1 cos(θ) + φ2 sin(θ)) + i(φ2 cos(θ) − φ1 sin(θ)) = φ1e
−iθ + iφ2e

−iθ , (1.9)

ψ∗′ = φ′
1 − iφ′

2 = (φ1 cos(θ) + φ2 sin(θ)) − i(φ2 cos(θ) − φ1 sin(θ)) = φ1e
iθ − iφ2e

iθ , (1.10)
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or

ψ → e−iθψ and ψ∗ → eiθψ∗ . (1.11)

O(2) invariance requires that Lagrangian terms not pick up a phase under such a rotation.

This means that ψ and ψ∗ must appear an equal number of times in each term. Looking at

the Lagrangian, this forces

m2
1 = m2

2 , λ1 = λ2 , λ12 = 2λ1 . (1.12)

The resulting Lagrangian is

L =
1

2

(

(∂µφ1)
2 + (∂µφ2)

2 +m2(φ2
1 + φ2

2)
)

+
λ

4

(

φ2
1 + φ2

2

)2
,

=
(

∂µψ
∗∂µψ +m2ψ∗ψ + λ(ψ∗ψ)2

)

. (1.13)

m2 > 0: vacuum is φ1 = φ2 = 0 and masses are m.

m2 < 0: the vacuum is whatever field values minimize the potential. This is not unique

but by field redefinition (precisely a rotation by some angle θ) we can take it to be φ1 =
√

m2/λ and the masses squared are m2
1 = [−2m2] > 0 and m2

2 = 0. With this choice, φ2 is

the Goldstone boson.

1.2.2 N = 4 case

The most general form for the Lagrangian is

L =
∑

i

1

2

(

(∂µφi)
2 +m2

iφ
2
i

)

+
∑

i≥j

λij
4
φ2
iφ

2
j . (1.14)

Now we must show that the matrix

Φ ≡




φ ψ∗

ψ −φ∗



 (1.15)

persists in satisfying

Φ̄ ≡ eΦ∗e = Φ , (1.16)

Det Φ = −1

2
φTφ (1.17)

under the transformations Φ → Uφ and φ→ ΦV , with U , V special unitary matrices.

The relation involving the determinant is trivial since the determinant of a product of

matrices is the product of the determinants:

Det UΦ = (Det U)(Det Φ) = 1(Det Φ) (1.18)
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and similarly for ΦV .

For the property involving Φ̄, note first that −e2 = 1, so

UΦ ≡ eU∗Φ∗e ≡ −eU∗e eΦ∗e (1.19)

and it is sufficient to show that −eU∗e = U for SU(2) matrices. This is so because an SU(2)

matrix can be written as

U = u01 + ~u · i~σ , u2
0 + ~u2 = 1 (1.20)

and because

σ∗ = σ except σ∗
2 = −σ2 (1.21)

and

σ2σiσ2 = −σiσ2
2 = −σi except σ2σ2σ2 = σ2 . (1.22)

Combining these,

σ2σ
∗
i σ2 = −σi (also , σ21σ2 = 1) . (1.23)

Furthermore, e = iσ2. Therefore,

−eU∗e = σ2U
∗σ2 = σ2(u01 − ~u · i~σ∗)σ2 = u01 + ~u · i~σ = U . (1.24)

Therefore

UΦ ≡ eU∗Φ∗e = −eU∗e eΦ∗e = UeΦ∗e = UΦ (1.25)

as desired. Exactly the same argument goes for V .

Now we consider the case with invariance under only one SU(2). First, observe that of

the SU(2) invariant combinations, χ†χ, χ̄†χ, and χ̄†χ̄, there is only one nonzero independent

combination;

χ̄†χ̄ = χ†χ =
φ2

1+φ
2
2+φ

2
3+φ

2
4

2
= χ†χ , and χ̄†χ = 0 . (1.26)

Therefore the quadratic parts of the Lagrangian can be written only using χ; the most

general form is

∂µχ
†∂µχ+m2χ†χ . (1.27)

Now it remains to compute the most general quartic piece. Besides the obvious term,

λ(χ†χ)2, one might think of the following alternate terms, involving τa:

∑

a

(χ†τaχ)2 ,
∑

a

(χ̄†τaχ)2 ,
∑

a

χ̄†τaχχ†τaχ . (1.28)
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However, explicit calculation shows that the first term here equals

∑

a

(χ†τaχ)2 = (ϕ∗ψ+ϕψ∗)2 − (ϕ∗ψ−ϕψ∗)2 + (ϕ∗ϕ−ψ∗ψ)2

= (ϕ∗ϕ+ψ∗ψ)2 = (χ†χ)2 , (1.29)

and so is not independent, while the other two terms turn out to cancel completely; for

instance,
∑

a

(χ̄†τaχ)2 = (ψ2−ϕ2)2 − (ψ2+ϕ2)2 + (2ϕψ)2 = 0 . (1.30)

Therefore, the most general quartic term is

λ(χ†χ)2 =
λ

4
(φ2

1+φ
2
2+φ

2
3+φ

2
4)

2 . (1.31)

Note that this expression, in fact the whole Lagrangian, is also invariant under the right act-

ing SU(2). Therefore, renormalizability together with one SU(2) invariance “accidentally”

ensures the other SU(2) invariance.

For the choice m2 > 0, the vacuum is that all four φi are zero, and the masses are all m.

For the choice m2 ≡ −µ2 < 0, the vacuum has one scalar field, say φ1, nonzero: its

value is that which minimizes the effective potential, namely φ1 = µ/λ. In this case, of the

original O(4) invariance, the O(3) subgroup which rotates the remaining 3 fields between

themselves, is a symmetry of the vacuum (“unbroken”). This symmetry has 3 generators,

while O(4) has 6; so we expect 3 Goldstone bosons.

Now we work out the spectrum for m2 < 0; define v = µ/λ, the expectation value of φ1,

and define φ1 ≡ δ + v. Then the effective potential term becomes

λ

4
v4 − m2

2
v2 + (λv3 − µ2v)δ +

(

3λ

2
v2 − µ2

2

)

δ2 +

(

λ2

2
v2 − µ2

2

)

(φ2
2+φ

2
3+φ

2
4)

+(cubic and higher in fields) . (1.32)

We see that our choice of v has ensured the cancellation of the linear term in δ. Evaluating

the quadratic coefficients gives m2
1 = 2µ2 and m2

2 = m2
3 = m2

4 = 0. The other 3 scalars are

indeed the massless Goldstone bosons associated with the broken symmetry directions.

1.3 Vacuum energies

Assume that we have made space finite somehow so the spectrum of momentum states is

discrete; the summation on momentum states is
∑

p and the volume of space is V . The

vacuum energy is expected to scale as volume, that is, to be extensive.
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Consider the scalars first. These are just two real scalar fields; compute for one scalar

field and multiply by 2 at the end. The Hamiltonian is

H =
∫

d3x

[

1

2
(∇φi)2 +

µ2

2
φ2
i +

1

2
Π2
i

]

, (1.33)

with Π the conjugate momentum of Φ.

Momentum space is the best place to solve the theory; define

φi(p) ≡ 1√
V

∫

d3x eip·xφi(x) , φi(x) =
1√
V

∑

p

e−ip·xφi(p) , (1.34)

and ωp ≡
√

p2 + µ2. One finds by standard techniques that

φi(p) =
1√
2ω

(

ai(p) + a†i (p)
)

, Πi(p) =

√
ω

i
√

2

(

ai(p) − a†i (p)
)

, (1.35)

with a and a† satisfying the commutation relations

[

a(p) , a†(p′)
]

= δp,−p′ . (1.36)

Substituting the Fourier transformed versions of φi, Πi into the Hamiltonian gives

H =
1

V

∫

d3x
∑

p,p′

×































































eix·(p+p
′) µ2

4
√
ωpωp′

(ai(p) + a†i (p))(ai(p
′) + a†i (p

′))

+eix·(p+p
′) −p · p′

4
√
ωpωp′

(ai(p) + a†i (p))(ai(p
′) + a†i (p

′))

−eix·(p+p
′)

√
ωpωp′

4
(ai(p) − a†i (p))(ai(p

′) − a†i (p
′))































































(1.37)

Now do the x integration, which cancels the 1/V and forces p′ = −p. Then −p ·p′ = p2,

and (p2 +m2)/
√
ωpωp′ =

√
ωpωp′ so the terms can be combined. The terms with two a or

two a† cancel and leave

H =
∑

p

ωp

2

(

a†i (−p)ai(p) + ai(p)a†i (−p)
)

. (1.38)

Normally one names a†(−p) above, a†(p) instead, even though it emerged in a Fourier

transform from −p rather than p, because it creates a particle of momentum p. We will

follow this convention starting now. Rewriting to put a to the right of a† gives

H =
∑

p

ωp

(

∑

i

a†i (p)ai(p) +
1

2

∑

i

)

. (1.39)
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The a†a term annihilates the vacuum, the vacuum energy arises from the 1/2 factor. The

sum on i gives 2 as there are two scalars.

Now we have to compare this to the energy in a fermion. The fermionic Hamiltonian is

H =
∫

d3x
1

2
ψ̄(~γ · ~∇ +m)ψ . (1.40)

The factor of 1/2 is there because both the upper and lower components of the spinor are

the same; so the term really includes a kinetic plus mass term twice, the 1/2 removes this

double counting.

e want to evaluate
1

2

∫

d3xψ̄(x)(γi∂i +m)ψ(x) . (1.41)

Start by Fourier transforming just ψ(x); the ∂i acts on the e±ip·x to give ±ip. Then Fourier

transform ψ̄;

H =
1

2V

∑

p,q

∑

σσ′

∫

d3x
[

ū(p, σ′)e−iq·xb∗(p, σ′) + v̄(p, σ′)e+iq·xb(p, σ′)
]

×
[

(ipiγi +m)u(p, σ)eip·xb(p, σ) + (−ipiγi +m)v(p, σ)e−ip·xb∗(p, σ)
]

.(1.42)

The terms involving b(q)b(p) and b∗(q)b∗(p) vanish because the operators obey anticom-

mutation relations. Also we can use the property that u and v are solutions to the Dirac

equation,

(ipµγ
µ +m)u(p, σ) = 0 , (ipµγ

µ −m)v(p, σ) = 0 , (1.43)

to substitute

(ipiγi +m)u(p, σ) = ip0γ0u(p, σ) , (−ipiγi +m)v(p, σ) = −ip0γ0v(p, σ) , (1.44)

where p0 ≡
√

p2 +m2. Also, iγ0 ≡ β. Doing also the x integration, which kills one of the

momentum integrals, we get

H =
1

2

∑

p

∑

σ,σ′

√

p2 +m2
(

u†(p, σ′)u(p, σ)b∗b(p, σ) − v†(p, σ′)v(p, σ)bb∗(p, σ)
)

. (1.45)

The spinors are normalized so that ū(p, σ′)u(p, σ) = δσσ′m/E. Since u†u is the time com-

ponent of a 4-vector and equals ūu for a particle at rest, we have u†(p, σ)u(p, σ) = δσσ′ .

Therefore the Hamiltonian is

H =
1

2

∑

p

∑

σ

√

p2 +m2
(

b∗b(p, σ) − bb∗(p, σ)
)

, (1.46)
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or, anticommuting the bb∗ term,

H =
∑

p

∑

σ

√

p2 +m2

(

−1

2
+ b∗b(p, σ)

)

. (1.47)

The ground state energy, after taking
∑

σ = 2, looks like the bosonic one but with the

substitution µ2 → m2 and with the overall sign reversed.

If we evaluate the ground state energy in a momentum cutoff normalization,

∑

p

→ V
∫

p
2=Λ2 d3p

(2π)3
, (1.48)

we find

Evac = V
1

2π2

∫ Λ

0
p2dp

(

√

p2 + µ2 −
√

p2 +m2

)

≃ V

8π2

(

Λ2(µ2−m2) +O(µ4,m4)
)

. (1.49)

In the µ = m case the vacuum energy vanishes. This fact is one of the motivations for the

theory of supersymmetry, but we will not discuss that today.

1.4 Symmetries and Yukawa interactions

We have already seen how this symmetry constrains the purely scalar part of the Lagrangian,

in the N = 2 section of problem 1.2 above. As shown there, the allowed purely scalar terms

are

Lφ =
−1

2

(

∂µφ∂
µφ+ ∂µχ∂

µχ+m2(φ2+χ2)
)

− λ

4

(

φ2+χ2
)2
. (1.50)

Now, for the terms with fermions. The set of all terms we can think of, after performing a

field redefinition as in the notes to eliminate a ψ̄γµγ5∂µψ term, is

ψ̄γµ∂µψ + b1ψ̄ψ + b2ψ̄γ
5ψ + c1φψ̄ψ + c2χψ̄ψ + c3φψ̄γ

5ψ + c4χψ̄γ
5ψ . (1.51)

We need to see how each transforms under infinitesimal transformation by angle θ, under

which the fields pick up

ψ → ψ + iθγ5ψ ,

ψ̄ → ψ̄ + iθψ̄γ5 ,

φ → φ+ 2θχ ,

χ → χ− 2θφ . (1.52)
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The various terms then gain the following extra pieces,

ψ̄ψ gains 2iθψ̄γ5ψ ,

ψ̄γ5ψ gains 2iθψ̄ψ ,

φψ̄ψ gains 2θ
(

χψ̄ψ + iφψ̄γ5ψ
)

,

χψ̄ψ gains 2θ
(

− φψ̄ψ + iχψ̄γ5ψ
)

,

φψ̄γ5ψ gains 2θ
(

χψ̄γ5ψ + iφψ̄ψ
)

,

χψ̄γ5ψ gains 2θ
(

− φψ̄γ5ψ + iχψ̄ψ
)

. (1.53)

No term can compensate for the shift in the first two terms, so b1 = b2 = 0. The remaining

terms can cancel in pairs if c4 = ic1 and c3 = −ic2. Further, Hermiticity demands that c1

and c2 are real, and c3 and c4 are imaginary; so this is consistent. Therefore, there are two

real parameters for the Yukawa interactions, and the remaining allowed terms are

Lψ = −1

2
ψ̄γµ∂µψ − c1

(

φψ̄ψ + iχψ̄γ5ψ
)

− c2
(

χψ̄ψ − iφψ̄γ5ψ
)

. (1.54)

Because ψ̄ψ is purely real and ψ̄γ5ψ is purely imaginary, this can be succinctly rewritten

in terms of one complex coefficent c =
√

2(c1 + ic2) and the complex field Φ ≡ (φ+ iχ)/
√

2,

Lψ = −1

2
ψ̄γµ∂µψ −

(

cΦψ̄PLψ + c.c.
)

, (1.55)

where (c.c.) means complex conjugate, and is the same as taking twice the real part of the

first term. We see that, in general, Yukawa couplings are complex. For the gauged version,

all that changes is that the derivatives must be made covariant derivatives, with

DµΦ = (∂µ + 2igAµ)Φ ,

DµPLψ = (∂µ − igAµ)PLψ , (1.56)

and therefore,

DµPRψ = (∂µ + igAµ)PRψ . (1.57)

1.5 Spinor identities

To appear

1.6 Fermion mass matrix diagonalization

To appear

9



1.7 A Dirac matrix identity

To appear

1.8 More useful identities

To appear

1.9 Fiertz rearrangements

To appear
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Chapter 2

Standard model: general features

2.1 Anomaly cancellation and charge assignments

To appear

2.2 Muon decay

The symmetries which must be obeyed by any decay (or other process) involving a muon

are electric charge conservation and the separate conservation of B and each L number.

Anomalies mean that B + L may be violated, but Le − Lµ, Lµ − Lτ , and B − L must be

separately conserved.

For the first reaction, the total electric charge of the initial state is −1 and this is

unchanged in the final state. The total Le = 0, Lµ = 1, Lτ = 0, and B = 0 in the initial and

final states. Therefore there is no conservation law violated in the decay.

However, for the second reaction, Le − Lµ is −1 in the initial state and +1 in the final

state; therefore this anomaly-free, absolutely conserved quantity would be violated by such

a decay. Within the standard model, the decay rate should be identically zero.

2.3 Right handed neutrinos

2.3.1 Lagrangian

Lorentz invariance demands that fermionic fields appear in even numbers in all terms, and

renormalizability restricts to 2 fermionic fields. (A term in the Lagrangian with a product
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of 4 fermionic fields would be dimension 6, which is non-renormalizable.) The only terms

allowed for N by renormalizability are terms with either N̄ and N or with N and the bar

of some other fermion, with either a derivative, a mass, or a Higgs field. Gauge invariance

demands that the charges of the fields involved add to zero for any term. Since N is the

only singlet, the kinetic and mass terms cannot mix it with other fermionic fields. Therefore

the mass and kinetic terms must be of form

−1

2
N̄mγ

µ∂µNm − 1

2
MmN̄mNm . (2.1)

As argued in the notes, we are free to pick these terms to be diagonal and free of γ5 terms.

Unlike all other fermions in the standard model, the mass term is allowed, because the right

and left handed components of N transform in the same way under gauge transformation

(namely, not at all).

To appear in a Yukawa interaction with the Higgs field, N must interact with a fermion

with the same gauge charges as the Higgs field; this excludes the colored fields and the

(SU(2) singlet) right electron field ER. However, the left handed lepton field L has the same

transformation properties as φ̃, so the combination

kmnL̄mPRNnφ̃+ c.c. (2.2)

is allowed. (The [antifundamental] SU(2) index of L̄PR is contracted against the [fundamen-

tal] SU(2) index of φ̃ in the above term.)

2.3.2 Conservation laws

The left-handed component of L and the right-handed component of E are assigned lepton

number 1. That is, before the introduction of N , the Lagrangian was invariant under the

symmetry

L→ eiθLγ
5

L , E → e−iθLγ
5

E , (2.3)

and the associated conserved number was called lepton number. In fact, after choosing a

basis for L and E which diagonalizes the Yukawa matrix fmn, the Lagrangian was invariant

under such a rotation of each generation separately (that is, of L1 and E1, of L2 and E2, and

of L3 and E3). The three conserved numbers are called electron number, muon number, and

tau number.

If N is to be uncharged under this transformation then the new Yukawa term clearly

violates this symmetry. If we assign the right-handed component of N a lepton number of

1, that is, if N transforms as

N → e−iθLγ
5

N , (2.4)
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then the Yukawa interaction term preserves the symmetry. If for some reason the mass term

vanishes, M = 0, then total lepton number is conserved; but if the new Yukawa matrix kmn

cannot be diagonalized by rotating only the N fields, which generically happens, then the

individual lepton numbers are separately violated.

Assigning N the transformation property above, the mass term is clearly not invariant

(since γ5 and β do not commute). Therefore, if the mass term is nonzero, there is no

conserved lepton number of any kind.

2.3.3 Mass eigenstates

The neutrino mass terms are

−1

2
MN̄N − kL̄PRNφ̃+ h.c. (2.5)

which, on substituting

φ̃→




v/
√

2

0



 , (2.6)

taking k to be real (which we can do by an appropriate field rotation), and rewriting vk/
√

2 ≡
m, and expanding out the Hermitian conjugate, becomes

−1

2

(

MN̄N + 2mν̄PRN + 2mN̄PLν
)

. (2.7)

Using relations from last homework,

ν̄PRN = N̄PRν , N̄PLν = ν̄PLN , (2.8)

we can make this expression symmetric in ν and N :

−1

2

(

MN̄N +mν̄N +mN̄ν
)

. (2.9)

Here we also used PR + PL = 1. We can rewrite this, if we feel like it, as

−1

2

[

ν̄ N̄
] 



0 m

m M









ν

N



 , (2.10)

where the matrix in the middle is the “mass matrix”. This is the form required to apply the

manipulations which follow Eq. (1.3.51), where we diagonalize this matrix by performing a

unitary transformation on the fermionic fields. Define

cos θν =
1

2
arctan

2m

M
,





ψ1

ψ2



 =





cos θ sin θ

− sin θ cos θ









ν

N



 , (2.11)
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which is the matrix which diagonalizes the mass matrix. In terms of ψ1 and ψ2 the free

Lagrangian is

−1

2

(

ψ̄1/∂ψ1 + ψ̄2/∂ψ2 −m1ψ̄1ψ1 +m2ψ̄2ψ2

)

. (2.12)

Here

m2 =
M

2
+

√

M2

4
+m2 ≃M , m1 = −M

2
+

√

M2

4
+m2 ≃ m2

M
, (2.13)

where the approximate expressions are valid for M ≫ m (a regime which is physically

interesting). Finally, a rotation of ψ1 → iγ5ψ1 flips the sign of m1 in the Lagrangian, so

both masses are positive.

The lepton-boson interaction terms are obtained by writing ν = iγ5 cos θνψ1 − sin θνψ2

and ν̄ = i cos θνψ̄1γ
5 − sin θνψ̄2. The Higgs interactions are

−1

2
kH(ν̄N + N̄ν) =

kH

2

(

sin 2θν
2

(ψ̄1ψ1 + ψ̄2ψ2) −
cos 2θν

2
(ψ̄2iγ

5ψ1 + h.c.)

)

. (2.14)

In the large M limit, the dominant Higgs interaction is to couple ψ1 to ψ2; the Higgs coupling

to ψ1 is ∼ km/M , that is, it scales as the mass of the particle “as usual”.

The coupling to the A field is still zero, since neither ν nor N have any coupling. The

coupling to Zµ is from the ν̄ /Dν term in the Lagrangian; the gauge coupling part gives

(defining eZ =
√

g2
2 + g2

1 = e/ sin θW cos θW )

−1

2

ieZ
2
Zµν̄γ

µγ5ν

= −1

2

ieZ
2
Zµ
(

cos2 θνψ̄1γ
µγ5ψ1 + sin2 θνψ̄2γ

µγ5ψ2 + (−i sin θν cos θνψ̄2γ
µψ1 + h.c.)

)

,(2.15)

and the coupling to the W boson becomes, for instance,

ig2√
2
W−
µ ēγ

µPLν =
ig2√

2
W−
µ (i cos θν ēγ

µPLψ1 + sin θν ēγ
µPLψ2) . (2.16)

Note that in both cases, in the limit of large M , ψ1 couples with full strength and ψ2

approximately decouples. In this limit, at energies too low to produce the ψ2 particle, the

theory looks like the normal electroweak theory but with a tiny mass added for the ν field;

a mass which is quadratic in the Higgs field. We will see another way of understanding this

when we discuss high dimension operators and effective field theories.
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2.4 Two Higgs doublet models

2.4.1 Lagrangian

Note that this second Higgs field has the same charge assignments as φ̃. The electric charge

assignments of the components are

ψ =





χ

ξ



 have charges





0

−1



 . (2.17)

The full covariant derivative acting on ψ is

Dµψ =
(

∂µ − iW a
µ

g2τ
a

2
+ iBµ

g1

2

)

ψ

=





∂µ − ig2W
3
µ/2 + iBµg1/2 −ig2/2(W 1

µ − iW 2
µ)

−ig2/2(W 1
µ + iW 2

µ) ∂µ + ig2W
3
µ/2 + iBµg1/2









χ

ξ



 . (2.18)

Now for the potential. Note that the combination ψ†φ has net hypercharge +1 and so is

not SUL(2) × UY (1) covariant. However the combination

ψT eφ = (ψ†eφ∗)∗ = (ψ†φ̃)∗

is SUL(2) × UY (1) invariant since φ̃ and ψ have the same charges. It is also complex, which

means many terms will be allowed complex coefficients.

Define, as in the problem statement, the quantities

a ≡ φ†φ , b ≡ ψ†ψ , c ≡ φT eψ = φ̃†ψ . (2.19)

The most general available quadratic potential is

m2
1a+m2

2b+m2
3(c+c

∗) − im2
4(c−c∗) , (2.20)

which has 4 real parameters. We could rewrite the last two terms as Mc + M∗c∗ with M

a complex parameter. (In fact it is possible to re-define fields in terms of a new linear

combination of ψ and φ̃ to eliminate the cross-term but we will not pursue this here.)

One might think that the combination ψ†φψTφ∗, which is SUL(2)×UY (1) invariant, would

be an extra possible term in the potential, besides those quadratic in a, b, and c. However,

it is not independent,

ψ†φψTφ∗ = ab− c∗c , (2.21)
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as can be shown by explicit calculation; so we don’t have to consider it separately. Similarly,
∑

a |ψ†τaφ̃|2 = |ψ†φ̃|2 = c∗c is not independent. The most general potential for the two Higgs

fields is

λ1 a
2 + λ2 b

2 + λ3 ab+ λ4 c
∗c+ λ5 (c2+(c∗)2) − iλ6 (c2−(c∗)2)

+λ7 a(c+c
∗) − iλ8 a(c−c∗) + λ9 b(c+c

∗) − iλ10 b(c−c∗) . (2.22)

As written the λi are all real. If we wrote terms of form ac the coefficient would be complex

and the addition of the complex conjugate would be required.

Note that many of these terms can be eliminated by suitable choices of additional symme-

tries. Not doing so, and writing down the most general possible Yukawa interactions, allows

flavor changing neutral currents severely in violation with experiment unless the coefficients

are very carefully tuned.

2.4.2 Masses

To see if the electromagnetic group is broken by the VEV’s, we have to see how the VEV’s

rotate under an electromagnetic transformation. These transformation properties are given

by the electromagnetic charges; the lower component of φ and the upper component of ψ

are charge zero, so they are not rotated and the VEV’s are unchanged. Therefore, electro-

magnetism will still be unbroken. Breaking electromagnetism would require that part of the

VEV of χ lie in the lower entry. Whether this happens depends on the details of the effective

potential, which means that it can be used to constrain the form of the effective potential

(specifically, the terms involving c above).

Observe that, dropping all fluctuations from ψ and φ,

Dµψ → i

2
√

2





g2W
3 − g1B g2(W

1 − iW 2)

g2(W
1 + iW 2) −g2W

3 − g1B









u+ iw

0



 , (2.23)

where there should be a µ subscript on each W or B; or

(Dµψ)†Dµψ =
u2 + w2

8

[

g2W
3 − g1B g2(W

1 − iW 2)
]





g2W
3 − g1B

g2(W
1 + iW 2)





=
u2 + w2

8

(

g2
2(W

1
µW

µ
1 +W 2

µW
µ
2 ) + (g2

2 + g2
1)ZµZ

µ + 0AµA
µ
)

. (2.24)

We see that the mixing angle and mass relation will be unchanged from the standard model,

mW = mZ/ cos θW with tan θW = g1/g2. The mass of theW boson is no longerm2
W = g2

2v
2/4,

but is m2
W = g2

2(v
2 + u2 + w2)/4; the Z boson mass depends on the same combination of

VEV’s.
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2.4.3 Yukawa couplings

The field ψ is in general allowed Yukawa coupling matrices which are identical in form to

those allowed for Higgs fields with the substitution φ→ ψ̃ and φ̃→ ψ. That is, we can write

down

pmnL̄mPREnψ̃ + qmnQ̄mPRDnψ̃ + rmnQ̄mPRUnψ + h.c. , (2.25)

with p, q, r arbitrary 3 by 3 matrices. There is no a priori reason why these matrices should

be in any way related to the matrices f, g, h of the φ Higgs field. In general this allows flavor

changing neutral currents which are grossly in conflict with observations. However, under

the global symmetry proposed, φ̃→ eiθφ̃ and ψ̃ → eiθψ̃. Therefore, the Yukawa interactions

involving the tilde quantities are forbidden, since they get rotated by a phase of 2θ under

the transformation. Only fmn, hmn, and rmn are allowed. Also note that only the scalar

interaction terms m2
1, m

2
2, and λ1 through λ4 are consistent with this symmetry, greatly

simplifying the analysis of the scalar potential.

These restrictions turn out to be enough to eliminate flavor changing neutral currents.

Note that the relation between a Yukawa coupling and a fermionic mass only involves the

VEV of the particular participating scalar, so the relation between Yukawa couplings and

couplings to the Higgs particle is no longer universal. (Also there are now 5 Higgs particles,

three neutral and two charged.)

The model with this symmetry is called the 2 Higgs doublet model and is a commonly

proposed alternative to the Standard Model Higgs sector. The two Higgs fields are called

(φ) the down-type Higgs and (ψ) the up-type Higgs.

2.5 Adjoint Higgs fields

2.5.1 Electromagnetism

The ti are the Jx,y,z operators for spin 1 particles in the z spin state basis, so they surely

satisfy the Lie algebra of the group SU(2). Explicit verification is straightforward.

The electric charges can be read off from the action of T3 on the field: the charges are

ψ =









ψ1

ψ2

ψ3









=









+1

0

−1









. (2.26)

Because the field which takes on a VEV has electric charge zero, the VEV respects electro-

magnetic symmetry, which remains unbroken. The relation tan θW = g1/g2 will still hold.
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2.5.2 Mass spectrum

The new field will change the W mass without changing the Z mass:

Dµψmin =
ig2(u+ iw)

2









W 1
µ − iW 2

µ

0

W 1
µ + iW 2

µ









, (2.27)

and so

(Dµψmin)
†Dµψmin =

g2
2(u

2+w2)

2
(W µ

1 W
1
µ +W µ

2 W
2
µ) . (2.28)

Note that no new mass term for either W 3 or B appears; so the Z, A mixing is unchanged

from its standard model form, and the Z mass is the same as in the Standard Model,

m2
Z = (g2

2 + g2
1)v

2/4. However, the W mass is

m2
W = g2

2

v2

4
+ g2

2(u
2 + w2) . (2.29)

This violates the relation between W and Z masses observed in the Standard Model. The

experimental value of the W mass is known to 0.05% accuracy and is slightly higher than

the Standard Model prediction. Requiring that it be higher by at most 0.1% places a limit,

(u2 + w2) < v2/4000 = (4GeV)2, which is quite severe. The scalar potential generically

contains a ψaφ†τaφ term; when the Higgs field takes on a VEV, this induces a linear term

in the ψ field potential, which will force it to take on a VEV as well. This makes it difficult

to include a ψ field in a hypothetical extension of the standard model unless its mass is very

large, to keep the ψ field VEV small.

2.6 Gauged B − L coupling

2.6.1 Right handed neutrino

First note that, as the Higgs boson is neutral under F , all fermions participating in a Yukawa

interaction have the same charge–or rather, PRE has the charge of PLL and PRU and PRD

have the charge of PLQ, to ensure the Yukawa terms are neutral under F . Therefore, since

PLL has charge −1, so must PRN . The mass term MN̄N couples right to left and is only

permitted if N is neutral under everything; so this term is forbidden by the new gauge

coupling.
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2.6.2 Charge assignments

Gauge invariance of the Yukawa interactions requires that, writing the qi as the charges of

the left handed components,

qL = −qE = −qN , qQ = −qU = −qD . (2.30)

Therefore in the following we will only keep track of qL and qQ.

The first anomaly cancellation condition to try is (2, 2, 1′). This gets contributions only

from L and Q, and demands qQ = −qL/3. (we will not give the complete details since they

are so similar to the first problem.) This fixes the charges of all particles already. Once again,

the (3, 3, 1′) anomaly condition doesn’t give a new constraint as it automatically vanishes,

because qQ = −qD = −qU .

The (1′, 1′, 1′) anomaly cancellation condition gives

2q3
L + q3

E(+q3
N) + 6q3

Q + 3q3
D + 3q3

U = 0 . (2.31)

Here we put the qN term in parenthesis because we have not decided whether we want an

N particle or not. Putting in that −qD = −qU = qQ, and that −qE = qL, the quark terms

cancel, leaving

q3
L = −(q3

N) . (2.32)

We see that if there is no N particle, the anomaly condition fails unless qL = 0. (In this case

all the charges are zero, which is boring. We want qL = −1 as in the problem statement.)

We need the N particle.

Once we have it, the (1′, 1′, 1′) anomaly condition is satisfied. The charges of the particles

are

qL = −qN = −qE = −1 , qQ = −qD = −qU =
1

3
. (2.33)

The (1, 1, 1′) anomaly condition is

−2
(−1

2

)2

+ (−1)2 + (0)2 +
1

3
6
(

1

6

)2

− 1

3
3
(−2

3

)2

− 1

3
3
(

1

3

)2

= 0 , (2.34)

which is identically true. Similarly the (1, 1′, 1′) anomaly cancellation condition is

2(−1)2−1

2
− (1)2(−1) − (1)20 + 6

(

1

3

)2 1

6
− 3

(

1

3

)2 2

3
− 3

(

1

3

)2 −1

3
= 0 , (2.35)

which is also true. Therefore all anomalies cancel and this theory is allowed. Note that the

charge assignments are just −1 for leptons and +1/3 for quarks, or +1 for baryons; the U(1)′

field couples to B − L, which is not anomalous.
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No Yukawa terms are allowed to the χ field, since no SUc(3)× SUL(2)×UY (1) invariant

pairings of Standard Model fermions are possible and the χ field is a singlet under SUc(3)×
SUL(2) × UY (1). The absence of such terms is actually the same as the absence of mass

terms in the standard model.

The baryon and lepton numbers remain conserved, though the Yukawa couplings now

possible to the N bosons violate the separate lepton numbers. As before, B and L have

SUL(2) × UY (1) anomalies, but B − L is non-anomalous.

2.6.3 Coulomb-like interactions

A massless F boson does not acquire a mass or mix with the A or Z due to the Higgs

mechanism, since the Higgs boson is neutral under U(1)′. Therefore, for µ < 0, the F is

exactly massless. The leptons have charge -1, and the baryons charge +1, under this field. In

particular the neutron does have a charge. Its interaction with the electron is attractive, since

they have opposite charge (like the proton and electron under ordinary electromagnetism).

The most obvious constraint on g4 is from spectroscopy; for instance, the deuteron’s

energy levels would be shifted with respect to hydrogen’s by order g2
4/e

2. Surely such a shift

at the 10−6 level would have been observed, placing a conservative limit of g2
4 < 10−7.

Much stronger constraints can be achieved by thinking about the physics of the Sun.

If g2
4 ≪ e2, the Sun actually emits more energy into F photons than into A photons, in

gross contradiction with solar modeling and the age of the Sun. This is because a more

weakly interacting particle is emitted from deeper within the Sun, where it is hotter. Solar

modeling only permits a small fraction of the Sun’s energy to be lost to the F photon, which

requires the entire Sun to be approximately transparent to F particles. This requires roughly

g2
4 < 10−20e2 (we will not provide details). This is a pretty strong constraint.

It is possible, however, to come up with an even stronger constraint. Consider the Earth.

It is made up largely of neutron rich elements (Si and O have as many neutrons as protons;

Fe has more neutrons). If the g4 charge is larger than gravitational strength, then the

heavy isotopes on the surface would be pushed away unless the Earth holds a balancing

number of neutrinos (which would be attracted to the Earth by their B−L interactions

with the neutrons–the B−L charge of electrons and protons is exactly zero because ordinary

electromagnetism ensures that the Earth is charge neutral to high precision). Now the

density of neutrons in the Earth is of order 1030/m3. Since neutrinos are massless, to hold

them at such a density would require a Fermi momentum of about 1010/m ∼ 1KeV. The

kinetic energy of the typical neutrino would then be order 1KeV. To keep such energetic

neutrinos trapped to the Earth requires a B−L trapping potential of 1KeV; but this is much
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more than the gravitational or chemical binding energy of neutron rich atoms on the surface

or in the atmosphere of the Earth. Therefore the atmosphere and surface of the Earth would

be stripped off (in fact it would be energetically unfavorable for the Earth to form–it would

explode).

From this we conclude that the F mediated interaction between neutrons must be weaker

than gravitational,
g2
4

4π
< GNm

2
n ≃ 10−38 , (2.36)

so g2
4 < 10−37, a rather severe limit. However the actual limit is even tighter. For such a

small g2
4, neutrinos are not bound to the Earth at all, and the planet has a B−L charge

equal to the number of neutrons it contains. Then the B−L interaction causes a species

dependent shift in the acceleration towards the Earth’s center. Extremely precise searches

for such isotopic shifts have been performed, and the limits are at the 10−11 level. Therefore

the actual limit on g2
4 is 11 orders of magnitude better,

g2
4 < 10−48 . (2.37)

Probably even better limits are available by looking for corrections to Newtonian behavior

in the solar system, owing to the different neutron to proton ratios of, say, the Earth and

the Moon. We believe such constraints replace 10−11 above with 10−14.

The moral is: constraints on massless or very light new particles are often extremely

strong.

2.6.4 Mass spectrum

The gauge boson masses arise from the Higgs and χ kinetic terms. Fortunately only the F

couples to χ and it does not couple to φ, so there are no mixing terms. The F boson mass

is m2
F = g2

4µ
2 (see last problem for how this term arises). The other masses are unaffected.

There is no mixing between Z and F bosons.

2.7 Colored scalar fields

To appear

2.8 Adjoint representation fermions

To appear
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Chapter 3

Cross sections and lifetimes

No problems were presented in this chapter so no solutions are provided either.
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Chapter 4

Elementary boson decays

4.1 W width at finite fermion mass

To appear

4.2 Decay of the top quark

4.2.1 Interaction Hamiltonian

The top quark decays into a quark (almost always a b quark) and a W boson. It takes one

insertion of the interaction Hamiltonian, namely the term in the interaction Hamiltonian,

HI ⊃
g2

2
√

2
V †
mnd̄mW

−
µ γ

µ(1+γ5)un . (4.1)

The relevant term is when n is the 3 (top quark) index, that is, the terms involving V †
mt. Of

these we see that the b quark term is totally dominant, the width to go to some other quark

will be suppressed by (Vts/Vtb)
2 < 0.005, so we will take Vtb = 1 for current purposes.

4.2.2 Matrix element

The relevant Feynman diagram is

- s�
�

�
�

�
�

�
�

@
@

@
@R

t

W+

b
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and the matrix element is therefore

eW ū(pb, σb)ǫ/(1+γ5)u(pt, σt) . (4.2)

4.2.3 Spin summed M2

Squaring and summing (averaging) over final (initial) spins,

e2
W

2

∑

σb,σt,λ

tr uū(pb, σb)ǫ/(1+γ5)uū(pt, σt)ǫ/
∗(1+γ5) (4.3)

gives
e2

W

2

(

ηµν +
pµ

W
pν

W

M2
W

)

tr (−i/pb+mb)γµ(1+γ5)(−i/pt+mt)γν(1+γ5) . (4.4)

We should drop the small mb, which means that mt will also not contribute, since that would

involve an odd number of gamma matrices.

4.2.4 Reducing M2

Now we do the trace. The (1 + γ5) can be combined into a 2(1 + γ5), and the γ5 does not

contribute as only terms symmetric in µ↔ ν will contribute. The trace gives,

|M|2 = 4e2
W

(

ηµν +
pWµpWν

M2
W

)

(pµb p
ν
t + pνbp

µ
t − pb · ptηµν) ,

= 4e2
W

(

2pb · pt − 2
pb · pWpt · pW

p2
W

− 3pb · pt
)

=
g2
2

2

(

−pb · pt + 2
pb · pWpt · pW

M2
W

)

. (4.5)

Both terms are positive. Now work in the center of mass frame, and use that pW = −pb,

and |pb| = p0
b ≡ pb; the expression becomes

|M|2 =
g2
2

2

(

pbmt + 2
mtEW (pbEW + p2

b)

M2
W

)

. (4.6)

4.2.5 Final integration

The width is

Γt =
∫ d3pWd

3pb
(2π)68p0

tp0
W
p0
b

(2π)4δ4(pt − pW − pb)|M|2 . (4.7)
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Energy conservation will give

EW + Eb = mt

E2
W

= (mt − pb)
2

p2
b +M2

W
= m2

t − 2mtpb + p2
b

Eb = pb =
m2
t −M2

W

2mt

, and EW =
m2
t +M2

W

2mt

. (4.8)

The phase space integral gives

∫ d3pWd
3pb

(2π)68p0
tp0

W
p0
b

(2π)4δ4(pt − pW − pb)|M|2 =
1

8π

∫ p2
bdpb

pbEWmt

δ(pb + EW −mt)|M|2 , (4.9)

with EW ≡
√

p2
b +M2

W
. We need to know the pb dependence of the argument of the delta

function;

d

dpb
(pb+EW−mt) = 1+

pb
EW

=
mt

EW

⇒
∫ pbdpb
EWmt

δ(pb+EW−mt)|M|2 =
pb
m2
t

|M|2 . (4.10)

Therefore the result of the pb integration is

Γ =
1

8π

pb
m2
t

|M|2 =
g2
2

16π

p2
b

mt

(

1 + 2
mtEW

M2
W

)

=
α2(m

2
t −M2

W
)2(2M2

W
+m2

t )

16m3
tM2

W

. (4.11)

Inserting values gives

Γ = 1.5 GeV (4.12)

which converts into a lifetime of

τ ≃ 4.4 × 10−25 sec . (4.13)

Even at quite relativistic speeds, since c = 3× 108m/s, a top quark can propagate less than

10−15 meters, which is obviously not detectable (about 100 microns is the actual limit).

4.3 Gamma matrix identities

First,

/k/k = kµkνγ
µγν . (4.14)

But kµkν is obviously symmetric, so this can be rewritten as

/k/k = kµkν
1

2

(

γµγν + γνγµ
)

= kµkν
1

2
2ηµν = k2 . (4.15)
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Second,

/k/p/k =
(

/k/p+ /p/k
)

/k − /p/k/k ,

= 2kµpν
(

γµγν + γνγµ
)

/k − /pk2 ,

= 2kµpνη
µν/k − k2/p ,

= 2p · k /k − k2 /p , (4.16)

as desired.

Third,

γµγµ ≡ γµγνηµν , (4.17)

but symmetry of ηµν allows this to be rewritten as

=
1

2

(

γµγν + γνγµ
)

ηµν =
1

2
2ηµνηµν = ηµµ = 4 . (4.18)

An easier way to see this is to note that the square of each gamma matrix is the identity,

and there are 4 gamma matrices.

Fourth,

γµ/kγµ = kνγ
µγνγµ

= kν
(

γµγν + γνγµ
)

γµ − kνγ
νγµγµ

= kν2η
µνγµ − kνγ

ν4

= 2/k − 4/k = −2/k . (4.19)

We can do this faster by noting that

γµ/k = 2kµ − /kγµ , (4.20)

essentially the identity we were using above; then

γµ/kγµ = 2kµγµ − /kγµγµ = 2/k − 4/k = −2/k . (4.21)

Fifth,

γµ/p/kγµ = 2pµ/kγµ − /pγµ/kγµ ,

= 2pµ/kγµ + 2/p/k ,

= 2/k/p+ 2/p/k ,

= 2kµpν
(

γµγν + γνγµ
)

,

= 2kµpν2η
µν = 4k · p . (4.22)
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Sixth,

γµ/p/kq/γµ = 2pµ/kq/γµ − /pγµ/kq/γµ ,

= 2/kq//p− 4/p k · q ,
= 2/kq//p− 4k · q /p ,

= 2/kq//p− 2
(

q//k + /kq/
)

/p ,

= −2q//k/p . (4.23)

In passing from the first to second line we used the fifth identity.
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Chapter 5

Leptonic weak interactions: decays

5.1 Z decay including a Higgs

To appear

5.2 Neutron lifetime

The key as stated above is to make the mp ≃ mn ≫ (mp−mn) ∼ me approximation as early

and often as possible. Define mn −mp ≡ ∆.

Γn =
∫ d3ppd

3ped
3pν

(2π)916mnmpp0
ep

0
ν

(2π)4δ3(pe+pν+pp) δ(∆ − p0
e − p0

ν)|M|2 . (5.1)

Here

|M|2 =
g4
w|Vud|2
64m4

W

1

2
P µνQµν ,

P µν = − tr (−ipp/ +mp)γ
µ(gV +gAγ

5)(−ipn/ +mn)γ
ν(gV +gAγ

5) ,

Qµν = − tr (−ipe/ −me)γµ(1+γ5)(−ipν/ )γν(1+γ5) . (5.2)

The factor of 1
2

is the average over the neutron spin state. In this problem we should use

gV = gA = 1, but we will leave them as free as long as possible because it turns out that

gA 6= 1 is the key difference between the “up and down quark” treatment provided here and

the actual behavior of a neutron.

In evaluating P µν we should take advantage of the fact that the neutron and proton

momenta are almost perfectly timelike; |~pn| ∼ ∆ but p0
n ≃ mn. Therefore, terms involving a
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single γ5 are suppressed, since they contain ǫµναβp
α
np

β
p ; at least one of the p must be a spatial

component. Separating the term with masses and the term with p/’s,

P µν = −mpmn tr γµ(gV +gA)γν(gV +gA) + tr pp/ γ
µ(gV +gA)pn/ γ

ν(gV +gA)

≃ 4m2
pg
µν(g2

A−g2
V ) + 4(g2

V +g2
A)m2

p

[

2g0µg0ν + gµν
]

. (5.3)

Similarly, Qµν reduces to

Qµν = (antisymm) + 8 [(pν)µ(pe)ν + (pν)ν(pe)µ − gµνpν · pe] ,
P µνQµν ≃ 26m2

p

(

g2
V (2p0

ep
0
ν + pν · pe) + g2

A(2p0
ep

0
ν − pν · pe)

)

,

|M|2 ≃ g4
w|Vud|2
2m4

W

m2
pp

0
νp

0
e

[

g2
V

(

2 +
pν · pe
p0
νp

0
e

)

+ g2
A

(

2 − pν · pe
p0
νp

0
e

)]

. (5.4)

The ≃ signs mean that O(∆/mp) corrections have been neglected. Note for what follows

that pν · pe = −p0
νp

0
e + pe · pν = p0

νp
0
e(−1 + vν · ve).

The mpmnp
0
ep

0
ν factor in |M|2 cancels the same factor in the denominator of the phase

space measure, leaving

Γn =
g4
w|Vud|2
32m4

W

∫ d3ped
3pνd

3pp
(2π)9

(2π)4δ3(pe+pν+pp)δ(∆−p0
e−p0

ν) ×
[

g2
V (1+vν · ve) + g2

A(3−vν · ve)
]

. (5.5)

The pp proton momentum only appears in the integration and the momentum conserving

delta function. The other two particles can “push off” against the proton arbitrarily hard

without the proton “kick” costing any energy, because we have dropped the p2
p/2mp term

which would appear in the energy. Therefore we can do the pp integration which performs

the momentum conserving delta function. The angular integrations of the other particles

are totally independent. Each gives (4π), and vν · ve averages to zero over angles, leaving

the integrals over the magnitudes of the momenta;

Γn =
(g2
V +3g2

A)g4
w(4π)2|Vud|2

m4
W32(2π)5

∫

0
dpνdpep

2
νp

2
eδ(∆−pν−

√

p2
e+m

2
e) . (5.6)

Use the delta function to perform the pν integration, and change variables from pe to Ee =
√

p2
e+m

2
e. Note that at this point pν and pe are independent variables, so the integral with

the δ function has unit Jacobian, and just gives a θ function which keeps Ee ≤ ∆;

Γn =
g4
w(g2

V +3g2
A)|Vud|2

64π3m4
W

∫ ∆

me

dEE
√

E2−m2
e(∆ − E)2 . (5.7)
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The integral is

∫ ∆

me

dEE
√

E2−m2
e(∆ − E)2 =

(2∆4 − 9∆2m2 − 8m4)
√

∆2−m2 + 15m4∆ ln ∆+
√

∆2−m2

m

60
.

(5.8)

Taking g2
V = g2

A = 1, |Vud|2 = 0.95, replacing g4
w/16m4

W with 2G2
F and using the other

numbers quoted we get a width of Γ ≃ 4.744 × 10−28 GeV. This corresponds to a lifetime

of 1/Γ = 2.108 × 1027/ GeV, which is 1387 seconds. This is longer than the actual life

time, mostly because the W boson does not couple to a neutron–proton like it couples to a

down quark–up quark. The amplitude of the axial coupling gA turns out to be enhanced by

approximately 1.267. As we see above, the width goes as (g2
V +3g2

A). This enhances the cross

section by (1+3g2
A)/4 ≃ 1.454 which explains most of the discrepancy; the corrected half life

is 950 seconds. There is still some discrepancy from the experimental value, due, for instance,

to the fact that the electron wave function is enhanced by the Coulomb interaction with the

proton; the matrix element should be multiplied by |ψ2(0)|/|ψ2(∞)|, ψ the wave function

of the electron in the presence of the proton’s Coulomb field (which depends on energy and

must be evaluated inside the integral over Ee). This is touched on in the discussion of the

“distorted wave Born approximation” in the notes, but you weren’t expected to do it.

5.3 Higgs decay to Wff̄

5.3.1 Matrix element

The widths with W+ and with W− in the final state are equal because of CP symmetry; the

two decay final states transform into each other under CP symmetry, and the Higgs boson is

CP even. Now CP is not an exact symmetry of the standard model, but it is only violated

due to the phase in the CKM matrix, which does not enter into this calculation and in fact

can only matter in quite high order phenomena.

The matrix element is

M =
2eWM

2
W

v
ǫα ηαµ

ηµν + qµqν/M2
W

q2 +M2
W

ū(pf , σf )γν(1 + γ5)v(pf̄ , σf̄ ) . (5.9)

Here, the HWW vertex contributed the 2M2
W
ηαµ/v, the fraction is the propagator, and the

Wff̄ vertex contributed the eWγν(1 + γ5).
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5.3.2 Squared matrix element

The spin summed M2 is,

M2 =
4M4

W
e2

W

v2

1

(q2 +M2
W

)2

(

ηµα +
qµqα
M2

W

)

∑

ǫ

ǫαǫβ∗
(

ηβν +
qβqν
M2

W

)

×

×
∑

σσ′

(−1)ū(pf , σ)γµ(1 + γ5)v(pf̄ , σ
′)v̄(pf̄ , σ

′)γν(1 + γ5)u(pf , σ) . (5.10)

The factor (−1) arose from moving β across γν when conjugating the second gamma matrix

expression.

Now, we use
∑

ǫ ǫ
αǫβ∗ = ηαβ + pα

W
pβ

W
/M2

W
, and the usual tricks with the spin sums on the

gamma matrices, to get

M2 =
4M4

W
e2

W

v2

1

(q2 +M2
W

)2

(

ηµα +
qµqα
M2

W

)(

ηαβ +
pα

W
pβ

W

M2
W

)(

ηβν +
qβqν
M2

W

)

×

×(−1) tr (−i/pf )γµ(1+γ5)(−i/pf̄ )γν(1+γ5) , (5.11)

where we have ignored mf in the last expression. We can move the (1+γ5) across the two

gamma matrices to get (1+γ5)2 = 2(1+γ5). The first line is symmetric in µ ↔ ν, so the γ5

term, which will be antisymmetric, will not contribute. Therefore, we get

M2 =
4M4

W
e2

W

v2

1

(q2 +M2
W

)2
8
(

pfµpf̄ν + pf̄µpfν − ηµνpf · pf̄
)

×

×
(

ηµα +
qµqα
M2

W

)(

ηαβ +
pα

W
pβ

W

M2
W

)(

ηβν +
qβqν
M2

W

)

. (5.12)

We can contract the indices here, but it will only do work we have to undo in a minute,

so we will not.

5.3.3 Integration on fermionic momenta

The width can be written as,

ΓH→W+ff̄ =
1

2p0
H

∫ d3pWd
3pfd

3pf̄
(2π)98p0

W
p0
fp

0
f̄

(2π)4δ4(pH − pW − pf − pf̄ )|M|2 . (5.13)

For our purposes it is convenient to introduce an extra integration over q, which is forced to

equal what it should by an extra delta function;

(2π)4δ4(pH − pW − pf − pf̄ ) =
∫ d4q

(2π)4
(2π)4δ4(pH − pW − q) (2π)4δ4(q − pf − pf̄ ) . (5.14)
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Now we write the problem as

Γ =
16M4

W
e2

W

p0
Hv

2

∫ d3pWd
4q

2p0
W

(2π)7
(2π)4δ4(pH − pW − q)

1

(q2 +M2
W

)2
×

×
(

ηµα +
qµqα
M2

W

)(

ηαβ +
pα

W
pβ

W

M2
W

)(

ηβν +
qβqν
M2

W

)

Iµν(q) ,

Iµν(q) ≡
∫ d3pfd

3pf̄
4p0

fp
0
f̄
(2π)6

(2π)4δ4(q − pf − pf̄ )
(

pfµpf̄ν + pf̄µpfν − ηµνpf · pf̄
)

. (5.15)

At this point we recognize this last quantity as almost one which was dealt with in the

notes. We know that it must be of form,

Iµν(q) = Aqµqν +Bηµν , (5.16)

and the coefficients can be gotten by contraction with qµqν and with ηµν . Note that q · pf =

p2
f + pf · pf̄ . But p2

f = 0 = p2
f̄

since both are lightlike (massless fermion approximation).

Therefore,

q · pf = q · pf̄ = pf · pf̄ = q2/2 . (5.17)

Using these, we can simplify the contractions of Iµν against qµqν and against ηµν :

qµqνI
µν = Aq4 +Bq2 =

∫ d3pfd
3pf̄

4p0
fp

0
f̄
(2π)6

(2π)4δ4(q − pf − pf̄ )

(

q2

2

q2

2
+
q2

2

q2

2
− q2 q

2

2

)

= 0 ,

ηµνI
µν = Aq2 + 4B =

∫ d3pfd
3pf̄

4p0
fp

0
f̄
(2π)6

(2π)4δ4(q − pf − pf̄ ) pf · pf̄ (1 + 1 − 4)

= −q2
∫ d3pfd

3pf̄
4p0

fp
0
f̄
(2π)6

(2π)4δ4(q − pf − pf̄ ) . (5.18)

This is the integral I(q) from the notes, and it is θ(−q2)/8π. Therefore, we find that

Iµν(q) =
−θ(−q2)

24π

(

q2ηµν − qµqν
)

. (5.19)

5.3.4 Total width

Return to our expression for the integration over the fermionic momenta.

This now allows some simplification of Eq. (5.15). Note in particular that ηµν − qµqν/q2

is a projection operator which “kills” qµ;

qµ
(

q2ηµν − qµqν
)

= q2qν − q2qν = 0 . (5.20)
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This helps a lot to simplify the previous expression. Namely, in (ηµα + qµqα/M2
W

), the qµqα

term gives zero, so those two objects just behave as ηµα and ηβν . The width becomes,

Γ =
2M4

W
e2

W

3πv2p0
H

∫ d3pWd
4q

2p0
W

(2π)7
(2π)4δ4(pH − pW − q)

1

(q2 +M2
W

)2
×

×
(

−3q2 − p2
W
q2 − (pW · q)2

M2
W

)

θ(−q2) . (5.21)

Note, though, that p2
W

= −M2
W

since the W is a real particle. The quantity on the last line

is (−2q2 + (pW · q)2/M2
W

), which is manifestly positive (as it should be).

The energy-momentum delta function neatly performs d4q. It enforces that q = pH−pW ,

which incidentally implies that q2 = p2
H +p2

W
−2pH ·pW , which in the rest frame of the Higgs

boson is

−q2 = M2
H +M2

W
− 2MHp

0
W
. (5.22)

Therefore, the step function, θ(−q2), becomes the step function θ(M2
H + M2

W
− 2MHp

0
W

).

That is, it enforces the kinematic constraint,

p0
W
≤ M2

H +M2
W

2MH

or |pW | ≤ M2
H −M2

W

2MH

. (5.23)

The angular integration is trivial, returning 4π. The remaining integral is,

Γ =
2M4

W
e2

W

3πv2MH

1

4π2

∫ max

0

p2
W
dpW

p0
W

−2q2 + (pW · q)2/M2
W

(q2 +M2
W

)2
. (5.24)

Next,

pW · q = pW · (pH − pW ) = −MHp
0
W

+M2
W
, (5.25)

and

(M2
W

+ q2)2 = (2MHp
0
W
−M2

H)2 = M2
H(2p0

W
−MH)2 . (5.26)

Also, we can rewrite

∫

M2
H

−M2
W

2MH

0

p2
W
dpW

p0
W

=
∫

M2
H

+M2
W

2MH

MW

dp0
W

√

(p0
W

)2 −M2
W
. (5.27)

For ease of notation we will now write p0
W

= E. We should also multiply by a factor of 9 for

the number of possibilities for the ff̄ pair (3 leptons plus 3 colors each of 2 quarks, just as

in the W boson width), and by a factor of 2 for the W− final state possibility. Therefore the

integration we want to perform is,

3e2
W
M4

W

π3MHν2

∫

M2
H

+M2
W

2MH

MW

dE
√

E2 −M2
W

3M2
W

+ 2M2
H − 6EMH + E2M2

H/M
2
W

M2
H(2E −MH)2

. (5.28)
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We can make this a little bit neater. (M2
W
/v2) = g2

2/4, and e2
W

= g2
2/8. Also, it is

convenient to define x = MH/MW . Then the above becomes

3MHα
2

2π sin4 ΘW

∫ x2
+1

2x

1
dy

3 + 2x2 + x2y2 − 6xy

x4(2y − x)2

√

y2 − 1 . (5.29)

Doing this integral analytically is not simple. However, we can observe the following prop-

erties:

1. The integral vanishes for x = 1, or MH = MW , which is the point where there is no

energy available for the ff̄ pair.

2. As x→ 1, the integral vanishes as (3/5)(x− 1)5.

3. The integral goes to infinity as x → 2. This is the point where the virtual W boson

propagator is achieving enough energy to be on-shell, so its propagator can “blow up.”

Handling this apparent divergence will be the subject of a couple of lectures when we

treat scattering via the Z boson resonance; basically it means that you should treat

the problem as a decay to two real W bosons.
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The numerical behavior of the integral is shown here:

Taking the values we are given, calling the integral I(x), the two widths,

ΓH→bb̄ =
3m2

b

8πv2
MH ≃ 2.56 × 10−5MH and

ΓH→Wff̄ =
3α2

2π sin4 ΘW

MHI(x) ≃ 5.45 × 10−4MHI(x) , (5.30)

equal when I(x) = .047, which is at x = 1.74 or MH = 1.74MW = 140 GeV. Plotting it,

The steep line is H → Wff̄ , the shallow line H → bb̄.
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5.4 The miracle of Lorentz invariance

To appear
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Chapter 6

Leptonic weak interactions: collisions

6.1 Crossing symmetry

We have that the matrix element for Møller scattering, e−e− → e−e−, is

|M|2 = 2e4

(

s2 + u2

t2
+
s2 + t2

u2
+

2s2

tu

)

. (6.1)

Now write the incoming momenta for that process as p, p′ and the outgoing momenta as

k, k′. To get Bhabha scattering, one should exchange a final state e− and an initial state e−,

say, by flipping p′ → −k′ and k′ → −p′. Under this transformation,

s = −2p · p′ → +2p · k′ = u ,

t = +2p · k → +2p · k = t ,

u = +2p · k′ → −2p · p′ = s , (6.2)

and there is a factor of (−1)2 from moving two fermionic lines between initial and final states.

Therefore, the Bhabha matrix element is,

|M|2 = 2e4

(

s2 + u2

t2
+
u2 + t2

s2
+

2u2

ts

)

= 2e4

(

s2

t2
+
t2

s2
+
[

u

t
+
u

s

]2
)

. (6.3)

Going from |M|2 to dσ/dudt introduces the additional factor of 1/(16πs2) which takes this

expression to the desired one (note that e4/16π = πα2).

6.2 Electron-neutrino scattering

The single diagram is W boson exchange,
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f̄

W−

The matrix element is,

M = e2
WU

∗
mnv̄(p

′)γµ(1+γ5)u(p)
ηµν + (p+p′)µ(p+p′)ν

M2
W

(p+p′)2 +M2
W

ūn(k)γ
ν(1+γ5)vm(k′) . (6.4)

We can drop the (p+p′) term in the propagator, in the limit of massless e− and νe, because

it gives a term proportional to

v̄(p′)(/p′ + /p)(1+γ5)u(p) = v̄(p′)/p(1+γ5)u(p) = v̄(p′)(1−γ5)/pu(p) = 0 , (6.5)

where we used the Dirac equation twice.

Squaring and summing over external states, NOTING that there is no sum over the spin

of the neutrino because there is only one available spin of neutrino, gives

|M̄|2 =
e4WU

∗
mnUmn

2(s−M2
W )2

tr /p′γµ(1+γ5)/pγν(1+γ5) tr /kγµ(1+γ5)/k′γν(1+γ5) . (6.6)

The traces give,

tr /p′γµ(1+γ5)/pγν(1+γ5) = 8
(

pµp′ν + p′µpν − ηµνp · p′ + iǫµναβpαp
′
β

)

,

tr /kγµ(1+γ5)/k′γν(1+γ5) = 8
(

kµk
′
ν + k′µkν − ηµνk · k′ − iǫµναβk

αk′β
)

. (6.7)

Contracting these gives,

64
(

2p·kp′·k′+2p·k′p′·k+(4−4)p·p′k·k′−2(p·kp′·k′−p·k′p′·k)
)

= 256p·k′p′·k = 64u2 . (6.8)

Next, write e4W = G2
FM

4
W/2, and combine; the matrix element is,

|M̄|2 = 16G2
F |Umn|2u2 M4

W

(s−M2
W )2

. (6.9)

Using the relation from the notes, that

1

|v1 − v2|2p0p′0
=

1

2s
(6.10)
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and that the rest of the phase space is,

(2π)4δ4(p+p′−k−k′) d3kd3k′

(2π)62k02k′0
=

−1

8πs
δ(s+t+u)dtdu , (6.11)

gives

dσ

dudt
= −G

2
F

π
|Umn|2

u2

s2

(

M2
W

s−M2
W

)2

δ(s+t+u) , (6.12)

as desired.

Now consider the case f = µ, f̄ = ν̄µ. This is related to the case where νµ is an in

particle and νe is an out particle by exchanging ν̄e → ν̄µ to νµ → νe, that is, switching both

neutrinos between the initial and final states. This makes the exchange, p′ ↔ −k′, which

as we have seen makes the exchanges, s → u, u → s in the matrix element (though not in

the treatment of the final state phase space factors). This modifies the cross-section we just

found to
dσ

dudt
=
G2
F

π

(

M2
W

u−M2
W

)2

δ(s+t+u) . (6.13)

6.3 Supernova neutrinos

This problem solution is incomplete.

6.3.1 Diagrams

The first two have a single diagram with Z exchange; the other two have W exchange as

well, in either the t or s channel.

νµe
− → νµe

−:

����
��*

HHHH
HHj

s
�
�

�
�

�
�

�
�

�
�

�
�

s

HHHH
HHj

����
��*

e−

νµ

e−

νµ

Z

ν̄µe
− → ν̄µe

−:
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ν̄e

W

We see already that the νe and ν̄e diagrams will be a potentially larger pain than the νµ

and ν̄µ diagrams.

6.3.2 Cherenkov radiation

In order to C̆erenkov radiate, the velocity must exceed 1/n, requiring

p

E
>

1

n
; n2p2 > E2 ; (n2 − 1)E2 > n2m2 ; E >

n√
n2 − 1

m = 1.51m (6.14)

For an electron this requires 775 KeV; for a hydrogen nucleus it requires 1400 MeV, which

is far more than is available.

Note however that the reaction ν̄e + p → e+n is promising, as the e+ can carry enough

energy. In fact, the SNO detector looks for a similar reaction in heavy water (actually,
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νe + n → e− + p, which is possible because there are weakly bound neutrons available in

heavy water).

6.3.3 Kinematics

The lab-frame, total momentum 4-vector is (m + ω, ω, 0, 0). The velocity of the center of

mass is v = pl/p
0
l = ω/(m + ω). The gamma factor for this velocity, which is the same as

the velocity of the boost between the center of mass and lab frames, is

γ =
1√

1 − v2
=

m+ ω√
2mω +m2

. (6.15)

In the center of mass frame, the initial 4-momentum is (p0
c ,−pc, 0, 0), with p0

c = γm

and pc = γvm. The final 4-momentum is (p0
c , pc cosϕ, pc sinϕ, 0) (not worrying about the

irrelevant azimuthal angle). Boosting back, the lab frame momentum is















γ γv 0 0

γv γ 0 0

0 0 1 0

0 0 0 1





























p0
c

pc cosϕ

pc sinϕ

0















=















γ(p0
c+vpc cosϕ)

γ(vp0
c+pc cosϕ)

pc sinϕ

0















. (6.16)

The tangent of the angle with respect to the neutrino’s axis (which I have been writing at

the top entry in the momentum vector) is the ratio of the second to first entries in this

momentum vector:

tan θ =
px(lab)

pz(lab)
=

pc sinϕ

γ(pc cosϕ+ vp0
c)
. (6.17)

Using the relation between p0 and p, found above, p = vp0, and dividing by p, and substi-

tuting the determined value of γ, we find

tan θ =
sinϕ

cosϕ+ 1

√
2mω +m2

m+ ω
. (6.18)

This relation is exact, we did not have to make any small m/ω expansion.

For the energy of the electron it is best to work entirely in the lab frame. Write the final

electron 4-momentum in the lab frame as (E, pz, px, 0), and the final neutrino 4-momentum

is, by 4-momentum conservation, (m + ω − E,ω − pz,−px, 0). These satisfy the mass shell

conditions,

E2 = m2 + p2
z + p2

x , (m+ ω − E)2 = (ω − pz)
2 + p2

x . (6.19)

Taking the difference,

2E(m+ ω) = 2m(m+ ω) + 2ωpz . (6.20)

41



Divide by 2(m + ω), move m to the other side, write pz = p cos θ = cos θ
√
E2 −m2, and

square both sides;

(E −m)2 =
ω2 cos2 θ

(m+ ω)2
(E2 −m2) . (6.21)

Now cancel a factor of (E −m), and regroup terms;

E

(

1 − ω2 cos2 θ

(m+ ω)2

)

= m

(

1 +
ω2 cos2 θ

(m+ ω)2

)

, E = m

(

(m+ ω)2 + ω2 cos2 θ

(m+ ω)2 − ω2 cos2 θ

)

. (6.22)

Note again that the result is exact, we have not needed ω ≫ m.

For θ = 0, in the large ω limit, the ω2 factors in the denominator cancel and this reduces

to

E(θ = 0) = m
m2 + 2mω + 2ω2

m2 + 2mω
≃ ω . (6.23)

For θ ≃
√

m/ω, then cos2 θ ≃ 1 − θ2 ≃ 1 − m/ω; the numerator is unchanged at leading

order, the denominator becomes approximately m2 + 2mω +mω, so E ≃ (2/3)ω. Therefore

the range of energies is of order a factor of 2 (with the estimate made for θ, we would say a

range from 1 to 2/3.)

6.3.4 Effective interaction

We have,

ν̄eγ
µ(1+γ5)eēγµ(1+γ5)νe = ν̄eγ

µ(1+γ5)eē(1−γ5)γµνe

= −1

2

[

ēγν(1+γ5)e
]

ν̄eγ
µ(1+γ5)γνγµνe

= −1

2

[

ēγν(1+γ5)e
]

ν̄eγ
µγνγµ(1+γ5)νe

= −1

2

[

ēγν(1+γ5)e
]

ν̄e(−2γν)(1+γ5)νe

= ēγν(1+γ5)e ν̄eγν(1+γ5)νe , (6.24)

as desired. In the first transformation we used that the quantity in square brackets is a scalar

and may be moved to the outside. We also used γµγνγµ = −2γν . Renaming the dummy

index ν to µ gives the desired result.

The two terms present now look the same except for the coefficients on γ5 and 1 in the

electron part of the Z exchange parts. Therefore they can be added, defining hV and hA as

defined in the problem.
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To get the matrix element is now trivial; replace ν̄, ν, etc with the appropriate ū and u’s;

M =
iGF√

2
ū(q′)γµ(1+γ5)u(q) ū(p′)γµ(hV +hAγ

5)u(p) (6.25)

for ν scattering; for ν̄ scattering the first term is v̄(q)γµ(1+γ5)v(q′) instead.

6.3.5 Cross-section

When we square and average over spins, we must remember there is only one factor of (1/2)

in the spin averaging, since a neutrino only has one spin state. The matrix element squared

for neutrino scattering is

1

2
|M|2 =

GF

4
tr (−iq/′)γµ(1+γ5)(−iq/)γν(1+γ5)

tr (−i/p′+m)γµ(hV +hAγ
5)(i− /p+m)γν(hV +hAγ

5) . (6.26)

The case of antineutrinos differs by q ↔ q′. Cancel off the −i’s, which puts +i in front of

each m. The first trace is

2 tr q/′γµq/γν(1+γ5) = 8
(

q′µqν + qµq′ν − gµνq · q′ − iǫµναβqαq
′
β

)

. (6.27)

For the case of antineutrinos, the sign of the last term flips, since it is odd in q ↔ q′; the

other term, which is even, stays the same.

The second trace is

−m2 tr (hV +hAγ
5)γµ(hV +hA)γν + tr /p′γµ/pγν(h

2
V +h2

A + 2hV hAγ
5) (6.28)

which is

4(h2
A−h2

V )m2gµν + 4
(

(h2
V +h2

A)
[

p′µpν + pµp
′
ν − gµνp · p′

]

− 2hV hAiǫµν
λσpλp

′
σ

)

. (6.29)

Contracting these two expressions, as usual the symmetric part of one expression vanishes

against the antisymmetric part of the other; so there are two terms. The gµν type terms in

the symmetric combination turn out to give 2 + 2− 4 = 0 times q · q′p · p′, since gµνg
µν = 4;

there is only a contribution from the p’s and q’s contracting against each other. The two

terms are

1

2

∑

σ

|M|2 = 16G2
F

[

m2(h2
V−h2

A)q · q′ + (h2
V +h2

A)(p · qp′ · q′ + p · q′p′ · q)
]

±16G2
F (2hV hA)(p · qp′ · q′ − p · q′p′ · q) , (6.30)
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where the upper term comes from the symmetric parts and the lower term from the anti-

symmetric ones; the ± is for neutrinos and antineutrinos respectively. The sign of the last

term is a bit tricky; there is a -1 from i2 and a −2 from contracting the ǫµναβ with ǫµνλσ.

Now we use h2
V +h2

A ± 2hV hA = (hV ± hA)2 to combine the two terms;

1

2

∑

σ

|M|2 = 16G2
F

[

m2(h2
V−h2

A)q · q′ + (hV±hA)2p · qp′ · q′ + (hV∓hA)2p · q′p′ · q
]

. (6.31)

This is the desired result; the power of 2 we would not tell you, is 16.

Now we need a center of mass frame differential cross-section in the small m limit. The

small m limit means we drop the m2 term above and take p · q = p′ · q′ = s/2 and p · q′ =

p′ · q = −u/2 so the matrix element becomes

1

2

∑

σ

|M|2 = 4G2
F

[

(hV ± hA)2s2 + (hV ∓ hA)2u2
]

. (6.32)

In the center of mass frame, in terms of ωcm =
√
s/2, s2 = 16ω4

cm and u2 = 4ω4
cm(1− cosϕ)2.

(You would expect u to involve 1+cosϕ, but we defined the angle with respect to the initial

neutrino, rather than electron, direction.) Therefore the cross-section is

σ =
1

4vrelω2
cm

∫ d3p′d3q′

(2π)6 2(q′)02(p′)0
(2π)4δ3(p′ + q′)δ(2ωcm − (p′)0 − (q′)0) ×

×64G2
Fω

4
cm

[

(hV±hA)2 +
1

4
(hV∓hA)2(1− cosϕ)2

]

. (6.33)

The relative velocity is 2. Think about it! Each particle has velocity 1, and they are

moving at each other, that is, in opposite directions. The δ3 performs the d3q′ integration,

forcing (q′)0 = (p′)0. The d3p integration can be written as dφ d cosϕ p′2dp′, and the φ

integration is trivial and gives 2π. So far, then, we have

σ =
1

8ω2
cm(2π)

∫ 1

−1
d cosϕ

∫ ∞

0
p′2dp′

1

4p′2
δ(2ωcm − 2p′) ×

×64G2
Fω

4
cm

[

(hV±hA)2 +
1

4
(hV∓hA)2(1− cosϕ)2

]

. (6.34)

The delta function gives
∫

dp′δ(2ωcm −2p′) = (1/2), forcing p′ = ωcm (which we already used

to simplify the matrix element). Combining the remaining terms, we indeed get

dσ

d cosϕ
=
G2
Fω

2
cm

2π

[

(hV±hA)2 +
1

4
(hV∓hA)2(1− cosϕ)2

]

. (6.35)

Each term is positive definite, and the second term carries all the cosϕ dependence. It is

maximum when cosϕ = −1, which is at ϕ = π.
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Now perform the cosϕ integration;
∫

1 = 2,
∫

cos2 ϕ = 2/3, and
∫

cosϕ = 0. Therefore

the total cross-section is

σ =
G2
Fω

2
cm

π

[

(hV±hA)2 +
1

3
(hV∓hA)2

]

. (6.36)

It remains to re-express ω2
cm in terms of lab frame quantities; ω2

cm = s/4, and as we saw

earlier, s = 2mω +m2 ≃ 2mω. Therefore ω2
cm = mω/2. The cross-section is therefore

σ =
G2
Fmω

2π

[

(hV±hA)2 +
1

3
(hV∓hA)2

]

. (6.37)

Now for the ratios; we have

electrons : hV =
1

2
+ 2 sin2 θW ≃ 1 , hA =

1

2
;

muons or taus : hV = −1

2
+ 2 sin2 θW ≃ 0 , hA = −1

2
; (6.38)

so

σνee ∝
(

1 +
1

2

)2

+
1

3

(

1 − 1

2

)2

=
9

4
+

1

12
=

7

3
;

σν̄ee ∝
(

1 − 1

2

)2

+
1

3

(

1 +
1

2

)2

=
1

4
+

9

12
=

3

3
;

σνµe ∝
(

0 +
1

2

)2

+
1

3

(

0 − 1

2

)2

=
1

4
+

1

12
=

1

3
;

σν̄µe ∝
(

0 − 1

2

)2

+
1

3

(

0 +
1

2

)2

=
1

4
+

1

12
=

1

3
; (6.39)

and the ντ results are the same as the νµ results. Therefore the cross sections are in ratio

7 : 3 : 1 : 1 : 1 : 1 . (6.40)

Incidentally, this result is central to the first proof that the neutrinos from the Sun

are definitely oscillating into an “active” type of neutrino other than the electron neutrino.

Super-Kamiokande looks for the scattering of neutrinos off of electrons, which detects both

electron neutrinos and other types, but is about 7 times more sensitive to the electron type

neutrinos. SNO detects the scattering of electron neutrinos off of Deuterium, νeD → e−pp,

which ONLY the electron neutrino can induce. (You can tell these apart from νe → νe

electrons from the very different angular distribution of the outgoing neutrinos; the former

are very “forward,” as we saw in this problem; the latter are almost isotropic and are

slightly more common in the backwards direction.) There was a clear discrepancy between

the neutrino flux the two measured, because most of the neutrinos were νµ or ντ and therefore

contributed, somewhat, in Super-K but not in SNO. Now SNO has also measured the rate

of νD → νnp, which is equally sensitive to all three types of neutrinos (it is purely Z boson

exchange), and confirmed that there are the expected extra number of νµ and ντ .
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6.4 Higgsstrahlung

6.4.1 Matrix element

The phase space integration for the cross section is, taking the relative velocity to be ≃ 2,

σ =
1

2s

∫ d3pZd
3pH

(2π)62p0
Z2p0

H

(2π)4δ3(pZ+pH)δ(
√
s− p0

Z − p0
H)|M|2 . (6.41)

Here we are in the center of mass frame, and have written the energy and momentum

integrations separately. We will also define the total momentum pZ+pH = pe− + pe+ ≡ q,

and the incoming electron and positron momenta as p and p′ respectively. Note that q2 = −s.
The matrix element is

M = −eZM
2
Z

v
ǫ∗ν





ηµν + qµqν

M2
Z

s−M2
Z



 v̄(p′, σ′)γµ(gV +gAγ
5)u(p, σ) . (6.42)

Squaring this and averaging over electron and positron spins and summing over final state

Z particle polarizations gives

1

4

∑

σ,λ

|M|2 =
(g2

2+g
2
1)

2M2
Z

16(s−M2
Z)2

(

ηαβ +
pαZp

β
Z

M2
Z

)(

ηαµ+
qαqµ
M2

Z

)(

ηβν+
qβqν
M2

Z

)

×

× tr /pγµ(gV +gAγ
5)/p′γν(gV +gAγ

5) . (6.43)

Now note that the quantities from Z boson propagators and external states is symmetric

in µ, ν. Therefore the contribution from a single γ5, which will be antisymmetric in µ and

ν, vanishes. The trace yields

tr /pγµ(gV +gAγ
5)/p′γν(gV +gAγ

5) = 4(g2
V +g2

A)(−ηµνp·p′+pµp′ν+pνp′µ) + antisymm . (6.44)

As usual, qµ = (p+p′)µ and qν vanish against this combination, so the Z boson propagators

can be simplified by dropping those parts. If you don’t believe me,

(p+p′)µ (pµp′ν + pνp′µ − ηµνp · p′) = (p · p′p′ν + p · p′pν − p · p′(p+p′)ν) = 0 . (6.45)

The matrix element is therefore

1

4

∑

σ,λ

|M|2 =
(g2

2+g
2
1)

2M2
Z(g2

V +g2
A)

4(s−M2
Z)2

(

−p · p′ + 2
pZ · p pZ · p′

M2
Z

)

,

=
(g2

2+g
2
1)

2M2
Z(g2

V +g2
A)

8(s−M2
Z)2

(

s+
(t−M2

Z)(u−M2
Z)

M2
Z

)

. (6.46)
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6.4.2 Total cross-section

We will use Eq. (6.41) and Eq. (6.46). The spatial delta function performs the pH integration.

The relation between the energies, masses, p2
Z , and s, are (defining ECM ≡ √

s)

E2
Z = E2

H − 2EHECM + E2
CM gives

EH =
ECM

2
+
M2

H −M2
Z

2ECM

,

EZ =
ECM

2
− M2

H −M2
Z

2ECM

,

p2
Z =

(E2
CM −M2

Z −M2
H)2 − 4M2

HM
2
Z

4E2
CM

. (6.47)

The Jacobian for the delta function is

d

dp

(

√

p2+M2
Z +

√

p2+M2
H − ECM

)

=
p

EH
+

p

EZ
=

pECM

EHEZ
. (6.48)

Its inverse appears if we use the delta function to perform the momentum integration; that

neatly cancels the factors of EH and EZ in the denominator. The cross-section has become

σ =
1

32π2E2
CM

p

ECM

∫

dΩ|M|2 . (6.49)

It remains only to evaluate t and u, and to do the angular integral. We have

t ≡ −(p1 − pZ)2 = −p2
1 + 2p1 · p2 − p2

2 = 0 − ECMEZ + ECM|pZ | cos θ +M2
Z , (6.50)

and

u ≡ −(p1 − pH)2 = −ECMEH − ECM|pZ | cos θ +M2
H = −ECMEZ − ECM|pZ | cos θ +M2

Z ,

(6.51)

where we define θ as the angle between e− and Z (and hence π − θ is the angle between e−

and H). Checking (as we should have to begin with) and using s = E2
CM, we do indeed find

(s+ t+ u) = M2
Z +M2

H . The matrix element is therefore,

1

4

∑

σ,λ

|M|2 =
(g2

2+g
2
1)

2M2
Z(g2

V +g2
A)

8(s−M2
Z)2

(

E2
CM +

E2
CME

2
Z − E2

CMp2
Z cos2 θ + cos θ . . .

M2
Z

)

. (6.52)

We have not bothered writing the argument of cos θ, because it vanishes when we integrate

over angles. On integration over angles, there is an overall 4π, and cos2 θ → 1/3, cos θ → 0.

The final answer is messy:

σ =
(g2
V +g2

A)(g2
2+g

2
1)

2

64π

p

ECM(E2
CM−M2

Z)2

(

M2
Z + E2

Z − 1

3
p2
Z

)

. (6.53)

Here g2
A = 1/16 and g2

V = (sin2 θW −1/4)2 ≃ .00035. Maybe someone can figure out a tighter

way of writing this expression.
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6.4.3 Experimental limit

The luminosity of the LEP II accelerator was about 1032/(cm2s). Running for a few months,

say, 107 seconds, at center of mass energy
√
s=205 GeV, would LEP have been able to detect

a 110 GeV Higgs boson, if the condition for detection is a sample of 10 events?

We will be sloppy and take MZ = 91 GeV without decimal. Substituting in the explicit

numbers, we find (all in GeV)

ECM = 205

EZ = 93.2

EH = 111.8

pZ = 20

σ =
(.0629)(.302)

201

20

2.33 × 1011
(16800) = 1.36 × 10−10 GeV−2 . (6.54)

Under the described conditions, something with a cross-section of 10−38 cm2 could have

been observed. Using that 1 GeV−1 is approximately 2 × 10−14 cm, we get the above cross

section to be, in centimeters squared,

σ ≃ 5.3 × 10−38 cm2 . (6.55)

It looks like we would have expected about 53 events. This is enough provided that there is

a sufficiently clean signal.

In fact, the LEP people claimed an exclusion up to 114 GeV on the Higgs mass, on the

basis of running up to 208 GeV (though only at the highest energy for a very short while).

If you stick in the numbers, that sounds hard to believe–there would only be 3 GeV of extra

energy, and most of the data is where there was even less. However, some Z bosons are

produced a few GeV of energy below the supposed mass, as we will soon see; this becomes

important when you are so close to being energetically excluded. There were a few claimed

events, reconstructing to MH = 115 GeV, immediately before the machine was shut down

for good; but there is no consensus that this was a genuine observation of the Higgs boson.

6.5 Resonances

The cross-section is,

σ =
16π

s

2j + 1

(2s1 + 1)(2s2 + 1)

ΓΥ→ee

ΓΥ

=
12π

m2
Υ

2.8 × 10−5 . (6.56)
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Put this into barns; a barn is 10−24 cm2, and 1/GeV2 = 0.000388 barns. Therefore,

σ = 3.7 nb , (6.57)

where nb is nano-barns.

The downward correction due to initial state radiation is by about,

exp

(

−α
π

log
m2

Υ

m2
e

[

log
m2

Υ

Γ2
Υ

− 3

2

])

≃ exp−.55 ≃ 0.58 , (6.58)

so about 40% of the cross-section is lost to initial state radiation.

6.6 Compton scattering

To appear
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Chapter 7

Effective Lagrangians

7.1 Running b quark mass

Rewrite the first beta function as

µ∂

∂µ

1

g2
3

=
−46

3

1

16π2
(7.1)

which is solved by
1

α3

≡ 4π

g2
3

=
23

6π
(lnµ− ln ΛQCD) . (7.2)

From the data, α3(µ = 91 GeV), we get

ln ΛQCD = ln(91 GeV) − 6π

23 × 0.118
⇒ ΛQCD = .0876 GeV . (7.3)

Another way of writing the QCD beta function expression is,

µ∂

∂µ
ln g2

3 =
−23

24π2
g2
3 , d ln g2 =

−23

24π2
g2
3d lnµ . (7.4)

This lets us rearrange the other equation as follows:

∂

∂ lnµ
h33 =

−8g2
3h33

16π2
(7.5)

∂

∂ lnµ
lnh33 =

−8g2
3

16π2
(7.6)

d lnh33 = −g
2
3d lnµ

2π2
(7.7)

d lnh33 = − g2
3

2π2

24π2

−23g2
3

d ln g2
3 (7.8)

d lnh33 =
12

23
d ln g2

3 . (7.9)
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That means, simply, that

h33(µ1)

h33(µ2)
=

(

g2
3(µ1)

g2
3(µ2)

)
12

23

. (7.10)

Therefore,

h33(120 GeV)

h33(4.24 GeV)
=

(

g2
3(120 GeV)

g2
3(4.24 GeV)

) 12

23

=

(

ln(4.24 GeV/ΛQCD)

ln(120 GeV/ΛQCD)

) 12

23

= 0.723 (7.11)

This is the rescaling of the effective b mass, leading to

mb(µ = 120 GeV) = 0.723 × 4.24 GeV = 3.07 GeV . (7.12)

7.2 Hypercharge beta function

To appear

7.3 WW scattering and unitarity

7.3.1 Polarization vectors

The longitudinal polarization vector is given, up to an arbitrary phase, by

ǫµ(p, λ3) =

(

|p|
MW

,
p0

MW

p̂

)

, (7.13)

with p̂ the unit vector in the direction of p. This satisfies ǫ2 = (−p2 + (p0)2)/M2
W = 1,

ǫ · p = (−|p|p0 + |p|p0)/MW = 0, and is orthogonal to the other (transverse) polarization

vectors.

The four polarization vectors are therefore,

ǫµ(p1, λ3) =
(

p

MW

,
E

MW

, 0 , 0
)

,

ǫµ(p2, λ3) =
(

p

MW

, − E

MW

, 0 , 0
)

,

ǫµ(k1, λ3) =
(

p

MW

,
E

MW

cos θ ,
E

MW

sin θ , 0
)

,

ǫµ(k2, λ3) =
(

p

MW

, − E

MW

cos θ , − E

MW

sin θ , 0
)

. (7.14)

For future reference, and using that all the momenta will have the same magnitude in

the rest frame, we find ǫ(p, λ3) · ǫ(k, λ3) = (E2 cos θ − p2)/M2
W .
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7.3.2 Matrix element

The three diagrams are, the four-W interaction and t and s channel Z exchange:
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W−, p2
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W−, k2

W+, k1

Z

Let us work out the matrix element for each, in turn. For the first, it is,

M1 = −g2
2 [2ηµνηλρ − ηµληνρ − ηµρηνλ] ǫ

µ
1ǫ
ν
4ǫ
λ
2ǫ
ρ
3 . (7.15)

Here ǫ1 means the one for p1, ǫ3 means the one for k1, and we will use this notation throughout

what follows. Note: the factor of 1/4 in the Feynman rule is canceled by the four ways

the operators in the vertex can attach to the external states; the initial state W+ can be

annihilated by either of the W+ in the vertex, the final state W+ can be created by either

of the W− operators. NOTE that the W+ operators destroy the incoming W+ and create

the outgoing W−, that is why the 2 term in [ ] connects the incoming W+ with the outgoing

W−.

Evaluating the external polarization contractions, gives

M1 = −g2
2 (2ǫ1 · ǫ4ǫ2 · ǫ3 − ǫ1 · ǫ3ǫ2 · ǫ4 − ǫ1 · ǫ2ǫ3 · ǫ4) ,

= − g2
2

M4
W

(

2(p2 + E2 cos θ)2 − (−p2 + E2 cos θ)2 − (p2 + E2)2
)

,

=
g2
2

M4
W

(

E4(1 − cos2 θ) + p2E2(2 − 6 cos θ)
)

. (7.16)

This term is O(E4/M4
W ), and its sign can depend on the angle cos θ. Substituting p2 =

E2 −M2
W to find like-order terms, this becomes,

g2
2

[

(3 − 6 cos θ − cos2 θ)
E4

M4
W

+ (6 cos θ − 2)
E2

M2
W

]

. (7.17)

The next contribution is from the t-channel Z boson exchange, which gives,

M2 = −g2
2 [ǫ1 · (p1 − 2k1)ǫ

µ
3 + ǫ3 · (k1 − 2p1)ǫ

µ
1 + ǫ1 · ǫ3(p1 + k1)

µ] ×
× [ǫ4 · (2p2 − k2)ǫ

ν
2 + ǫ2 · (2k2 − p2)ǫ

ν
4 + ǫ2 · ǫ4(−p2 − k2)

ν ] ×

×
ηµν + (p1−k1)µ(p1−k1)ν

M2
W

M2
W + (p1 − k1)2

. (7.18)
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Note that we have M2
W rather than M2

Z appearing here; that is because we have made the

approximation that g1 = 0, in which case the two masses are the same.

Now we have to evaluate this mess. A few tricks help; ǫ1 · p1 = 0 and similarly for the

other combinations, and (p1 + k1) · (p1 − k1) = p2
1 − k2

1 = 0. Therefore, we can show that the

term in the propagator which is not ηµν , contributes zero;

[ǫ1 · (−2k1)ǫ
µ
3 + ǫ3 · (−2p1)ǫ

µ
1 + ǫ1 · ǫ3(p1 + k1)

µ] (p1−k1) = −2ǫ1·k1ǫ3·p1+2ǫ3·p1ǫ1·k1+0 = 0 .

(7.19)

The first bracket is,

−2k1 · ǫ1ǫµ3 − 2p1 · ǫ3ǫµ1 + ǫ1 · ǫ3(p1+k1)
µ =

2Ep(1 − cos θ)

MW

(ǫ1+ǫ3)
µ +

(E2 cos θ − p2)

M2
W

(p1+k1)
µ .

(7.20)

The other bracket is similarly,

2Ep(cos θ − 1)

MW

(ǫ2+ǫ4)µ +
p2 − E2 cos θ

M2
W

(p2+k2)µ . (7.21)

Contracting, we get,

g2
2

M4
W (2p2(1 − cos θ) +M2

W )
(

−8E2p2(1 − cos θ)2(2p2 + E2(1 + cos θ)) + 4E2p2(1 − cos θ)(3 + cos θ)(p2 − E2 cos θ)

+4E2p2(1 − cos θ)(3 + cos θ)(p2 − E2 cos θ) − 2(E2 cos θ − p2)2(2E2 + p2(1 + cos θ))
)

,(7.22)

which on re-arranging a bit, becomes, (writing cos θ = c in what follows)

g2

M4
W (2E2(1 − c) +M2(2c− 1))

(

−2E6(1 − c)2(3 + c) + 2E4M2
W (1 − c)(3 − 10c− c2)

−2E2M4
W (1 − 2c)(1 − 5c) + 2M6

W (1 + c)
)

. (7.23)

For future reference, the most singular parts of this are

−g2 E
4

M4
W

(1 − c)(3 + c) + g2 E
2

M2
W

(

3

2
− 15

2
c
)

. (7.24)

Finally, the s-channel diagram gives,

M3 =
+g2

4E2 −M2
W

((p1 − p2)µǫ1 · ǫ2 + ǫ2 · (−2p1 − p2)ǫ1µ + ǫ1 · (p1 + 2p2)ǫ2µ)

× ((k1 − k2)
µǫ3 · ǫ4 + ǫ3 · (k1 + 2k2)ǫ

µ
4 + ǫ4 · (−2k1 − k2)ǫ

µ
3) . (7.25)

53



The first bracket simplifies to,

(

p2 + E2

M2
W

(p2 − p1) +
4Ep

MW

(ǫ1 − ǫ2)

)

. (7.26)

The second bracket is similarly,

(

p2 + E2

M2
W

(k2 − k1) +
4Ep

MW

(ǫ3 − ǫ4)

)

. (7.27)

Contracting therefore gives,

g2

M4
W (4E2 −M2

W )

(

4p2(E2 + p2)2c− 32E2p2(p2 + E2)c+ 64E4p2c
)

. (7.28)

The leading order in E2 terms here are,

g2c

(

4
E4

M2
W

+
E2

M2
W

)

. (7.29)

7.3.3 The problem

Summing the three terms, we find that the leading in E behavior cancels,

g2 E
4

M4
W

(

3 − 6c− c2 − 3 + 2c+ c2 − 4c
)

= 0 , (7.30)

but the next to leading behavior,

g2 E
2

M2
W

(

6c− 2 +
3

2
− 15

2
c+ c

)

= g2 E
2

M2
W

(

−1

2
− 1

2
c
)

, (7.31)

does not cancel.

The matrix element squared should not exceed (16π)2, otherwise the cross-section, ∼
1

16πs
|M|2, will exceed the unitarity bound, 16π/s. This is the case unless the matrix element’s

divergent behavior is only at very small angles, that is, for singularities near c = 1. Since

our matrix element is a simple polynomial in c, this is not the case.

Roughly, this means we get in trouble when

E2 =
16πM2

W

g2
≃ 120M2

W , (7.32)

which happens for E ≃ 900 GeV. Beyond this energy, the scattering cross-section is larger

than phase shift analysis allows it to be.
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7.3.4 Higgs to the Rescue

The s channel Higgs diagram contributes,

−4M4
W

v2

1

M2
H − 4E2

ǫ1 · ǫ2ǫ3 · ǫ4 , (7.33)

where the first fraction is the coupling squared and the second is the Higgs propagator. Note

that 4M2
W/v

2 = g2
2.

The diagram is clearly only O(E2/M2
W ), so we will only evaluate it to this accuracy.

Contracting polarization tensors, we find,

g2
2

E2

M2
W

. (7.34)

Similarly, the t channel diagram is,

−4M4
W

v2

1

M2
H + 2p2(1 − c)

ǫ1 · ǫ3ǫ2 · ǫ4 = −g2
2

(1 − c)

2

E2

M2
W

. (7.35)

Adding these contributions, the divergent part is

g2 E
2

M2
W

(

1

2
+

1

2
c
)

, (7.36)

which exactly cancels the divergent part of the matrix element from Z exchange and the

quartic interaction.

Therefore, the matrix element is finite and unitarity is safe, PROVIDED that the Higgs

boson exists and has a mass below about 900 GeV.
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Chapter 8

Hadrons and QCD

8.1 η0 mixing

To appear

8.2 Technical issues in Goldstone’s theorem

To appear

8.3 Physical interpretatin of the chiral parameter c

To appear
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Chapter 9

Hadronic interactions

9.1 Low energy photon-proton scattering

To appear

9.2 Color factors

To appear

9.3 DGLAP kernel functions

To appear

9.4 Pascos-Wolfenstein ratio

To appear

9.5 Light scalar quark

To appear

9.6 Top quark production

To appear
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9.7 Isospin transitions

To appear

9.8 π+ decays

To appear

9.9 Neutral pion decay

To appear
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Chapter 10

Neutrino masses

10.1 Dimension-5 interactions

To appear

10.2 Neutrino decay

To appear

10.3 MSW effect and sterile neutrinos

To appear

10.4 Dimension-5 operators with squarks

To appear
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Chapter 11

Open problems, proposed solutions

11.1 Quadratic contributions to the Higgs mass

To appear

11.2 Fermion dipole moments

To appear

11.3 Redundant effective interactions

To appear

11.4 Anomalous gauge-boson self-couplings

To appear

11.5 Neutralinos in the MSSM

To appear
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