The Klein—Gordon equation

we use P* — jhO* and obtain the wave equation

(82 + e’

h2

or

—1?0,0" ¢ = m*P¢

) $(X,t)=0  « the Klein—Gordon equation

Its interpretation as a single particle is problematic. The equation describes a
scalar field but not in a single state but a multi-state, i.e. a quantised field.

Q>



ih
= Charge density p = ﬁ </mc "+ ime? qS qzb)

Charge current density _j = — <(;5 V(b + gf)V(;S )

-,

M=) =  04"=0

The interpretation of the solution of the KGE makes sense as charge density,
not as probability density.

— it makes sense as a quantum field — creating—annihilating particles
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1 1 1 1
The Lagrangian density : £ = 3 0" — §m2¢2 = 5(8¢)2 - §m2¢2

leads to the KG equation : (9% + m?)¢ =0

we can write: £ = %¢ - %(ng))2 - %m2¢2

. . oL
from which we derive m=— =
In ordinary quantum mechanics we impose the relations:

aé_‘b

[qiapj] - ’h(sl_la [qi7qj] = 05 [Pi;Pj] =0
[=] = E DAl
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In classical field theory the coordinates are replaced by the fields

qi — ¢(x) ) pi — m(x)

analoguesly, in quantum field theory we impose the equal-time commutation

relations
[6(%, 1), 7(R, t)] = ihd(X — %)
[6(%,£),6(%, )] = [x(%, £),7(¥', )] =0

where the Dirac d—function satisfies the properties

/ T H()3(x — a)dx = F(a)

— 00

g a
[ fstFCola = L where F(a) = 0

The commutation relations are equal time commutation relations

— canonical commutation relations
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In the Heisenberg picture the equations of motion are given by

ihée = [a,H]  where a — operator, H-Hamiltonian a # «(t)

consider:

(0%, 0), H] = [ ot5.1), [ [0, 07+ 3ol 0 + ot 7] o]

- / o3 {[8(%, ), 7(%, 0] + [6(%, 1), (o, )]
+ m? [¢(%, 1), ¢(x, t)%] }

Recalling that [¢(%, t), (%', t)] = 0 = [¢(>?, t), V(% t)} =0
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= [¢(x, 1), H]
3 [ (9. 0.7(2. 7]
= % / &X' (6%, t)n (X', 1)? = m(X', £)* (%, 1))
= %/de’xl (o, )m(X, t)m(¥, t) — m(X, t)p(X, t)m(¥, t)
+ (%, )X, ) (X 1) — 7 (X, t)n(X', t)o(X. 1))
— %/d3x’([¢(>?, t),m(X,t)] (X, t) + 7(X, t) [6(X, t), 7(¥, t)])
= ih/d3X’ (n(%,1)83(X — X)) = ihm(%, t) = ihd(X, t)
we obtained the correct equations of motion.

MATHA431 Lecture 14 2020-2021 Semester 2 6/10



The connection between the quatised field and its particle interpretation is seen

by looking at the Fourier transformed field

$(x) = (271T)4 / d*p d(p)e P~
i) = [ dtx e

For ¢(x) to satisfy the KG equation we must have

@+ m)p = / d*p (m? — P)d(p)e P*d*p = 0

(2m)*
i.e. (p* = m*)(p) =0
gzﬂb(p)#Oonlywhenp =m?
é(p) = (2m)d(p* — m*)f (p)
PO = PR
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we may set : () = 6(p°)F: () + 6(—p°)£_(B)

1 >0
ox)=4
0 x<0

where

from: the properties of the delta function we have

/f(x)é(x —a)dx = f(a)
using y = Ax %:dx

/f(x)é()\x ~ Aa)dx = / iy —ra) % =12
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Further, we evaluate

/a  FO)8(F () =
-/ :(f) (O iy = X iy
using y = F(x) , dy = F'(x)dx , x = F(y), dx = ﬁ
where y = F(a7) = 0.
Hence, &(p?—m?) = &(p% — (3°+ m?))
_ 2ipoa(po (B mA)E) + 2%)05(/30 + (% + m?)?)
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35 . .
o(X,t) = #/ Z—p': (e7P*f () + eP*_(P))

Here pg = \/p? + m?

£1(B) = F(+V/P. +P)

£(6) = (/7. ~5)
The fy term corresponds to positive energy states.

The f_ term corresponds to negative energy states.
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