MATH 328 — May 2009: Solutions

All problems are similar to homework problems or material covered in the lectures.

1.
ds? = dt? — dz? — dy? (1)
(a)
1 0 0 1 0 0
Juv = 0 -1 0 5 guy_ 0 -1 0
0 0 -1 0 0 -1

(b) The line element is invariant under 3 translations (d¢, dx and dy), 2 boosts (dtdz,
dtdy) and 1 rotation (dzxdy). The generators associated with the transformations are:
Py =0y, P1 = —10, and P, = —i0,, the generators of translations. K; and K, are
the boost generators and J3 is the generator of rotations in the (z,y) plane.

1
W = =P, Py
wo = _Leikgpo = Lo pp = e JiPe = JoP
- 2 gk — 2601jk gk — 2@%] gtk — Jkbk,
) 1 ... 1 .. 1 ..
Wi = —§eloijoij—§EZJOij0Pk—§e”kOijPO =

1 ., 1 .. 1 ...
— 56103kJ0ij — §EZOJkJ0ij + §EOZJijkPO =
+ %GOMRJQ]‘PR + %EOiijQij + %EOiijjkPO =

1
— €0ijkJoj Pr — §€Oijk=]jkp() = —jpK;P, — J; .

Hence

e

Wo = J-P,

WZ' == JZP() + Giijij .
In the case of the one+two dimensional line element Eq. (1), embedded in our usual
one+three dimensions,

K = (Ki,K5,0) and J = (0,0,J3).

For m = 0 we can take, without loss of generality, that P* = (p,0,p,0), P, =
(p,0,—p,0). Then

wo = o0,

W' = —€3K;jPy = —€103K2P3 — €130K3P = 0,

W? = —eK;jPy = —e13K1P3 — €231 K3P = 0,

W3 = —J3P) —e3js K; P = —J3Py — €312K1 Py — €301 Ko P, =
— Py~ K Py = —(Js + K1)Py.
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For m > 0 we can evaluate the Pauli-Lubanski vector most conveniently in the rest
frame, P* = (m,0,0,0). Then

Wo = 0,
W, =0,
Wy =0,
W3 = —Jsm.

and seen that f+ and J_ are both generating the algebra SU(2) but commute between
each other. In this way we have rewritten the Lorentz algebra as the algebra of
SU(2) x SU(2). As J__% and J2 are Casimir operators of the two commuting SU(2)
groups they are thus also invariants of the Lorentz group. We have

—_

J2 = (JP-K?*+2iJ-K),

—

J2 = Z(JP-K?-2iJ-K),

|
W

and hence ~
J2—K? = 2(2 + %),

e

J-K = —i(J3 - J2).
Therefore J2— K2 and J-K are Lorentz invariants as well, being the sum and difference

of Lorentz invariants.

For the representation (ji,j2) of the SU(2) x SU(2) algebra the number of states is
(241 + 1)(2j2 + 1). The total spin is given by j = j; + jo. Therefore the composition
J1 ® jo breaks under SU(2); with the following spin states

J1+je®hn+tj—1&--@|j1—ja-



3. (i) The Lagrangian of the two-dimensional harmonic oscillator is
Lo oy Lo o
L = im(x +79 )—ik(as +y7).

(ii) The Euler-Lagrange equations are

d OL 0L .
Gor or - METRr =0
d OL 0L ..
Qo oy Mtk =0

(iii) The Hamiltonian is

1 1 k
H = %(P3+P@2;)+§mw2($2+y2), with W=/

(iv) In polar coordintes we derive:

1 . 1
L = §m(7*2 +r2p?) — §k:r2,

oL )
pr= 5o =mi,
OL 5
Py = — =mr-¢
¢ 9
Hence we get
H = Zp‘cj—L = m1‘2+mr2qf32—lm(f2+r2$2)+lmw2r2
- (X 2 2
I 9ioy L o 9
= 2m(r +mr<¢o )—|—2mw r
2 2
1
= pL-l— P + —mw?r?.

2m  2mr?2 = 2

(v) There are two constants of the motion.
Since the Hamiltonian does not depend explicitly on time, the energy is a constant
of the motion with £ = H(qo,po). Since it does not depend explicitly on ¢, also py
is a constant of the motion, corresponding to conservation of the angular momentum
w.r.t. the symmetry axis.



4. (a) The generalised momentum

oL

The Hamiltonian density is defined by
H = ¢la)m(x) - L,

SO

H = /dgxé(x,t)w(x,t)—L = /Hdgx.

For the free Klein-Gordon field m = ¢ (as derived in the lecture) and hence
H = 1%+ 1 (Vo) + Im?¢?.

(b)
(6, 8), H) = [9x,t), [ (36,07 + HV'0x'0) + hm*o(x, 07) ]
= %/d3X’ ([p(x), 7(x')?] + [p(x), (V'¢(x)?] + m?[p(x), p(x)?]) -
Now
[6(x),0(x")] = 0 = [o(x),V'(x)] = 0,
and hence

ihg(x) = [¢(x),H] = %/(W(X')WX)JT(X')]JF[¢(X),7T(X/)]7T(X/)) d’x’
= ih/w(x')é(x—x')d?’x' = ihm(x).

Next calculate
ihwr(x) = [r(x,1), H]

= 3 [ X (VOIV6) mo)] + [T, 7V '0(x)
~dm? [ @ (@(0x), m(x)] + (), T ()

= — ih/d3x’ (V'o(x').V'é(x — x') + m*¢(x')d(x — X))

—in [ (9)26(x)0(x ~ ) ~ m*o(x)o(x ~ )

= i (V2(x) — m?6(x) .

Together with the previous step we immediately get the Klein-Gordon equation

o(x) = VZo(x) —m’p(x).
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YO +imyp = 0, (9T —imyt = 0
= (0N —imypt = 0 and (9" —imy = 0.
(a) With this

Op(y") = (Bu)y" ¢ + 97" (9u¥) = (imah)e + d(—imyp) = 0.
(b) Similarly, and with {7° v#} = 0 we get
Ou (o y°) = (Bud)V"' v + PyH°(8up) = (imh)y° b — py® (Y Ou) = 2imypyp.
(c) From the Dirac equation for the spinors s and u; we have
0 = ap(py —m)u; = upy"(p; — m)u;

= 2mupytu = ap(ppyt + " bi)us
and b+ b = Y s, Y i, -

Now
Y+ = 29",
VA =yt = —2ic™
= YHyY = gt —ich” and YAk = gt + it .
So we get

by +" b = 9" (py +pi)v + 10" (py — i)y = (pf +pi)" +ic" (pr —pi)w
and finally have derived the Gordon decomposition

1

apyu = o g (g + o) + 0™ oy = i) i



6.
(a)

Unitary equivalence and the ‘SU(2) miracle’:

(0 1 Q[0 (0 -1\ _ (10
2=\ _1 o) 1 0)\1 o) =~ \o 1)

SO 109 is unitary.

First step:

Second step: Prove by explicit matrix multiplication that oy 0} 00 = —0, (i = 1,2, 3).
For i =1 we have e.g.

cooron — (0 =) (0 LY (O0 =i\ _ (0 -1} _
27172 = i o 10 i o)  \=-1 o) v

Third step: Choose W = 104y, and with 0505 = 1 and the result of step two we write:

wWiUw = —iagU*iag = ogexp (—%9(10;) o9
= 0y (I — %QGO’Z — %%QGQG — é%@ﬁaebal’: —-.. ) o9
= (I + %Qaaa - i%eaea + é%@aﬁaebab —.. ) =U.
Taking the complex conjugate of
wivw = U

we now also have

whow* = U*

and as W = 1090 = W* we arrive at the desired relation

U = wtuw.

In the Standard Model, fermion and gauge boson masses are obtained in a gauge
invariant way through electroweak symmetry breaking which is mediated by a Higgs
potential. Because of the unitary equivalence between the fundamental and the com-
plex conjugate representations of SU(2), gauge invariant mass terms for both up- and
down quarks (which are grouped together in SU(2) doublets) can be constructed from
only one complex Higgs doublet. In other words, it is due to this special property of
SU(2) that the Higgs sector in the Standard Model is the minimal one resulting in
only one physical Higgs boson.



1 1 1
L = = D)2 — =202 — S\ (d?)?
S (0u00)* = SH207 — N67)
with 42 < 0 and XA > 0.

(a) The first term in the Lagrangian contains the kinetic terms of the three fields which
lead to the propagators in the Feynman rules. The second and third term are the
quadratic and quartic terms of the scalar potential. The coefficient A is chosen positive
as otherwise there would be no stable vacuum. Only with 2 < 0 we get a non-trivial
vacuum which allows for spontaneous symmetry breaking. As shown in (b) this leads
to mass terms (quadratic in the field) and interaction terms which lead to cubic and
quartic vertices in the Feynman rules.

(b)
1 1 1
L = 5 ((8u1)” + (0u02)” + (0u3)?) — Sh*(¢T + &5 + ¢3) — T (6T + 63 + ¢3)° .
2 2 4
The potential is
1 1
Vo= Sp(@]+ ¢5+ 65) + Ae1 + 65+ 65)”.
For spontaneous symmetry breaking we need a non-trivial minimum of the potential:

ov
95, = WG+ +3) i = 0,

SO we require
P2 NG+ 93+ 63) = 0.
We choose the non-vanishing vacuum expectation value to be

) = - =

and expand ¢; around the new vacuum after spontaneous symmetry breaking (keeping

(252 and ¢3)2
¢1(x) = v+ h(z).

Inserting this into the Lagrangian we get
5 (061 + (0u62)? + (Bu05))— 3 (v+h()*+63+63) ~ A (v-+h(2))+ 63 +3)°
and with —pu? = v?\ we arrive at
L = 3(0uh) + (Bua)? + (Buds )+
1)27/\(}12(:5) + 0% + 2vh(z) + ¢3 + B3) — %(61]%2(:5) +..) =
(0h)? + (Du62)” + (D)) — S MW ()

cubic and quartic interaction terms + constant .

N —

Hence the Lagrangian describes one massive scalar field and two massless ‘Goldstone
bosons’.



