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Chapter 1

Field theory review problems

1.1 Identities for Majorana spinors
First, note that

BC = 1NN C
= Ci3n717%
= Civonner =Cs (1.1)

where in the next to last step we used that distinct v matrices anticommute and it takes six
re-orderings to do the reversal of indices that we made.
To be general, consider 7,@17,“ . .%ﬂg%, a product containing n = 0, 1,2 gamma ma-

trices and m = 0, 1 factors of 5. Reversing the order of the objects, this is

R e A P T L P T U
D2C (v ) v Vi U1
= (=102 Y - - - Y CUF
o S E R A
(= )" ™™ oY - Yy Vst - (1.2)

This gives the first 4 relations directly. For the last, note that the order of the v matrices is
reversed in the above; this gives a minus sign due to the 7’s being combined in a commutator
(odd in the order).

Next, we do the same with Hermitian conjugation;

7 m t m
T A B A N I (1.3)



Move the 3 across the gamma matrices, producing one minus sign for each 7, or vs;

= <_1)m+n¢;ﬁ75m'yun .- ~’7M1¢1 (1'4)

and move the s, if any, across the v matrices, giving (—1)™";

= (_1)m+n+mn,&2f>/#n . 7#17?1/}1 . (15)

Combining these with the previous results, and remembering the — sign for reversing the
order of the v matrices in the commutator, gives the results quoted. Namely, we have the

simple expression,

7 m t m+2(n+mn m
(1#1%1 < Yun Vs ¢2) = (_ ) 2t ¢17u1 < Yun V5 . (1'6>

Only the m matters as the other piece is even.

1.2  O(N) scalar theories

GUY: CHECK IF THIS IS COMPLETE.

1.2.1 N =2 case

The symmetry ensures that terms with odd powers of fields are absent, and terms quadratic
in the fields do not contain ¢;¢s; and we can re-scale the fields to give canonical kinetic

terms; so the most general renormalizable Lagrangian is

; ((0u1)* + (Buira)” + mig? + m3e3) + i (Mot + Aaied +2e03) . (L7)

This can be rewritten as

2

vy 4 Ty g ML <w +9"%)
A A A )\ 3\ 3\ A
D (@/) ) AT (g ) PR T A ey (g )

The transformation rules for 1) and ¥* under rotation by angle 6 between ¢; and ¢5 are

V' = ¢ +igh = (¢ cos(B) + ¢asin(B)) 4 i(pa cos(f) — @1 sin(h)) = pre? +igoe™™, (1.9)

VY = @) —igh = (¢1cos(0) + dysin(6)) — i(p cos(f) — ¢y sin(f)) = ¢re? — igae®, (1.10)
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or

v —e % and Y — ey (1.11)

O(2) invariance requires that Lagrangian terms not pick up a phase under such a rotation.
This means that ¢ and 1* must appear an equal number of times in each term. Looking at

the Lagrangian, this forces
mf = mg, )\1 = >\2 s )\12 = 2)\1 . (]_].2)

The resulting Lagrangian is

L = ; ((0u1)® + (Bura)” + m*(&7 + ¢3) ) + Z (6% +43)
= (0" 0"+ mPpty + AW . (1.13)

m? > 0: vacuum is ¢, = ¢ = 0 and masses are m.

m? < 0: the vacuum is whatever field values minimize the potential. This is not unique
but by field redefinition (precisely a rotation by some angle ) we can take it to be ¢; =
\/m2/\ and the masses squared are m? = [—2m?| > 0 and m2 = 0. With this choice, ¢, is
the Goldstone boson.

1.2.2 N =4 case

The most general form for the Lagrangian is

1 Aij
£=3%7 ((0uei)® + mig?) + 3 i (1.14)
i i>j
Now we must show that the matrix
o= ¢ ¥ § (1.15)
(I
persists in satisfying
O =ede = P, (1.16)
1
Det® = _§¢T¢ (1.17)

under the transformations ® — U¢ and ¢ — &V, with U, V special unitary matrices.
The relation involving the determinant is trivial since the determinant of a product of

matrices is the product of the determinants:

Det U® = (Det U)(Det ®) = 1(Det ®) (1.18)
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and similarly for ®V'.
For the property involving ®, note first that —e? = 1, so

UD =eU'P'e = —cU*cede (1.19)

and it is sufficient to show that —eU*e = U for SU(2) matrices. This is so because an SU(2)

matrix can be written as

U=upl +i-id, ui+iu?=1 (1.20)
and because
0" =0 except 05 = —09 (1.21)
and
09009 = —0;03 = —0; except 090909 = 5. (1.22)
Combining these,
090 09 = —0; (also, o9loy =1). (1.23)

Furthermore, e = ioy. Therefore,
—eU"e = 09U" 09 = 09(ugl — @ - 16" )0y = ugl + @ -id = U . (1.24)

Therefore
Ud = eUd%c = —eU*ced’e =Ued'c =UP (1.25)

as desired. Exactly the same argument goes for V.
Now we consider the case with invariance under only one SU(2). First, observe that of
the SU(2) invariant combinations, xx, xTx, and x'y, there is only one nonzero independent

combination;

i P+ 3 +d3+¢7
N =xx=—=—5"—

Therefore the quadratic parts of the Lagrangian can be written only using y; the most

=x'xy, and Y'x=0. (1.26)

general form is
010" x +mPxTx. (1.27)

Now it remains to compute the most general quartic piece. Besides the obvious term,

A(xTx)?, one might think of the following alternate terms, involving 7%

ST DT, Yo airix Ty (1.28)

a a



However, explicit calculation shows that the first term here equals
ST = (Y = (0 —pU) + (P )
= (P e+ )’ = (X'n)?, (1.29)

and so is not independent, while the other two terms turn out to cancel completely; for

instance,

S ()7 = (=% — (WP +¢)7 + (209)* = 0. (1.30)

a

Therefore, the most general quartic term is

A
M) = 7 (91+05+63+61)° (1.31)

Note that this expression, in fact the whole Lagrangian, is also invariant under the right act-
ing SU(2). Therefore, renormalizability together with one SU(2) invariance “accidentally”
ensures the other SU(2) invariance.

For the choice m? > 0, the vacuum is that all four ¢; are zero, and the masses are all m.

For the choice m? = —pu? < 0, the vacuum has one scalar field, say ¢;, nonzero: its
value is that which minimizes the effective potential, namely ¢; = p/\. In this case, of the
original O(4) invariance, the O(3) subgroup which rotates the remaining 3 fields between
themselves, is a symmetry of the vacuum (“unbroken”). This symmetry has 3 generators,
while O(4) has 6; so we expect 3 Goldstone bosons.

Now we work out the spectrum for m? < 0; define v = /), the expectation value of ¢,

and define ¢; = § + v. Then the effective potential term becomes

A m? 3\ > A2 %
104 — 7112 + (W® — p?v)d + (202 — 2) 6% + (21)2 -5 (p5+5+03)
+(cubic and higher in fields) . (1.32)

We see that our choice of v has ensured the cancellation of the linear term in §. Evaluating
the quadratic coefficients gives m? = 2u* and m3 = m3 = m3 = 0. The other 3 scalars are

indeed the massless Goldstone bosons associated with the broken symmetry directions.

1.3 Vacuum energies

Assume that we have made space finite somehow so the spectrum of momentum states is
discrete; the summation on momentum states is -, and the volume of space is V. The

vacuum energy is expected to scale as volume, that is, to be extensive.
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Consider the scalars first. These are just two real scalar fields; compute for one scalar
field and multiply by 2 at the end. The Hamiltonian is

H= /d3 l or+ Lzt e (1.33)
STy Tt ‘

with II the conjugate momentum of .

Momentum space is the best place to solve the theory; define

_ 1 3x P X (x (x :L e PX .
6p) = [ xR0, a0 = T e ™ 6m), (1.34)

and wp = v/p? + p2. One finds by standard techniques that

1
0i(p) = —o=(ai(p) + al(p)) . Th(p) = 25 (aip) — al(p) (1.35)

with a and a' satisfying the commutation relations

la(p), a'(p))] = 0p - (1.36)

Substituting the Fourier transformed versions of ¢;, II; into the Hamiltonian gives

e (4 (0) +al (0)(as(p) + ol (9)

4, / wpwp/

1 oy / |
= O ] o) R o)l ) () () (130

—eeten) VI () ] (b)) () — ol (9)

Now do the x integration, which cancels the 1/V and forces p’ = —p. Then —p-p’ = p?,
and (p? + m?)//wpwy = /WpWy SO the terms can be combined. The terms with two a or

two a' cancel and leave
w
H =3 (al(-p)ai(p) + ai(p)al(-p)) - (1.38)
p

Normally one names af(—p) above, af(p) instead, even though it emerged in a Fourier
transform from —p rather than p, because it creates a particle of momentum p. We will

follow this convention starting now. Rewriting to put a to the right of a' gives

H= Ty (Sellplor) +55) (1.39)



The a'a term annihilates the vacuum, the vacuum energy arises from the 1/2 factor. The
sum on ¢ gives 2 as there are two scalars.

Now we have to compare this to the energy in a fermion. The fermionic Hamiltonian is

1. o
H:/d3x SV +my. (1.40)

The factor of 1/2 is there because both the upper and lower components of the spinor are
the same; so the term really includes a kinetic plus mass term twice, the 1/2 removes this
double counting.

e want to evaluate )
5 [ x@) (i + m)() (1.41)

Start by Fourier transforming just ¢ (z); the d; acts on the e*> to give 4-ip. Then Fourier

transform );

1 , '
H = W Z Z / d3X {I_L(p’ U/)eilq'xb*(p, O'/) 4 1—)(p) 0'/)€+Zq.xb(p, 0_,)} %

P4 oo
[(ipm + m)u(p, 0)e®*b(p, o) + (—ipyy; + m)v(p, o)e” P*b*(p, 0)@1.42)

The terms involving b(q)b(p) and b*(q)b*(p) vanish because the operators obey anticom-
mutation relations. Also we can use the property that u and v are solutions to the Dirac

equation,
(ip " + m)u(p,o) =0, (ipy* —m)v(p,0) =0, (1.43)
to substitute
(ipiyi + m)u(p, o) = ip° u(p,0),  (=ipyi +mv(p,o) = —ip’y v(p,o),  (1.44)

where p° = /p? + m?2. Also, iy’ = 3. Doing also the x integration, which kills one of the

momentum integrals, we get

=335 ot (4! (6,0)ulp, )b b(D, ) o/ (b, "o, )" (b)) . (1.45)

P o,0/

The spinors are normalized so that i(p, o’ )u(p, o) = dyerm/E. Since ufu is the time com-
ponent of a 4-vector and equals @u for a particle at rest, we have u(p,o)u(p, o) = 5o

Therefore the Hamiltonian is

H = ;sz/p2+m2(b*b(p,0) W (p,r)) (1.46)



or, anticommuting the bb* term,

H=YY/p?+m? (—; +b°b(p, a)> . (1.47)

The ground state energy, after taking >, = 2, looks like the bosonic one but with the
substitution p? — m? and with the overall sign reversed.
If we evaluate the ground state energy in a momentum cutoff normalization,

>-v/ o (1.48)

we find

— 1 A 2 4 2(,,2 2 4 4
Evac - V27T2/0 p dp <\/p2 + ,u2 - \/p2 + m2) Q-2 (A (HJ -m ) + O(,U , )) : (149)

82
In the g = m case the vacuum energy vanishes. This fact is one of the motivations for the

theory of supersymmetry, but we will not discuss that today.

1.4 Symmetries and Yukawa interactions

We have already seen how this symmetry constrains the purely scalar part of the Lagrangian,
in the NV = 2 section of problem 1.2 above. As shown there, the allowed purely scalar terms

are
2

-1 A
Lo= 5 (0.00"6 + 0x0"x +m*(6*+x%) = 7 (6 4x7) (1.50)
Now, for the terms with fermions. The set of all terms we can think of, after performing a

field redefinition as in the notes to eliminate a 157“%@1/} term, is

VY00 + bihth + by ) + ¢ + cax b + e3Py U + cax by (1.51)

We need to see how each transforms under infinitesimal transformation by angle 6, under
which the fields pick up

Y = Y+,

b= +ifn°,

¢ — o+ 20,

X — Xx—200. (1.52)



The various terms then gain the following extra pieces,
Yy gains  2i09y°p,
Y gains  2i04,
g gains  20(xP + gy Y)
XU gains 20 — ¢ + ixPy"0)
¢y gains  20(xy Y + i)
XYY gains 20( — ¢y + ixe) (1.53)
No term can compensate for the shift in the first two terms, so by = by = 0. The remaining
terms can cancel in pairs if ¢4 = i2¢; and ¢3 = —icy. Further, Hermiticity demands that ¢;

and ¢y are real, and c¢3 and ¢4 are imaginary; so this is consistent. Therefore, there are two

real parameters for the Yukawa interactions, and the remaining allowed terms are
1- " n . T B T ., 7.5
Ly = 507" ) — ex (000 + ixir*w) — ea (X — i Y) (1.54)

Because 1) is purely real and 1)7°1 is purely imaginary, this can be succinctly rewritten
in terms of one complex coefficent ¢ = v/2(c; + icy) and the complex field ® = (¢ + ix)/v/2,

Ly = —;1/_17“8“2# — (cdﬂﬂPLw + c.c.) , (1.55)

where (c.c.) means complex conjugate, and is the same as taking twice the real part of the
first term. We see that, in general, Yukawa couplings are complex. For the gauged version,

all that changes is that the derivatives must be made covariant derivatives, with
D,® = (0,+2igA,)?,
D,Pyp = (0,—igA,)PLy, (1.56)

and therefore,
Dy Prip = (O +igAp) Pri) - (1.57)

1.5 Spinor identities

To appear

1.6 Fermion mass matrix diagonalization

To appear



1.7 A Dirac matrix identity

To appear

1.8 More useful identities

To appear

1.9 Fiertz rearrangements

To appear
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Chapter 2

Standard model: general features

2.1 Anomaly cancellation and charge assignments

To appear

2.2 Muon decay

The symmetries which must be obeyed by any decay (or other process) involving a muon
are electric charge conservation and the separate conservation of B and each L number.
Anomalies mean that B 4+ L may be violated, but L. — L, L, — L., and B — L must be
separately conserved.

For the first reaction, the total electric charge of the initial state is —1 and this is
unchanged in the final state. The total L. =0, L, =1, L; = 0, and B = 0 in the initial and
final states. Therefore there is no conservation law violated in the decay.

However, for the second reaction, L, — L, is —1 in the initial state and +1 in the final
state; therefore this anomaly-free, absolutely conserved quantity would be violated by such

a decay. Within the standard model, the decay rate should be identically zero.

2.3 Right handed neutrinos

2.3.1 Lagrangian

Lorentz invariance demands that fermionic fields appear in even numbers in all terms, and

renormalizability restricts to 2 fermionic fields. (A term in the Lagrangian with a product

11



of 4 fermionic fields would be dimension 6, which is non-renormalizable.) The only terms
allowed for N by renormalizability are terms with either N and N or with N and the bar
of some other fermion, with either a derivative, a mass, or a Higgs field. Gauge invariance
demands that the charges of the fields involved add to zero for any term. Since N is the
only singlet, the kinetic and mass terms cannot mix it with other fermionic fields. Therefore

the mass and kinetic terms must be of form
1 - 1 _

As argued in the notes, we are free to pick these terms to be diagonal and free of % terms.
Unlike all other fermions in the standard model, the mass term is allowed, because the right
and left handed components of N transform in the same way under gauge transformation
(namely, not at all).

To appear in a Yukawa interaction with the Higgs field, NV must interact with a fermion
with the same gauge charges as the Higgs field; this excludes the colored fields and the
(SU(2) singlet) right electron field Er. However, the left handed lepton field L has the same

transformation properties as gg, so the combination
kmn[:mPRNngz; + c.c. (2.2)

is allowed. (The [antifundamental] SU(2) index of LPg is contracted against the [fundamen-
tal] SU(2) index of ¢ in the above term.)

2.3.2 Conservation laws

The left-handed component of L and the right-handed component of E are assigned lepton
number 1. That is, before the introduction of N, the Lagrangian was invariant under the
symmetry

L— "L, E—e ™ R, (2.3)

and the associated conserved number was called lepton number. In fact, after choosing a
basis for L and E which diagonalizes the Yukawa matrix f,,,, the Lagrangian was invariant
under such a rotation of each generation separately (that is, of L; and E}, of Ly and Fy, and
of Lz and Fj3). The three conserved numbers are called electron number, muon number, and
tau number.

If N is to be uncharged under this transformation then the new Yukawa term clearly
violates this symmetry. If we assign the right-handed component of N a lepton number of
1, that is, if N transforms as

N — ¢ 7’ N (2.4)

12



then the Yukawa interaction term preserves the symmetry. If for some reason the mass term
vanishes, M = 0, then total lepton number is conserved; but if the new Yukawa matrix k,,,
cannot be diagonalized by rotating only the N fields, which generically happens, then the
individual lepton numbers are separately violated.

Assigning N the transformation property above, the mass term is clearly not invariant
(since 4° and B do not commute). Therefore, if the mass term is nonzero, there is no

conserved lepton number of any kind.

2.3.3 Mass eigenstates

The neutrino mass terms are

1 _ -
— 5 MNN — kLPpNG + h.c. (2.5)

gsﬁ[”/o\/?] , (2.6)

taking k to be real (which we can do by an appropriate field rotation), and rewriting vk/v/2 =

which, on substituting

m, and expanding out the Hermitian conjugate, becomes
1 - _
-3 (MNN +2mpPpN +2mNPyy) | (2.7)
Using relations from last homework,
ﬂPRNINPRV, NPLVIﬂPLN, (28)
we can make this expression symmetric in v and N:
1 _ B _
-3 (MNN +moN +mNv) . (2.9)

Here we also used Pr + P, = 1. We can rewrite this, if we feel like it, as

L[ A] {0 m]

2 m M

; ] , (2.10)

where the matrix in the middle is the “mass matrix”. This is the form required to apply the
manipulations which follow Eq. (1.3.51), where we diagonalize this matrix by performing a

unitary transformation on the fermionic fields. Define

cosf, = 1arctan2—m, 1 = CO.SQ sind v , (2.11)
2 M g —sinf cosf N

13



which is the matrix which diagonalizes the mass matrix. In terms of ¢; and 1, the free

Lagrangian is

_; (@1@% + o @iy — matiihy + m21/_12¢2> : (2.12)

M M? M M?2 m?
mg———2+\/—4 +m2~M, m; = 2—1—\/ 1 +m ~ o ( )

where the approximate expressions are valid for M > m (a regime which is physically

Here

interesting). Finally, a rotation of ¢; — 7% flips the sign of m; in the Lagrangian, so
both masses are positive.
The lepton-boson interaction terms are obtained by writing v = iv® cos 8,4, — sin 0,1,

and 7 = i cos 0,417° — sin 6,1),. The Higgs interactions are

kH

1 i in2
—SkH(EN + Nv) = == (Sm b

2

cos 26,
2

(@Zﬂ% + 1/_12@/)2) -

3 (20" +h.c.)> L (2.14)

In the large M limit, the dominant Higgs interaction is to couple 11 to 1)o; the Higgs coupling
to ¢y is ~ km/M, that is, it scales as the mass of the particle “as usual”.

The coupling to the A field is still zero, since neither v nor N have any coupling. The
coupling to Z* is from the v])v term in the Lagrangian; the gauge coupling part gives

(defining ez = /g3 + g2 = e/ sin Oy cos Oy )

2 2
— 1 ZeZ 2 n U D 22 I HAD .. i "
= Zy (cos 0,017 y° 11 + sin® 0,109y 1y + (—isin 6, cos 0,19y by + h.c.))(2.15)
and the coupling to the W boson becomes, for instance,
192
V2
Note that in both cases, in the limit of large M, 1), couples with full strength and

approximately decouples. In this limit, at energies too low to produce the vy particle, the

W, eyt Py = %Wu (i cos 0,ev" Pripy + sinf,ey" Pribs) . (2.16)

theory looks like the normal electroweak theory but with a tiny mass added for the v field;
a mass which is quadratic in the Higgs field. We will see another way of understanding this

when we discuss high dimension operators and effective field theories.

14



2.4 Two Higgs doublet models

2.4.1 Lagrangian

Note that this second Higgs field has the same charge assignments as ¢. The electric charge

assignments of the components are

0
Y = [ ?] have charges [ . ] . (2.17)
The full covariant derivative acting on v is

e 2T g1
D,y = (8“ — ZWMT + ZBMQ) P
_ Oy — igng’/Z + iBﬂgl/2 —igg/Q(W; — zWi)

X

. (2.18)

Now for the potential. Note that the combination 1/7¢ has net hypercharge +1 and so is

not SU,(2) x Uy (1) covariant. However the combination
Wle = (Vleg”) = (¥70)

is SU,(2) x Uy (1) invariant since ¢ and 1) have the same charges. It is also complex, which
means many terms will be allowed complex coefficients.

Define, as in the problem statement, the quantities
a=¢lp, b=yvhy, c=¢le =My, (2.19)
The most general available quadratic potential is
2 2 2 k . 2 E3
mia + m3b + ms(c+c*) —imj(c—c"), (2.20)

which has 4 real parameters. We could rewrite the last two terms as Mc + M*c* with M
a complex parameter. (In fact it is possible to re-define fields in terms of a new linear
combination of ¥ and gz~§ to eliminate the cross-term but we will not pursue this here.)

One might think that the combination g7 ¢*, which is SU,(2) x Uy(1) invariant, would
be an extra possible term in the potential, besides those quadratic in a, b, and ¢. However,

it is not independent,

gyt =ab— c*e, (2.21)
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as can be shown by explicit calculation; so we don’t have to consider it separately. Similarly,
S |92 = [1pT|? = ¢*¢ is not independent. The most general potential for the two Higgs
fields is

A a® 4+ A b® + Azab+ Agcie+ s (62+(C*)2) — 1) (62—(0*)2)
+A7a(c+c™) —idga(c—c) + Ao b(c+c*) — idig b(c—c") . (2.22)

As written the \; are all real. If we wrote terms of form ac the coefficient would be complex
and the addition of the complex conjugate would be required.

Note that many of these terms can be eliminated by suitable choices of additional symme-
tries. Not doing so, and writing down the most general possible Yukawa interactions, allows
flavor changing neutral currents severely in violation with experiment unless the coefficients

are very carefully tuned.

2.4.2 Masses

To see if the electromagnetic group is broken by the VEV’s, we have to see how the VEV’s
rotate under an electromagnetic transformation. These transformation properties are given
by the electromagnetic charges; the lower component of ¢ and the upper component of
are charge zero, so they are not rotated and the VEV’s are unchanged. Therefore, electro-
magnetism will still be unbroken. Breaking electromagnetism would require that part of the
VEV of x lie in the lower entry. Whether this happens depends on the details of the effective
potential, which means that it can be used to constrain the form of the effective potential
(specifically, the terms involving ¢ above).

Observe that, dropping all fluctuations from ¢ and ¢,

. 3 1 2 .
Dyt — i g W ng go(Wh —iW#) U+ 1w | (2.23)
2V/2 | go(W' +iW?) —gW3 — g\ B 0
where there should be a p subscript on each W or B; or
2 2 3
+w . GW? — g B
D) DRy = = W8 — B go(W" — il
(D) D¥eh g 92 nB g ) [ G+ i)
u? + w?

= 5 (B WRWE) + (65 + 91 Z,2" + 04,4%) . (2.24)

We see that the mixing angle and mass relation will be unchanged from the standard model,
mw = mz/ cos Oy with tan 6y, = g1/go. The mass of the W boson is no longer m¥, = gsv? /4,
but is m}, = g3(v? + u? + w?)/4; the Z boson mass depends on the same combination of
VEV’s.
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2.4.3 Yukawa couplings

The field v is in general allowed Yukawa coupling matrices which are identical in form to
those allowed for Higgs fields with the substitution ¢ — v and ¢ — 1. That is, we can write
down

with p, ¢, r arbitrary 3 by 3 matrices. There is no a priori reason why these matrices should
be in any way related to the matrices f, g, h of the ¢ Higgs field. In general this allows flavor
changing neutral currents which are grossly in conflict with observations. However, under
the global symmetry proposed, ¢ — % and 1) — e4. Therefore, the Yukawa interactions
involving the tilde quantities are forbidden, since they get rotated by a phase of 26 under
the transformation. Only f,.., Amn, and r,, are allowed. Also note that only the scalar
interaction terms m?, m2, and \; through )\, are consistent with this symmetry, greatly
simplifying the analysis of the scalar potential.

These restrictions turn out to be enough to eliminate flavor changing neutral currents.
Note that the relation between a Yukawa coupling and a fermionic mass only involves the
VEV of the particular participating scalar, so the relation between Yukawa couplings and
couplings to the Higgs particle is no longer universal. (Also there are now 5 Higgs particles,
three neutral and two charged.)

The model with this symmetry is called the 2 Higgs doublet model and is a commonly
proposed alternative to the Standard Model Higgs sector. The two Higgs fields are called
(¢) the down-type Higgs and () the up-type Higgs.

2.5 Adjoint Higgs fields

2.5.1 Electromagnetism

The t; are the J,, . operators for spin 1 particles in the z spin state basis, so they surely
satisfy the Lie algebra of the group SU(2). Explicit verification is straightforward.

The electric charges can be read off from the action of 75 on the field: the charges are

U +1
V=1 | =] 0 . (2.26)
3 -1

Because the field which takes on a VEV has electric charge zero, the VEV respects electro-

magnetic symmetry, which remains unbroken. The relation tan 6y = g1/gs will still hold.
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2.5.2 Mass spectrum

The new field will change the W mass without changing the Z mass:

1 : 2
Dy thmin = W WM _OZWM : (2.27)
W, +iW?
and so Y e
(D" tpunin) ' Dytprmin = W(waj + WEW?). (2.28)

Note that no new mass term for either W3 or B appears; so the Z, A mixing is unchanged
from its standard model form, and the Z mass is the same as in the Standard Model,

m% = (g3 + g3)v*/4. However, the W mass is

2
v
mi, = ggz + g2 (u? + w?). (2.29)

This violates the relation between W and Z masses observed in the Standard Model. The
experimental value of the W mass is known to 0.05% accuracy and is slightly higher than
the Standard Model prediction. Requiring that it be higher by at most 0.1% places a limit,
(u? + w?) < v?/4000 = (4GeV)?, which is quite severe. The scalar potential generically
contains a %@ 7%¢ term; when the Higgs field takes on a VEV, this induces a linear term
in the v field potential, which will force it to take on a VEV as well. This makes it difficult
to include a 9 field in a hypothetical extension of the standard model unless its mass is very
large, to keep the v field VEV small.

2.6 Gauged B — L coupling

2.6.1 Right handed neutrino

First note that, as the Higgs boson is neutral under F'; all fermions participating in a Yukawa
interaction have the same charge—or rather, PrE has the charge of P, L and PrU and PgrD
have the charge of Pr(), to ensure the Yukawa terms are neutral under F'. Therefore, since
P. L has charge —1, so must Pz N. The mass term M NN couples right to left and is only
permitted if N is neutral under everything; so this term is forbidden by the new gauge

coupling.
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2.6.2 Charge assignments

Gauge invariance of the Yukawa interactions requires that, writing the ¢; as the charges of

the left handed components,

qr = —qg = —qnN , 4@ = —qu = —qp - (2.30)

Therefore in the following we will only keep track of ¢;, and gg.

The first anomaly cancellation condition to try is (2,2,1’). This gets contributions only
from L and @, and demands qg = —q/3. (we will not give the complete details since they
are so similar to the first problem.) This fixes the charges of all particles already. Once again,
the (3,3,1’) anomaly condition doesn’t give a new constraint as it automatically vanishes,
because qp = —¢p = —qu-

The (1’,1’,1") anomaly cancellation condition gives

243 + g} (+¢%) + 65 + 3¢5 + 3¢5 = 0. (2.31)

Here we put the ¢y term in parenthesis because we have not decided whether we want an
N particle or not. Putting in that —¢gp = —qu = qg, and that —qgr = ¢, the quark terms
cancel, leaving
q;, = —(dn) - (2.32)
We see that if there is no N particle, the anomaly condition fails unless ¢;, = 0. (In this case
all the charges are zero, which is boring. We want ¢, = —1 as in the problem statement.)
We need the N particle.
Once we have it, the (1’,1’,1") anomaly condition is satisfied. The charges of the particles
are .
qr = —qn = —qg = —1, @ == =" =73 (2.33)

The (1,1, 1’) anomaly condition is

(@) o o) () B e e

which is identically true. Similarly the (1,1’,1") anomaly cancellation condition is

2(—1)2_21 —(1)*(=1) = (1)*0+ 6 @)2 é -3 (;)2 g -3 (;)2 _31 =0, (2.35)

which is also true. Therefore all anomalies cancel and this theory is allowed. Note that the
charge assignments are just —1 for leptons and +1/3 for quarks, or +1 for baryons; the U(1)’

field couples to B — L, which is not anomalous.
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No Yukawa terms are allowed to the x field, since no SU,(3) x SU_(2) x Uy (1) invariant
pairings of Standard Model fermions are possible and the x field is a singlet under SU.(3) x
SU,(2) x Uy(1). The absence of such terms is actually the same as the absence of mass
terms in the standard model.

The baryon and lepton numbers remain conserved, though the Yukawa couplings now
possible to the IV bosons violate the separate lepton numbers. As before, B and L have

SU,(2) x Uy (1) anomalies, but B — L is non-anomalous.

2.6.3 Coulomb-like interactions

A massless F' boson does not acquire a mass or mix with the A or Z due to the Higgs
mechanism, since the Higgs boson is neutral under U(1)’. Therefore, for u < 0, the F' is
exactly massless. The leptons have charge -1, and the baryons charge +1, under this field. In
particular the neutron does have a charge. Its interaction with the electron is attractive, since
they have opposite charge (like the proton and electron under ordinary electromagnetism).

The most obvious constraint on g4 is from spectroscopy; for instance, the deuteron’s
energy levels would be shifted with respect to hydrogen’s by order g2/e?. Surely such a shift
at the 1076 level would have been observed, placing a conservative limit of g3 < 107".

Much stronger constraints can be achieved by thinking about the physics of the Sun.
If g2 < €%, the Sun actually emits more energy into F' photons than into A photons, in
gross contradiction with solar modeling and the age of the Sun. This is because a more
weakly interacting particle is emitted from deeper within the Sun, where it is hotter. Solar
modeling only permits a small fraction of the Sun’s energy to be lost to the F' photon, which
requires the entire Sun to be approximately transparent to F' particles. This requires roughly
g2 < 1072%? (we will not provide details). This is a pretty strong constraint.

It is possible, however, to come up with an even stronger constraint. Consider the Earth.
It is made up largely of neutron rich elements (Si and O have as many neutrons as protons;
Fe has more neutrons). If the g4 charge is larger than gravitational strength, then the
heavy isotopes on the surface would be pushed away unless the Earth holds a balancing
number of neutrinos (which would be attracted to the Earth by their B—L interactions
with the neutrons—the B—L charge of electrons and protons is exactly zero because ordinary
electromagnetism ensures that the Earth is charge neutral to high precision). Now the
density of neutrons in the Earth is of order 103°/m3. Since neutrinos are massless, to hold
them at such a density would require a Fermi momentum of about 10'°/m ~ 1KeV. The
kinetic energy of the typical neutrino would then be order 1KeV. To keep such energetic

neutrinos trapped to the Earth requires a B—L trapping potential of 1KeV; but this is much
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more than the gravitational or chemical binding energy of neutron rich atoms on the surface
or in the atmosphere of the Earth. Therefore the atmosphere and surface of the Earth would
be stripped off (in fact it would be energetically unfavorable for the Earth to form—it would
explode).
From this we conclude that the F' mediated interaction between neutrons must be weaker
than gravitational,
g1

o < Gym?2 ~107% (2.36)

so g2 < 10737, a rather severe limit. However the actual limit is even tighter. For such a
small g3, neutrinos are not bound to the Earth at all, and the planet has a B—L charge
equal to the number of neutrons it contains. Then the B—L interaction causes a species
dependent shift in the acceleration towards the Earth’s center. Extremely precise searches
for such isotopic shifts have been performed, and the limits are at the 107! level. Therefore

the actual limit on g2 is 11 orders of magnitude better,
g < 107%, (2.37)

Probably even better limits are available by looking for corrections to Newtonian behavior
in the solar system, owing to the different neutron to proton ratios of, say, the Earth and
the Moon. We believe such constraints replace 10~ above with 1074

The moral is: constraints on massless or very light new particles are often extremely

strong.

2.6.4 Mass spectrum

The gauge boson masses arise from the Higgs and y kinetic terms. Fortunately only the F

couples to x and it does not couple to ¢, so there are no mixing terms. The F' boson mass

is m% = g2u? (see last problem for how this term arises). The other masses are unaffected.

There is no mixing between Z and F' bosons.

2.7 Colored scalar fields

To appear

2.8 Adjoint representation fermions

To appear
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Chapter 3

Cross sections and lifetimes

No problems were presented in this chapter so no solutions are provided either.
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Chapter 4

Elementary boson decays

4.1 W width at finite fermion mass

To appear

4.2 Decay of the top quark

4.2.1 Interaction Hamiltonian

The top quark decays into a quark (almost always a b quark) and a W boson. It takes one

insertion of the interaction Hamiltonian, namely the term in the interaction Hamiltonian,

g2 7 — 5
H; > 2=V 4 W ~*(14~4°)u,, . 4.1
125 /5" m L (17w (4.1)

The relevant term is when n is the 3 (top quark) index, that is, the terms involving V?izt' Of
these we see that the b quark term is totally dominant, the width to go to some other quark
will be suppressed by (Vi/Vip)? < 0.005, so we will take Vi, = 1 for current purposes.

4.2.2 Matrix element

The relevant Feynman diagram is
W+
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and the matrix element is therefore
ew(py, 00)¢ (147" )ulpe, o) - (4.2)

4.2.3 Spin summed M?

Squaring and summing (averaging) over final (initial) spins,

2

e *
S w1 o (1497 (43)
Tb,0t,A
gives
o (w4 PSP (g ma g (1r®) (= i)y (1497) (4.4

We should drop the small m;, which means that m; will also not contribute, since that would

involve an odd number of gamma matrices.

4.2.4 Reducing M?

Now we do the trace. The (1 +~°) can be combined into a 2(1 ++%), and the 7 does not

contribute as only terms symmetric in y < v will contribute. The trace gives,

pW qu v v v
IMP = de, (mw + e ) Phpy + Pyt — py - pen™)
w

Py - Pwpt - P
w
2
Py - Pwpt - P
w
Both terms are positive. Now work in the center of mass frame, and use that p, = —ps,
and |py| = p) = py; the expression becomes
2 2
2 G5 my By (pyEw + 1})
M7= (pbmt +2 i : (4.6)
4.2.5 Final integration
The width is B
Pwa”pp 4 ¢4 2
I, = /— 2m)%0 — pw — )| M|*. 4.7
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Energy conservation will give

By = (mi—m)?
py+ My = mi—2mp, + p;
Ey=p, = M, and EW:M, (4.8)
2my 2my
The phase space integral gives
2
/%(2%)%4@% —pw — o) M? = 817r %5@[) 4 By —m)| M, (4.9)

with Ey = 4/pi + M2. We need to know the p, dependence of the argument of the delta

function;

d Py my
i, (po+Ew—my) =1+ o

Podpy 2 Db 2
1) Ey— = — . (4.1
P S B M = P5LMP. (2.20)

Therefore the result of the p, integration is

8T m; 167 my M2 16m3 M2,
Inserting values gives
I'=1.5 GeV (4.12)
which converts into a lifetime of
T~4.4x107% sec. (4.13)

Even at quite relativistic speeds, since ¢ = 3 x 10%m/s, a top quark can propagate less than

10~'° meters, which is obviously not detectable (about 100 microns is the actual limit).

4.3 Gamma matrix identities

First,
kE = kuky"y" (4.14)

But k,k, is obviously symmetric, so this can be rewritten as
1 UV [ 1 iz 2
kE = kukug(v Y+ ) = Rk 520" = k. (4.15)
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Second,

kok = (kp+Pk)K — PRk,
= 2k, (V' 7K - R
= Ok~ K,
= 2p-kf—Kp, (4.16)
as desired.
Third,
Y% =AY N (4.17)
but symmetry of n,, allows this to be rewritten as
1 1
= 5(7“7” + v”’y“)mu = 5277“”77,” =, =4. (4.18)

An easier way to see this is to note that the square of each gamma matrix is the identity,

and there are 4 gamma matrices.

Fourth,
Vv = kA"
= (7" + Y)W — BV
= k20", — kY4
= 2k —4f = -2f. (4.19)
We can do this faster by noting that
Y= 2k — (4:20)

essentially the identity we were using above; then
Yy, = 2kMy, — Bty = 28 — 4 = =2k . (4.21)
Fifth,

YVPkve = 20" kv — Py R,
= 2p#k%¢ + 236;6,

= 20p + 2Pk,
= 2kup (v + ")
= 2k.p.2n" =4k -p. (4.22)
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Sixth,

VPkdv.e = 20"Fdve — PV Rdv
= 2kdp—4pk-q,
= 2fdp —4k-q p,
= 2hgp — 2(dk + Kd)p .
= —24kp. (4.23)

In passing from the first to second line we used the fifth identity.
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Chapter 5

Leptonic weak interactions: decays

5.1 Z decay including a Higgs

To appear

5.2 Neutron lifetime

The key as stated above is to make the m, ~ m,, > (m, —m,) ~ m. approximation as early

and often as possible. Define m,, —m, = A.

&Ep,d®ped’p
rn:/ PO Pl Py 5 04835 1p,4p,) 5(A — p° — )| M2 1
(27T)916mnmpp2p8< 7T) (p +p +pp) ( DPe pl,)|./\/l| (5 )
Here
4 2
2 gw‘VUd‘ 1 v
= Zwludl “pwg
M 64mj, 2 oz
P = —tr (=i + mp)v (gv+9a7°) (—ihnt M)y (v +947°)
Qu = —tr(=ipe—me)y(147°) (—ih )y (1+7°) (52)

The factor of % is the average over the neutron spin state. In this problem we should use
gv = ga = 1, but we will leave them as free as long as possible because it turns out that
ga # 1 is the key difference between the “up and down quark” treatment provided here and
the actual behavior of a neutron.

In evaluating P*” we should take advantage of the fact that the neutron and proton

momenta are almost perfectly timelike; |p,| ~ A but p? ~ m,,. Therefore, terms involving a
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single 7° are suppressed, since they contain eumﬁpgpg; at least one of the p must be a spatial

component. Separating the term with masses and the term with g/’s;

P = —mymp tr v (gv+9a)7 (9v+94) +tr Py (gv+94) 00" (gv+9a)
~ Am2g" (Gh—g%) + Hgr+gmy 206%™ + ¢ . (5.3)

Similarly, @, reduces to

Qu = (antisymm) + 8 [(py)u(Pe)v + (20)v(Pe)y — GuDv - Pe]
P Q= 2°m2 (g3 (2p200 + b - pe) + GA(2P000 — by - pe))
2 Il Vudl® 0.0 " Pe 2 Dv - Pe
|M| — m 4 ppupe gV 2+ pype +gA 2 — pgpg : (54)

The =~ signs mean that O(A/m,) corrections have been neglected. Note for what follows
that py - pe = —p)pl + Pe - Py = PUpL(—1+ vy, - Vo).

The m,m,pp? factor in |M|? cancels the same factor in the denominator of the phase
space measure, leaving

I, 2m) 6% (PetPu+Pp)d (A—p2—p))) x

gﬁ,’vudp / d3ped3pzxd3pp(
32mi, (27)°

(v, v+ BBV, v . (55)

The p, proton momentum only appears in the integration and the momentum conserving
delta function. The other two particles can “push oftf” against the proton arbitrarily hard
without the proton “kick” costing any energy, because we have dropped the p; 2/2m,, term
which would appear in the energy. Therefore we can do the p, integration which performs
the momentum conserving delta function. The angular integrations of the other particles
are totally independent. Each gives (47), and v, - v, averages to zero over angles, leaving

the integrals over the magnitudes of the momenta;

+39%) g (47)%[Viua|®
T 9,2)?9)2 il ) [Vial /dpl,dpep,,p (A—p,—/p2+m?). (5.6)

Use the delta function to perform the p, integration, and change variables from p, to E, =
\/P2+m?2. Note that at this point p, and p. are independent variables, so the integral with

the ¢ function has unit Jacobian, and just gives a 6 function which keeps E, < A;

4 (2 2 2 A
ro— 99y +393)Vaud] dEE\/M(A — E)?. (5.7)

4
647T3mw Me

29



The integral is

A (2A% — 9AZm?2 — 8m*)VAZ—m?2 + 15m* A In AEvAZ-m?
dEE\/E2—m2(A — E)? = m
RN e

(5.8)

Taking g2 = g4 = 1, [Vaa|*> = 0.95, replacing g2 /16m$;, with 2G% and using the other
numbers quoted we get a width of I' ~ 4.744 x 10~2® GeV. This corresponds to a lifetime
of 1/T = 2.108 x 10*"/ GeV, which is 1387 seconds. This is longer than the actual life
time, mostly because the W boson does not couple to a neutron—proton like it couples to a
down quark—up quark. The amplitude of the axial coupling g4 turns out to be enhanced by
approximately 1.267. As we see above, the width goes as (g +3¢%). This enhances the cross
section by (1+3¢%)/4 ~ 1.454 which explains most of the discrepancy; the corrected half life
is 950 seconds. There is still some discrepancy from the experimental value, due, for instance,
to the fact that the electron wave function is enhanced by the Coulomb interaction with the
proton; the matrix element should be multiplied by [1/%(0)|/]1)?(c0)|, ¥ the wave function
of the electron in the presence of the proton’s Coulomb field (which depends on energy and
must be evaluated inside the integral over E.). This is touched on in the discussion of the

“distorted wave Born approximation” in the notes, but you weren’t expected to do it.

5.3 Higgs decay to Wff

5.3.1 Matrix element

The widths with W and with W~ in the final state are equal because of C'P symmetry; the
two decay final states transform into each other under C'P symmetry, and the Higgs boson is
CP even. Now C'P is not an exact symmetry of the standard model, but it is only violated
due to the phase in the CKM matrix, which does not enter into this calculation and in fact
can only matter in quite high order phenomena.

The matrix element is

2e My 0" 4 q'qY /M,

= — o U 9 v ]— b fs - 59
M PR ey ve3 u(pr,op) (1 +7")v(py of) (5.9)

Here, the HWW vertex contributed the 2M21,,/v, the fraction is the propagator, and the
W f f vertex contributed the ey, (1 ++°).
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5.3.2 Squared matrix element

The spin summed M? is,

AMA e 1 Q.9 q3q
M2 = wtw (77&+ pHo € eB* ey + B4y %
e (@rame "t ) 2 v,

x 2 (=Dalps, o)y (1 +77)olpg,0)o(py, 01y (L + 7 Yulpy ). (5.10)

The factor (—1) arose from moving /3 across v when conjugating the second gamma matrix
expression.
Now, we use 3., e*e?* = 0 4+ p%pf /M2 and the usual tricks with the spin sums on the

gamma matrices, to get

4M €2 1 4 peph q
2 _ wow plao ap wrw B9y
M S e (e ) (0 ) (e )
x (=1) tr (—ipp )y (1+9°) (—ipr)y” (1+7°) (5.11)

where we have ignored m; in the last expression. We can move the (14+°) across the two
gamma matrices to get (14+7°)? = 2(14++°). The first line is symmetric in p < v, so the ~°

term, which will be antisymmetric, will not contribute. Therefore, we get

AME e? 1
2 wEw ~ ~ -
M vt (¢ M) 8(psupss + Prapsy = ks - Py) X
a B
qMQOz of PwDPw qs5qy
X o v . 5.12
(WWMG+MQ@+W> 042

We can contract the indices here, but it will only do work we have to undo in a minute,

so we will not.

5.3.3 Integration on fermionic momenta

The width can be written as,

2m)*6* (py — pw — Py — Pp)IM|*. (5.13)

1 Py dPpsd®py
FH—>W+ff = /

2p% J (2m)8p0, pip
For our purposes it is convenient to introduce an extra integration over ¢, which is forced to

equal what it should by an extra delta function;
454 d'q 454 454
(2m)*0*(pmr — pw — pf — pf) = /7 (2m)"0% (pu — pw — @) (27)°0°(q — py — py) - (5.14)

(27)"
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Now we write the problem as

16M3ie?  d®pydiq 1
p - 16Myey w8 or)tst — @)y X
22 ap0 (2m)7 (2m)* 0" (prr — pw — q) CEESTEE

a 8
qula a PwD qﬂQu
X (n#a + ](2’2 ) (77 g + ]V\}‘?VW> <775V + M&/) INV(Q) 9

v d’psd’py
g = | o pf t5 2m)'6" (¢ = pr = p7) (Prups +P7upr = My - 1f) - (5.15)
f f

At this point we recognize this last quantity as almost one which was dealt with in the

notes. We know that it must be of form,
1"(q) = Ad"q” + Bn™", (5.16)

and the coefficients can be gotten by contraction with ¢*¢” and with n*. Note that ¢-p; =
P} +ps-p;. But pi =0 = p? since both are lightlike (massless fermion approximation).

Therefore,
o o 2
4 pr=q p;F=pr P;=q/2. (5.17)

Using these, we can simplify the contractions of I*” against ¢*¢” and against n"":

d3 43 2
4.0.1" = A¢* + Bg® = /4 il pf (2m)*6"(q — ps — pyp) (qq+qq—q2q>

pfpf 2 2 2 2 2
dpdip;
N I" = A +4B = /4p pf f (2m)*6*(q — ps—pf) pr-pp(1+1—4)
f f
d pfd3p
_ /4p oot 27Tf )64 (g — pr —pf). (5.18)
If

This is the integral I(g) from the notes, and it is (—q?)/8. Therefore, we find that

—9<_q2) <q277;u/ o ququ> . (519)

"o =—5

5.3.4 Total width

Return to our expression for the integration over the fermionic momenta.
This now allows some simplification of Eq. (5.15). Note in particular that n** — ¢*¢” /¢

is a projection operator which “kills” g,,;
2, uv w. vy _ 2 v 2 v __
au (0" = "¢") = ¢*¢" — ¢’¢" = 0. (5.20)
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This helps a lot to simplify the previous expression. Namely, in (n* + ¢*q®/M?2,), the ¢*q°

term gives zero, so those two objects just behave as n*® and . The width becomes,

2M 1 e? dPpywdiq 1
F — w=w w 2 464 _ _ X
Sropl, | gt amy 70 P TP ) e
2 2 2
P’ — (Pw - q) 9
—3¢> - % 0(—q?). 5.21

Note, though, that p%, = —M?2, since the W is a real particle. The quantity on the last line
is (—2¢* + (pw - q)?/M?2.), which is manifestly positive (as it should be).

The energy-momentum delta function neatly performs d*q. It enforces that ¢ = py — pw,
which incidentally implies that ¢* = p% +p2, — 2py - py, which in the rest frame of the Higgs
boson is

—q¢* = Mz + M2 — 2Mypy, . (5.22)

Therefore, the step function, 6(—q?), becomes the step function 6(M% + M2, — 2MgpY,).
That is, it enforces the kinematic constraint,

P < M%]\Z;WVQV or  |pw| < M%]\;ffv : (5.23)
The angular integration is trivial, returning 47. The remaining integral is,
_ 2Mgel, 1/““‘" Podpw —2¢° + (pw - 9)* /M, (5.24)
3mvi My 4m? Jo Y, (¢> + M2)?
Next,
Pw -4 =Dpw - (pr —Pw) = —Mupy, + My, (5.25)
and
(M, +q*)* = (2Mup, — Mj)* = Mp(2p}, — My)*. (5.26)

Also, we can rewrite

2 2 2 2
]MH—IW IMH+IWW

Agggggﬂi 2 d — S
/ i PP _ / a0, — M2 (5.27)
0 Dy My

For ease of notation we will now write p%, = E. We should also multiply by a factor of 9 for
the number of possibilities for the ff pair (3 leptons plus 3 colors each of 2 quarks, just as
in the W boson width), and by a factor of 2 for the W~ final state possibility. Therefore the

integration we want to perform is,

M2, M2
3e2 M / v NI T 3M2 +2M2 — 6EMy + E*M% /M2 (528
T3 Mpv? Iy v Mp(2E — Mp)? '
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We can make this a little bit neater. (M2 /v?) = ¢3/4, and €2, = ¢3/8. Also, it is

convenient to define x = My /M,,. Then the above becomes

3Mpa? 5 3+ 222 + 2%y — 6ay
—_— d Vyr—1. 5.29
2 sin® Oy, J1 Y 42y — x)? Y (5:29)

Doing this integral analytically is not simple. However, we can observe the following prop-

erties:

1. The integral vanishes for x = 1, or My = M, which is the point where there is no

energy available for the ff pair.
2. As z — 1, the integral vanishes as (3/5)(z — 1)5.

3. The integral goes to infinity as x — 2. This is the point where the virtual W boson
propagator is achieving enough energy to be on-shell, so its propagator can “blow up.”
Handling this apparent divergence will be the subject of a couple of lectures when we
treat scattering via the Z boson resonance; basically it means that you should treat

the problem as a decay to two real W bosons.
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The numerical behavior of the integral is shown here:

0.1

0.08

Integral
T

o
o
R

T

Taking the values we are given, calling the integral I(x), the two widths,

3mp -5
Ty Sro? My ~2.56 x 107°Mpy and
T ° [(z) ~ 5.45 x 107" My () (5.30)
n — xTr) =~ o. x .
H=Wif 27 sint ©,, " H ’

equal when I(x) = .047, which is at = 1.74 or My = 1.74M,, = 140 GeV. Plotting it,

0.008

0.006

Partial width (GeV)

0.002

0 L L L T L 1 L L L 1 L L
80 100 120 140 160

Higgs mass (GeV)

The steep line is H — W f f, the shallow line H — bb.
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5.4 The miracle of Lorentz invariance

To appear
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Chapter 6

Leptonic weak interactions: collisions

6.1 Crossing symmetry

We have that the matrix element for Mgller scattering, e"e™ — e7e™, is

s% + u? n s% + 2 n 252
12 u? tu )

|IM|* = 2¢* ( (6.1)

Now write the incoming momenta for that process as p,p’ and the outgoing momenta as
k,k'. To get Bhabha scattering, one should exchange a final state e~ and an initial state e,

say, by flipping p’ — —k’ and ¥/ — —p’. Under this transformation,

s==2p-p — +2p-k =u,
t=42p-k — +2p-k=t,
u=+2p-k — —2p-p =s, (6.2)

and there is a factor of (—1)? from moving two fermionic lines between initial and final states.

Therefore, the Bhabha matrix element is,

2 2 2 4 42 2 2 2 2
-2 4[5+ u u® +1 2u N t {u u]
=2 — | =2 |5+ =5+ |7+ : 6.3
M| e( ottt clatat|yts (6.3)

Going from |M|? to do/dudt introduces the additional factor of 1/(167s*) which takes this

expression to the desired one (note that e*/16m = ma?).

6.2 Electron-neutrino scattering
The single diagram is W boson exchange,

37



The matrix element is,

(p+p") u(p+p')v
nw_i_ppﬁéz;p)

(p+p')2 + M3, (k)" (147" )0 (K') (6.4)

M = e, U o(p )" (1479 u(p)

We can drop the (p+p') term in the propagator, in the limit of massless e~ and v, because

it gives a term proportional to

() + )1+ ulp) = o(p")p(14+7")ulp) = 0(p") (1—7")pu(p) = 0, (6.5)

where we used the Dirac equation twice.
Squaring and summing over external states, NOTING that there is no sum over the spin

of the neutrino because there is only one available spin of neutrino, gives

4
e U Upm

M|? = 25— ]7(4%/)2 tr gyt (149")py" (149°) tr fr (149 ) F 7 (149°) - (6.6)

The traces give,

tr Py (14975 (149°) = 8(p"p” + 9" — 0" -1 + i€ *Ppap})
tr () K (1+97) = 8(kukl, + Kby — nuk - K — ieuaph®k”) . (6.7)

Contracting these gives,
64(2p-kp' -k +2p-k'p kit (A= )p-p'k-K —2(p-kp' -k —p-K'p-k)) = 256p-k'p" -k = 64u*. (6.8)

Next, write ey, = G%M;,/2, and combine; the matrix element is,

My,

M = 16G%|Upp [*1* —— 5

(6.9)

Using the relation from the notes, that

1 1
S 6.10
[v1 — va |20 2s (6.10)
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and that the rest of the phase space is,
dBkd3k' —1

2m)tst —k—k = —(s+t+u)dtd 6.11
(2m) 0" (pp ) @ryakoais ~ s TR W, (6.1)
gives
do G%. w [ ME\
dudt T s? \s — M3,
as desired.

Now consider the case f = u, f = v,. This is related to the case where v, is an in
particle and v, is an out particle by exchanging v, — v, to v, — v,, that is, switching both
neutrinos between the initial and final states. This makes the exchange, p’ <~ —k’, which
as we have seen makes the exchanges, s — u, u — s in the matrix element (though not in
the treatment of the final state phase space factors). This modifies the cross-section we just

found to
do G%( M,

2

6.3 Supernova neutrinos

This problem solution is incomplete.

6.3.1 Diagrams

The first two have a single diagram with Z exchange; the other two have W exchange as
well, in either the ¢ or s channel.

v,e — v,e .
Iz Iz U

L v

o

vpe —ryue
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© ©
Z
e~ e
Vo€ — V€
Ve Ve Ve
A N
Z + W
o=
e e e
and v.e” — v.e:
Ve Ve
Ve Ve
W
Z +
e~ e
e~ e

We see already that the v, and 7, diagrams will be a potentially larger pain than the v,

and v, diagrams.

6.3.2 Cherenkov radiation

In order to Cerenkov radiate, the velocity must exceed 1/n, requiring

>—; n’p*>FE*; (n*—-1)E*>n’m®;, E> le = 1.51m (6.14)

n2 —

S|

s

For an electron this requires 775 KeV; for a hydrogen nucleus it requires 1400 MeV, which
is far more than is available.
Note however that the reaction 7, + p — e*n is promising, as the e™ can carry enough

energy. In fact, the SNO detector looks for a similar reaction in heavy water (actually,
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Ve + n — e~ + p, which is possible because there are weakly bound neutrons available in

heavy water).

6.3.3 Kinematics

The lab-frame, total momentum 4-vector is (m + w,w,0,0). The velocity of the center of
mass is v = p;/p? = w/(m + w). The gamma factor for this velocity, which is the same as

the velocity of the boost between the center of mass and lab frames, is

1 B m 4+ w
VI—12  2mw+m?’

v = (6.15)

In the center of mass frame, the initial 4-momentum is (p?, —p.,0,0), with p? = ym
and p. = yom. The final 4momentum is (p?, p. cos v, p.sin ¢, 0) (not worrying about the

irrelevant azimuthal angle). Boosting back, the lab frame momentum is

Yy oy 00 P Y(p2+upe cos @)
yw v 0 0 De c?s e | _ v(vpg+g?c cos ) | (6.16)
0 0 10 PeSIn @ DeSIn @

0O 0 01 0 0

The tangent of the angle with respect to the neutrino’s axis (which I have been writing at
the top entry in the momentum vector) is the ratio of the second to first entries in this
momentum vector: .

p-(lab)  ~(p.cos  + vp?)

Using the relation between p° and p, found above, p = vp°, and dividing by p, and substi-

tan 6

tuting the determined value of v, we find

sinp  V2mw + m?

cosp+1 m4w

(6.18)

tanf =

This relation is exact, we did not have to make any small m/w expansion.

For the energy of the electron it is best to work entirely in the lab frame. Write the final
electron 4-momentum in the lab frame as (F, p., p,,0), and the final neutrino 4-momentum
is, by 4-momentum conservation, (m + w — E,w — p,, —p,,0). These satisfy the mass shell
conditions,

E* =m?+p? +p2, (m+w—E)?=(w—p.)*+p>. (6.19)

Taking the difference,
2E(m +w) = 2m(m + w) + 2wp, . (6.20)
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Divide by 2(m + w), move m to the other side, write p, = pcosf = cosfv/ E? —m?, and

square both sides;

w? cos? §
E—m)’= ———(E>—m?). 6.21
(= m)? = 8 (B2 ) (6.21)
Now cancel a factor of (E — m), and regroup terms;
w? cos® 0 w? cos® 0 (m + w)? + w? cos? O
E(l-——— | = 1+ ——= E= . (6.22
( (m+w)2> m( +(m—|—w)2> ’ m((m+w)2—w200529 (6:22)

Note again that the result is exact, we have not needed w > m.
For § = 0, in the large w limit, the w? factors in the denominator cancel and this reduces
to
m? + 2mw + 2w?

0=0)=m o w (6.23)

For 0 ~ \/m/w, then cos?f ~ 1 — #* ~ 1 — m/w; the numerator is unchanged at leading

order, the denominator becomes approximately m? + 2mw + mw, so E ~ (2/3)w. Therefore

the range of energies is of order a factor of 2 (with the estimate made for 6, we would say a
range from 1 to 2/3.)

6.3.4 Effective interaction

We have,

v (1497 eev, (147 e = D" (14+79°)ee(1—7°)y,ve
&7 (149°)e] 7y (17" Yurve

—27%,)(144°)ve
= & (1+7°)e Ty (149 (6.24)

}
= =2 [ev(14+7)e] Zer pvu (1477 e
= -3 {6’7 1+4° 6}

(

as desired. In the first transformation we used that the quantity in square brackets is a scalar
and may be moved to the outside. We also used v#v,7, = —2v,. Renaming the dummy
index v to u gives the desired result.

The two terms present now look the same except for the coefficients on 7° and 1 in the
electron part of the Z exchange parts. Therefore they can be added, defining hy and hy4 as
defined in the problem.
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To get the matrix element is now trivial; replace v, v, etc with the appropriate # and u’s;

M= %“(Q’)V“(Hﬂum) a(p')yu(hy+hay®Yu(p) (6.25)

for v scattering; for 7 scattering the first term is v(q)v*(1++°)v(¢’) instead.

6.3.5 Cross-section

When we square and average over spins, we must remember there is only one factor of (1/2)
in the spin averaging, since a neutrino only has one spin state. The matrix element squared

for neutrino scattering is
1 2 Gr AT’ 5 . v 5
M = =t (=i )" (197) (=ig )" (147)
tr (=i +m) v (v +hay®) (i = prm)y, (hv+han®) . (6.26)

The case of antineutrinos differs by ¢ «<» ¢’. Cancel off the —i’s, which puts +i in front of
each m. The first trace is

2tr 'y g’ (149°) = 8 (Q/uqu L — g — ieuuaﬁqaq/ﬁ) ' (6.27)

For the case of antineutrinos, the sign of the last term flips, since it is odd in ¢ < ¢’; the
other term, which is even, stays the same.

The second trace is
—m? tr (hy+hay®)y.(hv+ha)y, + tr By (B +h% + 2hyhay®) (6.28)
which is
A=) g, + 4 (W +D2) [Ppe + Db, — g - 1| = 2hvhaie ) papl) . (6.29)

Contracting these two expressions, as usual the symmetric part of one expression vanishes
against the antisymmetric part of the other; so there are two terms. The g,, type terms in
the symmetric combination turn out to give 242 —4 = 0 times ¢ - ¢'p - p/, since ¢, g"" = 4;
there is only a contribution from the p’s and ¢’s contracting against each other. The two

terms are

1
5 2 IMPP = 16G% [mP(hy—h2)q o + (hiAh2)(p-ap' - d +p- D' q)]
+16G%(2hvha)(p-qp' ¢ —p- 4P - q), (6.30)
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where the upper term comes from the symmetric parts and the lower term from the anti-

symmetric ones; the £ is for neutrinos and antineutrinos respectively. The sign of the last

term is a bit tricky; there is a -1 from i and a —2 from contracting the e"*? with €,
Now we use hi+h% + 2hyha = (hy & ha)? to combine the two terms;

1
5 2 [MIP = 16G% [m*(hi—h3)q - o' + (hyEha)’p-ap' - d + (hFha)p - d - q) . (6:31)

This is the desired result; the power of 2 we would not tell you, is 16.
Now we need a center of mass frame differential cross-section in the small m limit. The
small m limit means we drop the m? term above and take p-q=p' -¢ =s/2 and p-¢ =

P - q¢ = —u/2 so the matrix element becomes
1
5 O [MPP =463 [(hv & ha)?s* + (hy F ha)*u?] . (6.32)

In the center of mass frame, in terms of wey, = 1/5/2, s* = 16wl and u? = 4w? (1 — cos ).
(You would expect u to involve 14 cos ¢, but we defined the angle with respect to the initial

neutrino, rather than electron, direction.) Therefore the cross-section is

1 dSp/d3q/ 4 3 / / ’ 0 , O
= 2 2 — _
7T dae?, / G 2020y 27O W €0 (2wem = ()7 = (@)7) X
x64GEw? {(hvihA)z + i(hV:FhA)z(l— cos)?| . (6.33)

The relative velocity is 2. Think about it! Each particle has velocity 1, and they are
moving at each other, that is, in opposite directions. The 63 performs the d®¢’ integration,
forcing (¢')° = (p')°. The dp integration can be written as d¢ dcosy p2dp’, and the ¢

integration is trivial and gives 2w. So far, then, we have

1 1 o0 1
- [y / 2y —— 52w — 29
8w?,,(2) /—1 ose )y P 4p'? (2w p) X

1
< 64G2ut [ (hy+ha)? + 4(hV:FhA)2(1—cosgp)2} . (6.34)

The delta function gives [ dp'd(2wem — 2p') = (1/2), forcing p’ = wer (which we already used
to simplify the matrix element). Combining the remaining terms, we indeed get

do GRuwl, [(

1
_ ho-th )2 + = (hwha)2(1— 2]. .
T = S [y + (1 cose) (6:39

Each term is positive definite, and the second term carries all the cos ¢ dependence. It is

maximum when cos ¢ = —1, which is at ¢ = 7.
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Now perform the cos ¢ integration; [1 = 2, [cos®p = 2/3, and [cos¢ = 0. Therefore
the total cross-section is

o

G2w? 1
= % |:(h\/:|:h,4)2 -+ g(hv:[:hA)z

(6.36)

It remains to re-express w? in terms of lab frame quantities; w? = s/4, and as we saw

2

=, = mw/2. The cross-section is therefore

earlier, s = 2mw + m? ~ 2mw. Therefore w

G> 1
= 2 (hvihA>2+§<hV:FhA)2 (6.37)
Now for the ratios; we have
1 1
electrons : hy = §+281n29W:1, hA:§;
1
muons or taus : hy = —5 +2sin? 6y ~ 0, ha= —5; (6.38)
SO
(1+1>2+1<1 1>2 _ 9+ 17
Tvee 2) T3 2) T 11273
(1 1>2+1<1+1>2 B 1+9_3.
Tree & 2) T3 2) T 11273
(0+1>2+1<0 1>2 B 1Jr 1 1
Tvne 2) T3 2) T 11273
(0 1>2+1(o+1>2 - Lyl (6.39)
Tone 2) T3 2) T 11273 '

and the v; results are the same as the v, results. Therefore the cross sections are in ratio
7:3:1:1:1:1. (6.40)

Incidentally, this result is central to the first proof that the neutrinos from the Sun
are definitely oscillating into an “active” type of neutrino other than the electron neutrino.
Super-Kamiokande looks for the scattering of neutrinos off of electrons, which detects both
electron neutrinos and other types, but is about 7 times more sensitive to the electron type
neutrinos. SNO detects the scattering of electron neutrinos off of Deuterium, v.D — e~ pp,
which ONLY the electron neutrino can induce. (You can tell these apart from ve — ve
electrons from the very different angular distribution of the outgoing neutrinos; the former
are very “forward,” as we saw in this problem; the latter are almost isotropic and are
slightly more common in the backwards direction.) There was a clear discrepancy between
the neutrino flux the two measured, because most of the neutrinos were v, or v; and therefore
contributed, somewhat, in Super-K but not in SNO. Now SNO has also measured the rate
of vD — vnp, which is equally sensitive to all three types of neutrinos (it is purely Z boson

exchange), and confirmed that there are the expected extra number of v, and v;.
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6.4 Higgsstrahlung

6.4.1 Matrix element

The phase space integration for the cross section is, taking the relative velocity to be ~ 2,

g

1 / EpzdPpy
(

=55 m(QW)453(Pz+pH)5(\/_ — % — i) IM[*. (6.41)

Here we are in the center of mass frame, and have written the energy and momentum

integrations separately. We will also define the total momentum pz+pyg = pe- + P+ = q,

and the incoming electron and positron momenta as p and p’ respectively. Note that ¢> = —s.
The matrix element is

N q*q”
ez M3 (77 + 45

M Z ) o0, 0" )vu(gv+9477)ulp, o). (6.42)

v

2
v s— Mz

Squaring this and averaging over electron and positron spins and summing over final state
Z particle polarizations gives

1 21 42)2 )2 a, B N ,
L STV (92191)° My b 4 P2z () LGl (L 000
[N

16(s — M3)? M3 M2
x tr gy (gv+9a7”) B (gv+947°) - (6.43)

Now note that the quantities from Z boson propagators and external states is symmetric
in p1,v. Therefore the contribution from a single v, which will be antisymmetric in p and

v, vanishes. The trace yields

tr Py (gv+9a7° )0V (gv+947°) = 4gp+92) (= p-p' +p"p" +p"p'*) + antisymm. (6.44)

As usual, ¢, = (p+p'), and g, vanish against this combination, so the Z boson propagators

can be simplified by dropping those parts. If you don’t believe me,
(p+p")p (00" +p"p" —"p-p) = (- " +p-0'p" —p-pp+p)") = 0. (6.45)

The matrix element is therefore

}Z M = (93+91)*MZ (9% +9%) oy oPzprz ¥
44 4(s — M32)? M2 ’
(92+91)* M (gv+ga) [ (t=Mp)(u— M) (6.46)
8(s — M2)? M2 ' '
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6.4.2 Total cross-section

We will use Eq. (6.41) and Eq. (6.46). The spatial delta function performs the py integration.

The relation between the energies, masses, p%, and s, are (defining Ecy = +/5)

B = E% —2EyEcu + Eiy gives
Ecy — MZ — M3

) —
H 9 2By
Ecy M2 — M2
EZ = - 9
2 2E e
E2. — M2 — M2)2 — 4AM2 M2
p2Z _ (Ecu Z 4E2H) HY'Z (6.47)
CM

The Jacobian for the delta function is

d P P pEcwm
— 24 M2 21 M2 — E ): = = . 4
i <\/p+ z+\/p+ i oM EH+EZ EE, (6.48)

Its inverse appears if we use the delta function to perform the momentum integration; that

neatly cancels the factors of £y and Ey in the denominator. The cross-section has become

1 p 2
- dQIM|? . 6.49
7~ 32m2E2,, Fou / M (6.49)

It remains only to evaluate ¢ and u, and to do the angular integral. We have

t=—(p1—pz)’ = —pi +2p1 - p2 — p5 = 0 — EcuEyz + Ecum|pz| cos0 + M3, (6.50)
and
u=—(p1 — pn)’ = —EcuEn — Ecu|pz| cos§ + Mj; = —EcuEz — Ecu|pz| cos 0 + M3,
(6.51)
where we define 6 as the angle between e~ and Z (and hence m — 6 is the angle between e~

and H). Checking (as we should have to begin with) and using s = E%,;, we do indeed find
(s +t+u) = M%+ M. The matrix element is therefore,

2 \921Y; z\gvT9a 2 omtyz — LiovPz €OS cosf ...
EZ|M| _ ( 2_|_ 2)2M2( 2+ 2) E +E2 E2 E2 2 20+ 9 (6 52)
43 8(s — M3)? oM M3 ) ’

We have not bothered writing the argument of cos 6, because it vanishes when we integrate

over angles. On integration over angles, there is an overall 47, and cos?# — 1/3, cos — 0.

The final answer is messy:

(97 +94)(93+97)° P < 2 g 1 2>
= M, + E; — - . 6.53
? G4 Fom(B2y M2 12T 52 = 3P7 (6.53)
Here g4 = 1/16 and g% = (sin® Oy — 1/4)% ~ .00035. Maybe someone can figure out a tighter

way of writing this expression.
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6.4.3 Experimental limit

The luminosity of the LEP IT accelerator was about 10%?/(cm?s). Running for a few months,
say, 107 seconds, at center of mass energy 1/s=205 GeV, would LEP have been able to detect
a 110 GeV Higgs boson, if the condition for detection is a sample of 10 events?

We will be sloppy and take My = 91 GeV without decimal. Substituting in the explicit
numbers, we find (all in GeV)

Eow = 205
E; = 932
Ey = 1118
pz = 20
o = COO30D) 20 eang) 1365100 GevR. (6.54)

201 2.33 x 101!

Under the described conditions, something with a cross-section of 1073® cm? could have
been observed. Using that 1 GeV ™' is approximately 2 x 107! ¢cm, we get the above cross

section to be, in centimeters squared,
o ~53x107% cm?. (6.55)

It looks like we would have expected about 53 events. This is enough provided that there is
a sufficiently clean signal.

In fact, the LEP people claimed an exclusion up to 114 GeV on the Higgs mass, on the
basis of running up to 208 GeV (though only at the highest energy for a very short while).
If you stick in the numbers, that sounds hard to believe-there would only be 3 GeV of extra
energy, and most of the data is where there was even less. However, some Z bosons are
produced a few GeV of energy below the supposed mass, as we will soon see; this becomes
important when you are so close to being energetically excluded. There were a few claimed
events, reconstructing to My = 115 GeV, immediately before the machine was shut down

for good; but there is no consensus that this was a genuine observation of the Higgs boson.

6.5 Resonances

The cross-section is,

16 27 +1 Iyoee 12 _
o=—" J Toee M08 % 1070, (6.56)
s (2s14+1)(2s9+1) Ty m3
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Put this into barns; a barn is 1072 ¢cm?, and 1/GeV? = 0.000388 barns. Therefore,
o=3.7nb, (6.57)

where nb is nano-barns.

The downward correction due to initial state radiation is by about,

_ 2 2 3
exp (;‘ log % [log % - QD ~ exp —.55 ~ 0.58, (6.58)
e T

so about 40% of the cross-section is lost to initial state radiation.

6.6 Compton scattering

To appear
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Chapter 7

Effective Lagrangians

7.1 Running b quark mass

Rewrite the first beta function as
wo 1 —46 1

ougd 3 1672

which is solved by

1 4 23
—=—=—(lnpg—InA .
s g?g) 6F(HM n QCD>

From the data, as(p =91 GeV), we get

67
lnAQCD = ln(91 GGV) - m = AQCD = .0876 GeV.
Another way of writing the QCD beta function expression is,
po . 5 =23 , 2 _ T4 2
@ln93—m93a dlng” = 247T293d1nﬂ~
This lets us rearrange the other equation as follows:
0 —89§h33
hs3 5
Olnp 1672
0 —893
Inh
Olnp a3 1672
2
g3dIn pu
dln h; —
N i3 o2
2 2
g3 24m 2
dlnh - dl
s om? 2342 193
12
dlIn hs3 %d In gg

(7.1)

(7.2)

(7.3)

(7.4)



That means, simply, that

Ziiﬁ:; - (gg(“1)>23 . (7.10)

Therefore,

hs3(120 GeV) [ g3(120 GeV) 2 _ (In(4.24 GeV/Ageop) & —0.793
g3(4.24 GeV) In(120 GeV/Agen) )

(7.11)

h33 (424 GeV)

This is the rescaling of the effective b mass, leading to

my(p =120 GeV) = 0.723 x 4.24 GeV = 3.07 GeV . (7.12)

7.2 Hypercharge beta function

To appear

7.3 WIW scattering and unitarity

7.3.1 Polarization vectors

The longitudinal polarization vector is given, up to an arbitrary phase, by
pl P
Fp,A3) = | ——, — 7.13
€ (p7 3) (MW’ MWp ) ( )
with p the unit vector in the direction of p. This satisfies € = (—p? + (p°)?)/ME, = 1,
e-p = (—|plp® + |p|p°)/Mw = 0, and is orthogonal to the other (transverse) polarization

vectors.

The four polarization vectors are therefore,

E
(p1,\3) = <p7 0,0>,

My~ My’
E
eﬂ(p27)\3> = (]\24/7 _mu 07 O> ’
E E
Eu(kl,)\g}) = <]\4P;V, M7WCOSQ, mSine, O) s
E E
EM(kQ,)\g}) = (]\4?;[/, —m COS@7 —m Sin@, 0) . (714)

For future reference, and using that all the momenta will have the same magnitude in
the rest frame, we find €(p, A3) - e(k, A\3) = (E? cos — p?)/M3,.

o1



7.3.2 Matrix element

The three diagrams are, the four-W interaction and ¢ and s channel Z exchange:

W, W+ k W, W,k
b1 1 W+,p1 W+,k:1 b1 1

Wﬁap? Wiyk’iQ Wﬁvp? W77k2 W77p2 W77k2

Let us work out the matrix element for each, in turn. For the first, it is,

My = =5 20000 — TuaTlvp — TuoTlor] €1 €f€R €S . (7.15)

Here ¢; means the one for py, €3 means the one for &y, and we will use this notation throughout
what follows. Note: the factor of 1/4 in the Feynman rule is canceled by the four ways
the operators in the vertex can attach to the external states; the initial state W™ can be
annihilated by either of the W™ in the vertex, the final state W™ can be created by either
of the W~ operators. NOTE that the W™ operators destroy the incoming W and create
the outgoing W™, that is why the 2 term in [ | connects the incoming W with the outgoing
W—.

Evaluating the external polarization contractions, gives

M, = —93 (261 - €460 - €3 — €1 - €362 - €4 — €1 - €263 - €4)
2
= ——‘924 (2(p2 + E?cos0)? — (—p* + E? cos ) — (p* + E2)2) ,
My,
2
= 9724 (E4(1 — cos?0) + p*E*(2 — 6cos 9)) : (7.16)
My,
This term is O(E*/M;,), and its sign can depend on the angle cosf. Substituting p* =

E? — M2, to find like-order terms, this becomes,

: (3—60059—00829)E—4+(60089—2)E—2 (7.17)

The next contribution is from the t-channel Z boson exchange, which gives,

My = —giler- (pr— 2k1)es + €3 (k1 — 2p1)el + €1 - es(pr + k)" X
X €4+ (2p2 — ko)ey + €2 - (2ka — po)ey + €2 - €4(—p2 — k2)"] X
(p1=k1)u(p1—Fk1)v
nuu + M2

W . 7.18
M3, + (p1 — k1)? (7.18)
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Note that we have M{, rather than M2 appearing here; that is because we have made the
approximation that g; = 0, in which case the two masses are the same.

Now we have to evaluate this mess. A few tricks help; € - p; = 0 and similarly for the
other combinations, and (p; + k1) - (p1 — k1) = p? — k? = 0. Therefore, we can show that the

term in the propagator which is not 7,,, contributes zero;

[61 . (—2]{31)€§ -+ €3 (—2]91)6? -+ €1 63(]91 -+ /ﬁ)‘u] (pl—k:l) = —261'k1€3'p1+2€3'p161'/€1+0 = 0 .

(7.19)
The first bracket is,
2Ep(1 — cosd E?cosf — p?
—2ky - €165 —2py - e3€) + €1 - e3(pr+ke)" = p(M )(E1+€3)” + ( 2 b )(p1+k1)” .
W w
(7.20)
The other bracket is similarly,
2Ep(cosf — 1 2 FE?cosf
p(M )(€2+€4)u + pM—z(pfr/m)u : (7.21)
w w

Contracting, we get,
g3
My, (2p*(1 — cos0) + M3))
(—8E2p2(1 —cos0)?(2p* + E*(1 + cos6)) + 4E*p*(1 — cos 0)(3 + cos 0) (p® — E*cos 6)
+4E%*p*(1 — cos 0)(3 4 cos ) (p* — E* cos @) — 2(E* cos§ — p*)?(2E* + p*(1 + cos 9))) (7.22)

which on re-arranging a bit, becomes, (writing cos = ¢ in what follows)

92

ML (2E2(1 — ¢) + M?(2c — 1))

(—2E%(1 = ¢)*(3+ ¢) + 2B My}, (1 — ¢)(3 — 10c — ¢?)
—2E? My (1= 2¢)(1 = 5¢) + 2M{, (1 +¢)) . (7.23)

For future reference, the most singular parts of this are

E* E? /3 15
—*—(1-¢)(3 2<—>. 7.24
Finally, the s-channel diagram gives,
Mz = ;_922 ((p1 — p2)u€r - €2 + €2 - (—2p1 — p2)ery, + €1 - (p1 + 2p2)eay)
452 — My,
X ((kl — kg)”Eg “ €4+ €3 - (/{?1 -+ ng)E'Z + €4 - (—2]{?1 — k2)€§) . (725)
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The first bracket simplifies to,

2 2
p°+E 4FEp
( M2, (p2 —p1) + 7MW (61 —€) | . (7.26)
The second bracket is similarly,
p* + E? 4Fp
MI%V <k2 - kl) + My, (63 - 64) . (727)
Contracting therefore gives,
2
g 2/ 112 22 2,2/ 2 2 4,2
3T (AR~ 30 (4p*(E? + p*)%c = 32E%p*(p* + E*)c + 64E"p’c) . (7.28)
The leading order in E? terms here are,
E* E? >
2
gcld—+—5 . (7.29)
G

7.3.3 The problem
Summing the three terms, we find that the leading in £ behavior cancels,

2 1;4

gW(3—60—02—3+20+c2—40):0, (7.30)

but the next to leading behavior,

E? 3 15 E? 1 1
2 2
—|6c—24+ - — —c+ =0 —|—=— = 7.31
M%z ( ¢ 2 2 ¢ C> M%r ( 2 20> ’ ( )

does not cancel.

The matrix element squared should not exceed (167)?, otherwise the cross-section, ~

1
167s

divergent behavior is only at very small angles, that is, for singularities near ¢ = 1. Since

| M|?, will exceed the unitarity bound, 167 /s. This is the case unless the matrix element’s

our matrix element is a simple polynomial in ¢, this is not the case.
Roughly, this means we get in trouble when

167 M3,
72

E? = ~ 120M;, , (7.32)

which happens for £ ~ 900 GeV. Beyond this energy, the scattering cross-section is larger

than phase shift analysis allows it to be.
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7.3.4 Higgs to the Rescue
The s channel Higgs diagram contributes,

M1
2 ML — 4E2°

+ €9€3 €4, (733)

where the first fraction is the coupling squared and the second is the Higgs propagator. Note
that 4M7, /v? = g3.

The diagram is clearly only O(E?/M32,), so we will only evaluate it to this accuracy.
Contracting polarization tensors, we find,

g%ﬂi; : (7.34)
Similarly, the ¢t channel diagram is,
4 2
fi‘éw M£I+21132(1 LG —gg(lgc)]%/. (7.35)
Adding these contributions, the divergent part is
, B /1 1
i (2 + 20> , (7.36)

which exactly cancels the divergent part of the matrix element from Z exchange and the
quartic interaction.
Therefore, the matrix element is finite and unitarity is safe, PROVIDED that the Higgs

boson exists and has a mass below about 900 GeV.
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Chapter 8

Hadrons and QCD

8.1 1y mixing

To appear

8.2 Technical issues in Goldstone’s theorem

To appear

8.3 Physical interpretatin of the chiral parameter c

To appear
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Chapter 9

Hadronic interactions

9.1 Low energy photon-proton scattering

To appear

9.2 Color factors

To appear

9.3 DGLAP kernel functions

To appear

9.4 Pascos-Wolfenstein ratio

To appear

9.5 Light scalar quark

To appear

9.6 Top quark production
To appear
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9.7 Isospin transitions

To appear

9.8 7 decays

To appear

9.9 Neutral pion decay

To appear
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Chapter 10

Neutrino masses

10.1 Dimension-5 interactions

To appear

10.2 Neutrino decay

To appear

10.3 MSW effect and sterile neutrinos

To appear

10.4 Dimension-5 operators with squarks

To appear
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Chapter 11

Open problems, proposed solutions

11.1 Quadratic contributions to the Higgs mass

To appear

11.2 Fermion dipole moments

To appear

11.3 Redundant effective interactions

To appear

11.4 Anomalous gauge-boson self-couplings

To appear

11.5 Neutralinos in the MSSM

To appear
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