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Preface to the instructor’s manual

The first version of the Instructor’s manual to Modern Particle Physics contains
fully-worked solutions to all the problems in Chapters 1-18 of the main text. This
document has not been proof-read to the extent of the main text, so I apologies
in advance for any errors. Many of the problems have been used in the course
that taught for a number of years, so these are battle-hardened. For new questions,
introduced to address specific points in the text (particularly in the later chapters),
there are a couple issues which have been noted in the solutions.

In some cases there may be more elegant approaches to the problems, the intention
was to keep the solutions as straightforward as possible. Comments and sugges-
tions are always welcome.

Mark Thomson, Cambridge, December 14th 2013






Introduction

@ 1.1 Feynman diagrams are constructed out of the Standard Model vertices shown in
Figure 1.4. Only the weak charged-current (W*) interaction can change the flavour of
the particle at the interaction vertex. Explaining your reasoning, state whether each of
the sixteen diagrams below represents a valid Standard Model vertex.

a) e e~ b) Ve Ve C) e et d) Ve Ve
Y Y Y Z

e) e’ wo e Ve O)e” v h)e Vi
Y W Z W

i)e\%/(e ) b\%/(b k) d\%/(s 1) Y\‘g/“{
g g g Y

m) uYu n) qu 0) dYt p)e><e
W W A\

The purpose of this question is to get students to understand the that (with the
exception of gauge boson triple and quartic coupling) all Feynman diagrams are
built out of the Standard Model three-point vertices of Figure 1.4. Of the sixteen
vertices in this question, the only valid Standard Model vertices are: a), d), f), j), n)
and o). The other diagrams are forbidden for the following reasons:

b) The electron neutrino is neutral and therefore does not couple to the gauge
boson of the electromagnetic interaction;

¢) This diagram violates both charge conservation and has the effect of turning
a particle into an antiparticle (the arrows on the electron lines both point
towards the vertex);
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e)
g)

h)

k)

)

m)
p)

The electron magnetic interaction does not change flavour, and hence a dia-
gram coupling an electron to a muon is not allowed;

The weak neutral current also does not change flavour and hence this dia-
gram is forbidden;

The weak charged current does change flavour, but by definition only couple
together leptons with the corresponding neutrino, hence this diagram which
couples together an electron and a muon neutrino is not allowed.

The electron does not carry the colour charge of the strong interaction - it
is colour neutral - and hence the electron does not participate in the strong
interaction;

The strong interaction does not change flavour and hence a coupling be-
tween a down-quark and a strange-quark is forbidden;

In the Standard Model there is no three-photon vertex;

Since W bosons are charged, the weak charged current must change flavour;
There is no Standard Model vertex couping two fermion lines to two boson
lines - all fermion vertices involve a coupling to a single gauge boson.

@ 1.2 Draw the Feynman diagram for T~ — nt”v; (the =~ is the lightest du meson).

Since the decay involves a change of flavour it can only be a weak charged-current
interaction (W*):

@ 13

Vr

u

Explain why it is not possible to construct a valid Feynman diagram using the

Standard Model vertices for the following processes:
a) uw~ - eteet,

b
c

)
)
)

Vi+p—>Ww +n,
vi+p—o1th+n,

d) m*(ud) + 7~ (du) — n(udd) + 7°(ut).

a) The process @~ — e*e”e™ would require a change of flavour. There is no

problem with producing a particle and its antiparticle (here the e*e™) and
therefore the required flavour change is u~ — e~ and there is no corre-
sponding Standard Model vertex and the process cannot occur. This used
to be referred to as conservation of muon and electron numbers. However,
with the discovery of neutrino oscillations this concept is obsolete.
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b) Two changes of flavour are required u — d and v; — u~. Whilst the first of
these flavour changes can be achieved by a charged-interaction vertex, the
second cannot. Leptons only couple to the corresponding weak eigenstate
neutrino flavour. In addition, electric charge is not conserved.

c¢) This process requires a vertex that has the effect v; — 17, i.e. turning a
particle into an antiparticle. No such vertices exist.

d) Here the net number of particles — antiparticles changes. This can not hap-
pen because all Standard Model vertices involving fermions are three point
interactions with a single boson, as a consequence the net number of parti-
cles — antiparticles in the Universe is constant.

(® 1.4 Draw the Feynman diagrams for the decays:
a) A*(uud) — n(udd) w*(ud),
b) EO(UQS) — A(uds)vy ,
c) n(ud) = prv,,

and place them in order of increasing lifetime.

All other things being equal, strong decays will dominate over EM decays, and
EM decays will dominate over weak decays. So here the order is a), b), c) with the
Feynman diagrams below.

@ 1.5 Treating the n° as a uu bound state, draw the Feynman diagrams for:

-y,

7’ — yete
) - eteete,
a0 - ete.

Q0T o

)
)
)
)

By considering the number of QED vertices present in each decay, estimate the relative
decay rates taking @ = 1/137.

The observed branching ratios are BR(x’ — vy) = 98.8%, BR(n" — ye*e™) =
1.2%, BR(n" — yete ete™) ~ 3 x 107 and BR(n* — e*e”) = 6 x 10738,
By counting the number of QED vertices it might be expected that the matrix
elements for the processes are: a) M o ¢%; b) M « ¢*; c) M « e*; and d)
M « 2. Consequently, one would expect the branching ratios to be proportional to
a) IMP? o« @?; b) IMP? < a3; ¢) IMJ? « o*; and d) IM]? « 2. Relative to the domi-
nant i — yy decay modes it might be expected that BR(n’ — ye*e™) ~ O(1072),
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and BR(" — e*e"ete”) ~ O(107%), in reasonable agreement with the observed
values.
et et
u Y ou u et
e” e
et 4
u Yy u Y u e
-

The observed branching ratio to e*e™ is much smaller than that predicted from sim-
ple vertex counting (the contribution from this Feynman diagram is heavily helicity
suppressed, see for example 11). This is an important point, simple vertex factor
counting only addresses one of the contributions to the matrix element squared,
other factors may be just as important.

@ 1.6 Particle interactions fall into two main categories, scattering processes and anni-
hilation processes. as indicated by the Feynman diagrams below.

Draw the lowest-order Feynman diagrams for the scattering and/or annihilation pro-
cesses:
a) ee” m>ee,
b) e'e” — u'u,
c) efe” > efe,
d) e ve o eV,
€) e Ve > e Ve.

In some cases there may be more than one lowest-order diagram.

a) For this scattering process there are two diagrams, the u-channel diagram has
to be included since there are identical particles in the final state (the exchanged
gauge boson could also be a Z or even the H):

€ € € €

€ € € €

b) Here there is just the s-channel annihilation diagram.
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c¢) Here there are both s-channel and 7-channel diagrams:
e e e e
e’ e’ e’ e’
d) Here there are two t-channel diagrams (involving either an exchanged Z or W):
Ve Ve VC
:z{: :Z{:
e e e
e) Here there are s- and 7-channel diagrams:
Ve Ve Ve
Z
W
e e e

@ 17 High-energy muons traversing matter lose energy according to

(&

Ve

Ve

€

1dE
——d—za+bE,

p dx

where a is due to ionisation energy loss and b is due to the bremsstrahlung
and e*e” pair-production processes. For standard rock, taken to have A = 22,
Z =11and p = 2.65gcm™, the parameters a and b depend only weakly on the
muon energy and have values a ~ 2.5MeVg~'cm?and b ~ 3.5x 10°%g~' cm?.

a) At what muon energy are the ionisation and bremsstrahlung/pair pro-
duction processes equally important?

b) Approximately how far does a 100 GeV cosmic-ray muon propagate in
rock?

a) lonisation and bremsstrahlung/pair production processes are equally likely (in
standard rock) when a = bE, i.e. for muons with an energy of £ = 714 GeV.
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b) Integrating the energy loss equations gives

dE q
— = X
a+bE "
= —[In(a+bE)}, =bplx]§
1 b
= L=—In|l+ —E()
pb a
=141m

From this it can be seen that high-energy muons are highly penetrating particles.
Muons with £ > 10 GeV will usually traverse the entire volume of a collider de-
tector.

1.8 Tungsten has a radiation length of X, = 0.35cm and a critical energy of E, =
7.97 MeV. Roughly what thickness of Tungsten is required to fully contain a 500 GeV
electromagnetic shower from an electron?

The number of particles in a shower doubles every radiation length of material tra-
versed. Hence the typical particle energy (E,) in a shower after n radiation lengths
is

(Ep) = E/2", (1.1)

and the shower terminates when this mean energy is equal to the critical energy,
hence

nln2 =In(E/E.) .

For a 500 GeV electromagnetic shower in Tungsten this corresponds to n = 16
radiation lengths or 5.6 cm of Tungsten. The above analysis is overly simplistic. In
practice, due to fluctuations, the shower extends deeper than the above calculation
would suggest, although with ever decreasing numbers of particles.

1.9 The CPLEAR detector (see Section 14.5.2) consisted of: tracking detectors in a
magnetic field of 0.44 T; an electromagnetic calorimeter; and Cerenkov detectors with
a radiator of refractive index n = 1.25 used to distinguish «t* from K*.

A charged particle travelling perpendicular to the direction of the magnetic field
leaves a track with a measured radius of curvature of R = 4m. If it is observed to
give a Cerenkov signal, is it possible to distinguish between the particle being a pion
or kaon? Take m; ~ 140 MeV/c? and mg = 494 MeV/c2.

The momentum of the particle can be obtained from
pcosd =0.3BR

giving p = 528 MeV /c. Since the particle produced a Cerenkov signal 8 > 1/n, i.e.
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B> 0.8. Using E = ymc? and p = ymfc, the particle’s velocity is given by

pc P
ﬂ ==

E [p2c2 + m2c
For the two hypothesis considered here, for p = 528 MeV/c, B = 0.97 and Sk =
0.73. Hence the observed particle track could be due to a pion but cannot be a kaon.

1.10 Inafixed-target pp experiment, what proton energy would be required to achieve
the same centre-of-mass energy as the LHC, which will ultimately operate at 14 TeV.

The centre-of-mass energy /s is given by

2 2
s=p2=(ZEi) —(Zp] = (E +mp)* - p°,

i i
where E and p are the energy and momentum of the proton beam. Since E > p,
sz(E+mp)2— 2zZEmp.
Consequently, to achieve a centre-of-mass energy of 14 TeV,
142
E=——
2X 940 x 106

which is far above the energy achievable by any foreseeable particle accelerator.
The reason such high energy is required for a fixed target experiment is that mo-
mentum must be conserved, and hence, most of the energy in the final state is
associated with the high velocity of the centre-of-mass of the final state system.

=1.05x10°TeV,

1.11  Note that the question is an updated and clearer version of the original problem.
At the LEP e*e™ collider, which had a circumference of 27 km, the electron and positron
beams consisted of four equally spaced bunches in the accelerator. Each bunch cor-
responded to a beam current of 1.0 mA. The beams collided head-on at the interaction
point, where the beam spot had an rms profile of o, ~ 250 um and o, =~ 4 um, giving
an effective area of 1.0 x 10° um?. Calculate the instantaneous luminosity and estimate
the event rate for the process e*e™ — Z, which has a cross section of about 40 nb.

The instantaneous luminosity is given by (1.5)
nin
L= fL‘
droyoy
Here o0y = 1.0Xx 103 ,um2 = 1.0 x 1072 cm?. If the number of electrons/positrons
in each bunch is n. and each bunch circulates the ring at a frequency of f, =
¢/(27 x 10%) = 11.1 kHZ, the bunch current I is given by

I = fp Xnee.
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A current of 1 mA therefore corresponds to 1, = 5.6 X 10! per bunch,
np=n=56x 10,
With four bunches per beam, the bunch-crossing frequency of
f=4-¢/27000 = 4f, = 44.4kHz.
The instantaneous luminosity is

103 86 10112
471.0 x 1075
-2 —1.

Using the values in the original text £ = 6 x 10°° cm™2s

L =44.4x% = 1.1 x 102 cm™2s7!.

At the peak of the efe™ — Z resonance, the total cross section is approximately
40 nb, or equivalently 4 x 1078 x 1072* cm? and consequently the event rate for a
luminosity of £ = 1 x 1032 cm™2s7!, given by oL, is approximately 4 s~!.
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@ 2.1 When expressed in natural units the lifetime of the W boson is approximately
7~ 0.5GeV™'. What is the corresponding value in S.1. units?

To restore the correct dimensions a factor of 7 needs to be inserted. Hence

1.06 x 10734
T=hx05GeV ! =05-—— =33x10"s.
1.6 x 10-10
In natural units, the decay rate
1
r=-.
T
Dimensional analysis gives
[E]=[T]",
and it is necessary to insert a factor of 72 on the RHS:
h
r=-.
T

@ 2.2 A cross section is measured to be 1 pb, convert this to natural units.

In natural units, the dimension of area is [GeV]~? and hence
(he)®
GeV?
Here the cross section of 1 pb expressed in natural units is
(1.6 x 10710)2
(1.06 x 10734 - 3 x 108)?

o[pb] = o[GeV 2] x

o=1x10"%x% =2.6x 107 GeV~2.

Alternatively converting into fm? and using the conversion factor 7ic = 0.197 GeV fm
gives
o =10""fm? = 107'9/0.197 GeV > = 2.6 x 10 GeV .
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® 2.3 Show that the process y — e*e™ can not occur in the vacuum.

This is most easily demonstrated by considering the reaction in the rest frame of
the e"e™ pair, namely the frame in which the total momentum is zero. In this frame
p=0and E = E.- + E.+ > 2m,. Since energy and momentum are conserved this
would imply the photon has p = 0 and E > 2m,, which is not consistent with £ = p
for the massless photon.

24 A particle of mass 3GeV is travelling in the positive z-direction with momentum
4 GeV, what are its energy and velocity?

Here the key equations are (in natural units):
E=ym, p=ymB and E’=p*>+m?.
From E? = p? + m? the particle’s energy is E = 5 GeV and from the above expres-

sions for E and p,

B=p/E=08.

2.5 In the laboratory frame, denoted X, a particle travelling in the z-direction has
momentum p = p.Z and energy E.

a) Use the Lorentz transformation to find expressions for the momentum p, and energy
E’ of the particle in a frame X', which is moving in a velocity v = +vZ relative to X, and
show that E2 — p? = (E’)* — (p.)*.

b) For a system of particles, prove that the total four momentum squared,

p'pu= [Z Ei]2 - [Z p,-)z ;

i i

is invariant under Lorentz transformations.

a) Remembering that y> = 1/(1 — %) or equivalently (1 — %) = 1, and using the
explicit energy-momentum Lorentz transformations
E'=y(E-Bp), py=px» py=py and p;=7y(p;-BE),
then E” — p’ can be written:
E' —p' =y*(E-Bp.)* - pi - p; — ¥ (p. - BEY
=Y} (E* = 2BEp, + B°p2) — pi — P, =¥’ (p? — 2BEp. + B°E?)
=y’ (1 -BE* - pi — p, — V(1 - B)p.
= E> - p2 .
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b) Here
ppu= Y (B} =07)+ > (EiEj = puipsj = pyipyj = Pipsj) -
i i#j
From the first part of the question, to show explicitly that p#p, for a system of

particles is Lorentz invariant it is only necessary to show that E’ E; - p;ip;j =
E,E— p:ip:;, the proof of which is almost identical to the first part of the question.

2.6 Forthe decay a — 1 + 2, show that the mass of the particle a can be expressed

as
m? = m? +m3 +2E E5(1 — 8182 cos 0)

. =

where 8, and 3, are the velocities of the daughter particles (8; = v;/c) and 6 is the
angle between them.

Since m? = E2 — p? and energy and momentum are conserved in the decay
my = (E1 + E2)’ = (py +py)°
= E} + E5 +2E1Ey - p; —p; — 2P * P>
= m% + m% +2EEy —2pipacosé
=mj +m5 + 2E1Ex(1 — 1 cos 0) ,

where the last step follows from p = SE.

2.7 In a collider experiment, A baryons can be identified from the decay A — np
that gives rise to a displaced vertex in a tracking detector. In a particular decay, the
momenta of the x* and p are measured to be 0.75GeV and 4.25 GeV respectively,
and the opening angle between the tracks is 9°. The masses of the pion and proton
are 139.6 MeV and 938.3 MeV.

a) Calculate the mass of the A baryon.

b) On average, A baryons of this energy are observed to decay at a distance of 0.35m
from the point of production. Calculate the lifetime of the A.

a) From E? = p? + m? the energies of the two decay products are
E; =0.763GeV and E, =4.352GeV.
The corresponding velocities (8 = p/E) are
Br=0983 and g, =0.976.
Using the result of the previous question,
mi = m? +m3 +2E1Ex(1 — B182 cos §) = 1.244 GeV? .

Hence the mass of the A obtained from the measurements give is my = 1.115 GeV.
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b) Accounting for relativistic time dilation the mean distance travelled will be
d =yBcr.
From the relation p = ymp, y8 = p/m. The energy of the A is simply
Ep =E;+E, =5.115GeV,
from which py = 4.99 GeV and therefore yf8 = p/m = 4.47. From which
T=035/447c=2.6x10""%s.
2.8 Inthe laboratory frame, a proton with total energy E collides with proton at rest.
Find the minimum proton energy such that process
P+P—=p+p+pP+p
is kinematically allowed.

The lowest energy configuration is where all four final-state particles are at rest in

the centre-of-mass frame, thus in general, the centre-of-mass energy +/s > 4my,

. 2 _ 2 _ 2 . . . .,
Le. s > 1om;. Because s = E7,; — Py 1s Lorentz invariant, writing the proton

energy and momentum as E and p, the condition in the laboratory frame is
(E +mp)* — (p +0)* > 16m,
E%+ 2Emp + mf) -p*> 16m[2,
2Em, + mg > 16m§

= E>"Tmy.

2.9 Find the maximum opening angle between the photons produced in the decay
n® — yy if the energy of the neutral pion is 10 GeV, given that m, = 135MeV.

<
™M
<,
-I-) [\4*
=
a

Py

Y4P;

In the rest frame of the 7%, the four-momenta of the photons are p’{ = (E,0, Esin8*, E cos 8")
and p} = (E,0,-Esin 6", —E cos "), where £ = mg/ 2. The four-momenta of the

photons in the laboratory frame can be found from the (inverse) Lorentz transfor-

mation of Equation 2.6 where p, = p} =0, p, = p, = £Esin¢" and

E; =yE| +yBp., = yE(1 +Bcos6") and p; =yp,, +yBE = yE(cos 6" + )
E; = yE5 +yBpl, = YE(1 =Bcos6) and p = ypl, + yBE = yE(—cos 6" + B)
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One can either assume that the extreme values occur for the case where 8* = 0
and 6" = nr/2 or one can derive the general expression for the opening angle in the
laboratory frame
Pi°P2  DPx1Px2 t PyiPy2 + Pz1P2
p1p2 E\E>
—E?sin” 0" + y2E2(B* — cos? 0*)
Y2E%(1 — 2 cos? 6*)
- sin? 6% /y? + g% — cos® 6*

cosf =

1 — 32 cos? 0%
_ PA(L+sin?69) -1
1 -p2cos? b

where the extreme values are cos § = —1 and cos 0 = 28> — 1.

Here, since y = Ex/my; = 74.1 and therefore using Bz =1- l/)/2 = 0.99982, the
minimum opening angle is

COS Opmin = 2ﬁ2 —1=09963 or Opin=0.027rad=1.5°.
2.10 The maximum of the ™ p cross section, which occurs at p, = 300 MeV, corre-

sponds to the resonant production of the A° baryon (i.e. /s = m,). What is the mass
of the A?

Taking the protons to be at rest, the squared centre-of-mass energy s is given by

s = (Ex +mp)* — (p2)
ETZE - pi + 2E;mp + m2

P
= mg + mi + 2E;my
= m) +mj + 2my(p5 + m2)'?
= 1.52GeV

Therefore the mass of the A is

ma = Vs =123GeV.

2.11 Tau leptons are produced in the process ete~ — 1™t~ at a centre-of-mass
energy of 91.2 GeV. The angular distribution of the n~ from the decay t~ — w7v, is

dN
d(cos 6%)

o 1+ cos6*, 2.1)

where 6% is the polar angle of the =™ in the t-lepton rest frame, relative to the direction
defined by the t spin. Determine the laboratory frame energy distribution of the =~ for
the cases where the t-lepton spin is i) aligned with or ii) opposite to its direction of flight.
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The angular dependence arises from the chiral nature of the weak interaction,
which implies that the v, is left-handed. The two cases are indicated below. In
the rest frame of the four-momentum of the ™ are respectively given by:

p"=(E,,0,p,sind,prcosd) and p*=(E,,0,p,sind", —p, cosf").

In the laboratory frame, the energies of the charged pions are
E. =vyE. +Byp,cosf”, (2.2)

where E. refers to the first case where the spin of the tau lepton is on the same
direction as the motion of the tau and 8 and y are respectively the velocity and
Lorentz factor of the tau-lepton. This implies that the minimum and maximum
energies of the decay pions (cos 6" = 1) are

Emin = VE; _ﬁyp;kr and Emax = yE; +ﬂ'yp;kc s

which can be used to write

')/E; = %(Emax + Emin) and ﬁyp:f[ = %(Emax — Enin) -

For both spin-orientations:

dN  dN « dE.
dE.  d(cos@*) " |d(cos 6")
oc (1 + cos6)/(Bypy)
1 + cos 6"
< — .
Emax — Emin
This can be written in terms of the measured energy of the pion using (2.2), which
when expressed in terms of Eyx and Ep;, gives

Emax - Emin + (ZEi - Emax - Emin)

-1

1 +cos@" =
Emax — Emin
Therefore for the two different spin orientations
dN Ex — Enin dN Emax — Ex
dEn - Emax — Emin and dEn - Emax — Emin ’

where now E. have simply been written as E.
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Here the t energy is simply mz/2 and therefore y = mz/2m, = 25.65 and § =
0.9992. It is straightforward to show that the £ = 0.894 GeV and p};, = 0.883 GeV.
Therefore Epnin = 0.3 GeV and En,x = 45.5 GeV. Consequently, the energy distri-
butions of the charged pion from 1~ — 7t~ v, decays (shown below) provides a way
of measuring the average polarisation of the tau lepton.

vy vy
dE, =l dE, O

1 Ex Ey

2.12 For the process 1 + 2 — 3 + 4, the Mandelstam variables s, ¢t and u are defined
as s = (p1 +p2)*, 1= (p1 — p3)* and u = (p1 — ps)*. Show that

22 2 )
S+u+t=my+ms5+ms+my.

This is a fairly straightforward problem if approached correctly:

s+u+t=(pi+p)° +(p1—p3)+(p1—ps)
= P+ 3 +2p1-pa+ pi+ p3 —2p1-papi + Py — 2p1-pa
=3p1 + p3 + p3 + i +2p1-(p2 — p3 — pa)
=3pT +ps+ p3 + i — 2P
=pL+Dp3+py+D;
=m? +m5+mi+ml.

2.13 At the HERA collider, 27.5 GeV electrons were collided head-on with 820 GeV
protons. Calculate the centre-of-mass energy.

Both the electron and proton can be treated as ultra-relativistic such that p ~ E and
therefore

s = E* —p* = (Ep + Eo)* — (Ep — Ee) = 90200 GeV?,
and hence the centre-of-mass energy /s = 300 GeV.

2.14 Consider the Compton scattering of a photon of momentum k and energy E =
k| = k from an electron at rest. Writing the four-momenta of the scattered photon and
electron respectively as k¥’ and p’, conservation of four-momentum is expressed as
k+p =Kk + p'. Use the relation p’*> = m2 to show that the energy of the scattered
photon is given by
, E
E = ,
1 + (E/me)(1 — cos6)

where 6 is the angle through which the photon is scattered.
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Using four-vectors, this is a fairly straightforward problem. Writing p” = k—k" + p
and squaring (the four-vectors) gives

pP=k=KY +p +2p-(k—K)
m? = k> + kK? = 2k-k' + m2 + 2mo(E — E")
2EE’(1 —cos8) = 2me(E — E')
E'{E(1 —cos8) +me} =2m.E
, E

= E = .
1+ (E/me)(1 —cos6)

@ 2.15 Using the commutation relations for position and momentum, prove that
(L L,] =il

Using the commutation relations for the components of angular momenta prove

and

the commutator in question can be simplified using [Z, p.] = i as follows
Lo Ly| = |95 = 2py> 2D — £
= [0 2D:] + 2By, %]
= §Px [Pz, 2] + Py [2, P:]
= —ijpx + iﬁyﬁ
= i(fcﬁy - yﬁx)
=iL,.

b) To show that [f,z, ﬁx] = 0, the angular momentum commutation relations written
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._..
=
—*
=
(¢]
¥
=
8
~

=
~
<
Il
~
<
~
=
+
=

2
(@)
o
=
o
(¢)]
o
17
(@]
&

= L,(LiL, —iL;) — (LyLy +il)L, + L(L.L, +iL,) - (L.L, - iL,)L,
)

= P24 12— i, L]
=L} + L) —i(-iLy)
=L+ - L,
Then express in terms of £2:
=L+ +12
=L, +L +12.

2.16 Show that the operators S; = %0',-, where o; are the three Pauli spin-matrices,

e 1 (01) & _.[0-i e _i[1 0
sz%(lo)’ Sy:%(i 0) and Szz%(O—l)’

satisfy the same algebra as the angular momentum operators, namely

A A

8.8, =i8.. [8,.8:]=i8, and [3..8.]=iS,.

Find the eigenvalue(s) of the operator §” = §2+ 82+ 32, and deduce that the eigen-
states of $. are a suitable representation of a spin-half particle.

a) The commutation relations can be obtained by direct matrix multiplication, e.g.
A oA 01\(0 —i 0-i\[01
1 _
sl =4|(Vo) (79 )-(5 (Vo)
K 0 (i 0
4\0 —i 0 i
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b) Each of the Pauli spin matrices satisfies o-% = [ and therefore
&2 _1(2. 2, . 2\_3
S = Z(O'X+O'y+O'Z)— 2.
Given that the commutation relations are the same as for angular momentum the

states in the vector space upon which the S act can be described by two quantum

. a2 .
numbers |s, m), where the eigenvalue of S is s(s + 1) and there are 2s + 1 states
differing by one unit of m. For the two-component state vector

Sz |s, m) = %Is,m) =s(s+1)|s,m) .

Hence s(s + 1) = 3/4 which is satisfied for s = 1/2. Hence there are two states
in this vector space with s = 1/2 and m,; = +1/2. Since the operators satisfy the
commutation relations of the angular momentum operators, it can be concluded
that S, $ y and S, are a suitable (but not unique) representation of the operators
for the algebra of spin-half.

2.17 Find the third-order term in the transition matrix element of Fermi’s Golden rule.

The third-order term in the perturbation series can be found be substituting the
solution to second-order back into (2.42):

dck iE A Il A . N A . ’
. Lo Bt o [T . —iEit _ - 1\ JUE—EDY 1y —iEt ’
i ki ¥ dre H' ¢ie i E (k|H'|i)e H' ¢pe dr

k#i
+ (_i)z Z Z f<k|H/|j>ei(Ek—Ej)t” dr”’ f(ﬂﬁl|l.>€i(Ej_Ei)t/[:I’¢k€_iEkt dr’ .
k#i j#i#k
Multiplying both sides by qﬁ’} gives
de

l'd_fe—iEfl ~ <f|H/|l->e—iEit _ lz f<k|HI|i>ei(Ek—Ei)t’ <f|ﬁ/|k>e_iEkt/ dt/
! ki
G f (KA jye P dr” f I iye E B (fIA e B dr
ki ik
Multiplying through by e£s!
leads to

and performing the integrals with respect to #' and #”

L (1A el iZ<k|ﬁ’|i>M<f|ﬁ'|k>ef<Ef—Ek>f
d o i(Ex ~ E;)
i(Ex—E )t i(Ej—Et

Y € T 717 JIE f—Ept
0P D ) WA e G ) s I e B8
k#i jizk J J !

deg o o (KRR SIERKA DG iz, -e
e~ l(mH |l>+z (Ex — E)) +ZZ (Ex — Ej)(Ej - Ej) )e o
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and therefore, to third-order,

(KLH' i) ey N

Tyi = (fIH'|i) + Ei-E)

DI

SV KA G 1y

(Ex — Ej)(Ej - Ej)



Decay Rates and Cross Sections

® 3.1 Calculate the energy of the u~ produced in the decay at rest n~ — u™v,. Assume
my; = 140MeV, m, = 106 MeV and take m, ~ 0. Momentum is conserved so the

momentum of the muon and neutrino are equal and opposite with magnitude p.
Conservation of energy implies that

mq = E, + Ey

= mg—p=E,

where the neutrino mass has been neglected E, = p. Squaring and using E> =
m? + p’gives

m} = 2map + p* = mlp*

2 _ 2
ms —m

—~ P _30MeV.
2my

= p=
Therefore the energy of the muon Eﬁ = mﬁ +p? =110MeV.

(® 32 Forthe decay a — 1 + 2, show that the momenta of both daughter particles in
the centre-of-mass frame p* are

p* = 2;10 \/ [(m = Gmy + ma)?] [mg = (my = m2)?].

In the parent particle’s rest frame, the momenta of the two daughter particles are

equal and conservation of energy implies m, = E| + E,. Writing this as m, — E; =
E| and squaring gives
m>:—2myEy + E5 = E2
m2 - 2myEy + m% +p? = m% +p*?

= mﬁ + (m% - m%) =2myE, .

20
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Squaring again to eliminate E; leads to
m;‘ + 2m§(m§ - m%) + (m% - m%)2 = 4ma(m§ +p*?)
g = 2m (i + mi) + (my = m)*(my +m2)’ = dmgp”
my = 2mg | (my +m2)” + (my = ma)*| + (m1 = mo)*(my + ma) = dm,p™
[m?, —(my + mz)z] [mﬁ - (m - mz)z] = 4m,p*,

thus showing that

p’ 1 \/[(m% - (my + m2)2] [mﬁ - (m; - mz)z] :

- 2my,

3.3 Calculate the branching ratio for the decay K* — n*n®, given the partial decay
width [(K* — nt*a’) = 1.2 x 10"® eV and the mean kaon lifetime 7(K*) = 1.2 x 1078 s.

The branching ratio is related to the total decay width I by
[(K* — ata’)
F b
where (in natural units) I' = 1/7 or in S.I units (as given here) I' = 7i/7 . Hence

BRK* —» 7t n’) =

BR(K" — a*n’) = % x (Kt = nta®)

1.2x1078

=  12x10%.16x10Y=21%.
1.06 x 1034

3.4 At afuture e*e” linear collider operating as a Higgs factory at a centre-of-mass
energy of /s = 250 GeV, the cross section for the process e*e™ — HZ is 250 fb. If the
collider has an instantaneous luminosity of 2x 10** cm=2 s~! and is operational for 50 %
of the time, how many Higgs bosons will be produced in five years of running? Note:

1 femtobarn = 10~13 b.

The total number of events is given by

N = fo-Ldt,
2

or equivalently, the event rate is o£. Remembering that 1 barn = 1072* cm?,
Rate = oL = (250 x 107%) x (2x 10**) = 0.005s~"

Therefore in five years of operation with 50 % lifetime, a total of 0.005 x 0.5 x
365.25 x 86400 = 394000 e*e~ — HZ events would be accumulated.

3.5 The total ete™ — y — p*u~ annihilation cross section is o = 4na?/3s, where
a ~ 1/137. Calculate the cross section at /s = 50 GeV, expressing your answer in
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both natural units and in barns (1 barn = 102 m?). Compare this to the total pp cross
section at /s = 50 GeV which is approximately 40 mb and comment on the result.

In natural units

dma’  4m/137
3s 3.502

To convert to natural units, either insert the missing factor of (hic)? or use the con-

version factor fic = 0.197 GeV fm and 1 fm? = 1073 m? = 102 b, therefore

=89x10%Gev2.

g =

o =89x10"8GeV?x0.197> x 0.01 b = 34pb.

This is a factor of approximately 10° smaller than the strong interaction pp cross
section.

3.6 A 1GeV muon neutrino is fired at a 1 m thick block of Iron (3$Fe) with density
p = 7.874 x 103kgm™3. If the average neutrino-nucleon interaction cross section is
o = 8 x 1073 cm?, calculate the (small) probability that the neutrino interacts in the
block.

From the definition of cross section the event rate is given by flux X cross section X
number of targets, Rate = ¢o N,. The total number of interactions Nj is therefore

Nint :O'Ntf(ﬁd[.

Suppose the "beam” of one neutrino is confined to an area A, then the integrated
flux is just 1/A. Writing the thickness of the Iron as x, the number of targets tra-
versed by the "beam” is Axn, where n is the number density of target nuclei. Hence

1
Nint = O'ZnAx = onx.

Taking the average mass of a nucleon to be 1.67 x 10727 kg, here the product of the
number density and thickness is

3 7874
©56-1.67 x 10727

Hence the average number of interactions for the single neutrino traversing the
block is 8.4 x 10%* - 8 x 1073 = 7 x 10710, Therefore the interaction probability is
less than 107°.

nx x1Im=84x10%¥m2=84x10%*cm2.

3.7 Forthe process a + b — 1 + 2 the Lorentz invariant flux term is

1
F = 4{(pa-po)* - mm]|* .
In the non-relativistic limit, 8, < 1 and B, < 1, show that

F~ 4mamb |Va - Vb| 5
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where v, and v, are the (non-relativistic) velocities of the two particles.

First consider the low energy limit of the four-vector product p,pp = E.Ep—p,*Pp
where, (as expected) the non-relativistic limit of the particle energy and momentum
are (in natural units)

E=ym=m(1-8) """ ~m(1+ 1) = m+ Imp’,

and to O(B):

p=ymp=m(1-5) " Bxmp.
Hence p,-py = E.Ep — P, * Pp 1s approximately

Pa* Db = MMy, (1 + %ﬂﬁ) (1 + %ﬂi) — mampfB, + By,

= mgymy [1 + B2 +Bp) —Bu By + %,,3(21;31%]

= mamy |1+ 3B, — By)* + 18353

~ mamp |1+ 3B, - By)’| -
Therefore to O(3%)

(Paps)* = migmi |1+ (B, = By)’
]1/2

a
= 4dmomyp|B, — By,

or equivalently in S.I. units, F' = 4m,my|v,—Vp|. As expected, in the non-relativistic
limit, the flux depends on the relative velocities of the particles.

= F=4[(papp)’ - mim;

3.8 The Lorentz invariant flux term for the process a + b — 1 + 2 in the centre-of-
mass frame was shown to be F = 4p’ /s, where p; is the momentum of the intial-state
particles. Show that the corresponding expression in the frame where b is at rest is

F = 4mbpa .
12
Independent of rest frame, the Lorentz invariant flux is given by F = 4 [( Pa-Pb) — mzmi] / .
Here p, = (E,,0,0,p,) and p;, = (my, 0,0, 0) and therefore

1/2
F=4 [Eflmi - mgmi]
1/2
=4 [(pﬁ + mi)mﬁ — mimﬁ

= 4pamb .
3.9 Show that the momentum in the centre-of-mass frame of the initial-state particles
in a two-body scattering process can be expressed as

1
pi* = o-ls = Om+ mo) s = (my —ma)’].
N
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In the centre-of-mass frame /s = E} + E; and therefore
(Vs - E}) = E?
s—2VsE| + E}* = E}?
s —2V/sE; +m%+p;‘2 :m%+p;‘2
= 2VsE]

4s(p;‘2 + m%)

s+ (m% - m%)

52+ 2s(m% - m%) + (m% - m%)2
4spf2 =5 - ZS(m% + mg) + (m% - m%)2
s* = 2s(mt +m3) + (my — mo)*(my + my)?

[s —(m + m2)2] [S —(my — m2)2]

= pi* = % [S —(my + mz)z] [S - (my - mz)z]

@ 3.10 Repeat the calculation of Section 3.5.2 for the process e"p — e™p where the
mass of the electron is no longer neglected.

a) First show that
dEs pip3
d(cos6) ~ ps(E; +my) — E3pjcosf

b) Then show that

do 1 p; 1
dQ ~ 64n2 pyme ps(E; +my) — E3p; cosé

IMsl*,

where (E;, p1) and (E3, p3) are the respective energies and momenta of the initial-state
and scattered electrons as measured in the laboratory frame.

4

(E3,p3)~¢
e (Ehpl) ‘//Z
p\Ev47p4)
p

a) With the electron masses (m) included this is a somewhat tedious calculation. In
the laboratory frame where the proton is at rest the four-momenta of the particles
(shown above) can be written

p1=(E1,0,0,p1), p2 = (mp,0,0,0), p3 = (E3,0,p3sin6, p3 cos0) and ps = (E4, py) -
Differentiating E% = p_% + mg with respect to cos 6 gives

dE3 dps3
2E =2 .
3 d(cos 0) p3 d(cos 0)

(3.1)
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Then equating the expressions for the Mandelstam ¢ variable written in terms of
the electron and proton four-momenta gives
t=(p1—p3) = (p2—pa)
2mg = 2py-p3 = 2m; = 2py-pa
2m; — 2(E\E3 — pips cos 6) = 2m) — 2myE,
2m; — 2(E\E3 — p1ps cos 6) = 2m) — 2my(Ey + my, — E3) ,

which can be differentiated with respect to cos # remembering that £ and p; are
the fixed intial-state electron energy and momentum:

dE3 dp3 dE3

-E + + = Mmp———+
! d(cos 6) P1 d(cos 6) P1p3 = Mp d(cos 6)
dEs p3
Ey +mpy)——— — 6 = :
= (E1 +mp) d(cos 6) p1c08 d(cos 6) P1ps
Using (3.1) this can be written
dE3 E; dE;
E; + —— —p1— f——— =
(Ey mp)d(cos 0) P1 P3 €08 d(cos 6) P1p3
p1E3cos8\ dE3
= E +my— =
( 1+ mp D3 ) d(cos ) p1pP3
dE; pip3

d(cos 6) B p3(E1 + myp) —p1E3cosf’
which is the desired result.

b) From (3.37) of the main text,
do 1
R — V| 12
dt  64ns pf2| s

This can be related to the differential cross section in terms of solid angle using
do  do df 1 dt do

dQ ~ dr dQ 27w d(cos6) dt

Butz = (ps — p2)2 = 2m§ —2mpE4 = ng = 2mp(E| + m, — E3) and therefore
dr 2 dE;
=2my——.
d(cos 6) P d(cos 0)
Putting the things together gives
— - _ My
dQ ~ 27" d(cos ) 64zs p;rzl /i
1 mypip3 1
64n> spr2 p3(E1 +mp) - piE3cosd

IMil* . (3.2)
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All that remains is to express spl.2 in terms of the laboratory frame quantities. The
centre-of-mass energy squared is just

s:(E1+mp)2—p%:2mpE1+m§+mg,

and from the previous question

sp;‘2 le [s — (me + mp)z] [s — (me — mp)z]

1 2 _ 2 2_ 2
7 [s —mg —my — 2memp] [s —mg —my + 2memp]

% [ZmpEl - 2memp] [2mpE1 + 2memp]
= nglz - mgmg
= mypi .
Substituting this expression back into (3.2) gives
do 1 P} 1

0" a2 : Mg
dQ 647> mpp1 p3(Ey +mp) —p1E3cosd




The Dirac Equation

@ 4.1 Show that
[p°, # x p] =

and hence the Hamiltonian of the free particle Schrédinger equation commutes with
the angular momentum operator.

A

Consider the commutator of 132 with the x-component of L. = £ x p:

Ly =§p. —2py
Hence
6% Ls| = |2 + bj + 2. b= — 2y
= [Py p:] - [P.2,
= [py,y] bz~ [ﬁz,ﬁ] Py (4.1)

where the last line follows since, for example, p, commutes with j. Using
|v. by| = 0By - Py =i
the commutators in the previous expression can be simplified, for example
[52.9] = bybyis - 95y by
= ﬁy(gﬁy —1i) - gﬁyﬁy
= ﬁyg[’y - iIA’y - yﬁyﬁy
= (gyﬁy - i)ﬁy - iﬁy - gﬁyﬁy
= -2ip,.
Similarly [ﬁf, 2] = —2ip, and therefore (4.1) becomes
A2 % A2 Al A A2 Al A
6% .| = |53, 9] b- - [p2.2] py
= _Ziﬁyﬁz + Ziﬁzﬁy
=0.

27
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Hence the commentator [f)z, rx f)] is identically equal to zero. Since the Hamilto-

nian for a non-relativistic free particle can be written Hp = 132 /2m, it immediately
follows that

[Ap.L]=0.
Since the Hamiltonian for a non-relativistic free particle commutes with the oper-

ator for angular momentum, angular momentum is a conserved quantity for a free
Dirac particle.

4.2 Show that u; and u, are orthogonal, i.e. uju, = 0.

The two normalised spinors are

1 0
0 1
ui(p) = VE+m . and ux(p) = VE+m| p—ip,
E+m Etm
pxtipy =p:
E+m E+m
and therefore u (p)Tug(p) is
0
T =(E 1.0. 2 Px—ipy 1,
ui(p)'uz(p) = (E + m)( U o W) Pa—ipy
E+m
—Pz
E+r
P(px=ipy) _ p(Pa—ipy)
:(E+m)(0+0+ E+my - E+my)

=0.
Since u1(p) ua(p) = 0, taking the Hermitian conjugate shows that us(p) u;(p) = 0.

4.3 Verify the statement that the Einstein energy-momentum relationship is recov-
ered if any of the four Dirac spinors of (4.48) are substituted into the Dirac equation
written in terms of momentum, (y*p,, — m)u = 0.

In matrix form y*p,, — m is given by

coo
O - OO
==
oo o i
1
oo~ o

— Pz

S = O O
- o O O
S O O~

1
~.
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Hence the Dirac equation for u#;, when written out in gory detail, is

Y*py—mu =0

E—-m 0 —Dz —Px t ipy 1
0 E-m -p,—ip, Dz 0 _o
Pz Px — ipy —(E +m) 0 Epﬁ,
. X+
px+ipy  —p: 0 —(E+m) )\ 222
o -pi-pl
(E—m)+0]:m + E+m/
0+0- 75 + Gorimy =0
p,+0—-—p,+0
(px+ipy) +0+0—(px +ipy)
E* —m® = pi—p; - p?
1 0
=0 ,
E+m 0
0

which is only true when E? = p? +m?. Of course, this had to be true since the Dirac
equation was constructed to be consistent with the Einstein energy-momentum re-
lation.

4.4 For a particle with four-momentum p# = (E, p), the general solution to the free
particle Dirac Equation can be written

Y(p) = [aui(p) + buz(p)]ef(p-x—Et) )

Using the explicit forms for u; and u,, show that the four-vector current j* = (o,j) is
given by

jH=2pH.

Furthermore, show that the resulting probability density and probability current are
consistent with a particle moving with velocity 8 = p/E.

For arbitrary spinors ¢ and ¢, with spinor components ¢; and ¢;, matrix multipli-
cation gives, for u = 0,

10 0 0)(¢
P00 = Wi =05 o o ) o || |7 i+ vite+ uss + s,
00 0-1)\ ¢4
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Repeating this for u = 1,2, 3 gives

WY = Wi + Uy + U363 + Wi

Uy'e = wida +usds + Ui + Ui
UYPe = —iids — w383 + Uia — Yid1)

VY’ = ids — Uaba + U3 — Wi
For the free particle spinor u;(p), the first element of the four-vector is
P (px +py)

+

(E+m)?*  (E+m)?

p2

(E + m)?
_(E+m)y+p?

B E+m
_ 2E®+2Em
 E+4+m

ﬁlyoul =(E+m)|l+

=(E+m)|l+

=2F.
Repeating this for the remaining terms in the four-vector current gives
y'u =2E, wy'uy =2p,, wy'w =2p, and wy'u; =2p,,
and therefore
wyHur = QE, 2py,2py,, 2p;) = 2p*.
For u;, v; and v, the corresponding expressions are
ury*uy = uwpytuy = vyytor = vpytoy = 2pH.
and the corresponding cross terms all give zero

uryHuy = wpytuy = v1y*vy = voy*v = 0.

For a particle, with ¢ = u(p)e’?*, we have
¥ ="y = u(p)ye ™ = u(p)e ',
and hence
J* =yt =uytu.

For an antiparticle spine the same relation is found; j* = vy*v.

A particle spinor u(p) can always be expressed as a linear combination of the basis

spinors u1(p), uz(p):

u=aiu] + aur, with |a/1|2 + |012|2 =1.
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Hence
wytu = lai["ury uy + ool uyytuy = 2p*.
Thus for any free-particle spinor

J* =uytu =2p*.

The four-vector current j* = (p, j), leading to the identification
p=2E, j=2p.

This shows that the general spinor u(p) is normalised to 2E particles per unit vol-
ume and from £ = ym and p = yymv, the corresponding particle flux is j = 2Ev.
Hence the particle flux is, as expected,

J=pv.

4.5 Writing the four-component spinor u; in terms of two two-component vectors

Ua
M:( ),
up

show that in the non-relativistic limit, where 8 = v/c <« 1, the components of up are
smaller than those of u4 by a factor v/c.

Here we are looking for the general order of magnitude of the relative size of the
upper and lower components. So for simplicity, consider a particle travelling in the
z-direction, which from the definition of u; has

1 _P_
), and ugzN(E“”).

”A:N(o 0

Here the two lower components of the spinor are smaller than the upper two com-
ponents by a factor

p __ym
E+m (y+Dm’

In the non-relativistic limit where y ~ 1 this factor is of order 8 = v/c.
4.6 By considering the three cases u =v =0, u = v # 0 and u # v show that

YRy Ty =291

For the case where u = v =0,

YO0 44030 = 2 = 2400
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For the case where u = v = £,
Yk + 9,k = 21 = 2gF fork = 1,2,3.

For the case where u # v, the anti-commutation relation y#y” = —y”y* immedi-
ately implies that

vy +yYyH =0 =2g" foru # v.

In each case y*y¥ + y"yH = 2gH.

4.7 By operating on the Dirac equation,
(iy"8, —myy =0,
with v¥d,, prove that the components of i satisfy the Klein-Gordon equation,

(049, +m* W =0.

Acting on the Dirac equation with y”d, and multiplying by —i gives

Yy 0,0, + miy’ o,y = 0.
But since ¢ satisfies the Dirac equation iy”d,4 = my and thus

Y'y"o,0, + m = 0.
Since the order of differentiation doesn’t matter y"y*#d,d,, can be written
Yy 00, = 57Y" +¥v*¥)8,8, = 9" 8,0, ,
and therefore
(9" 0y0, + m* )y = 0

= (0" +m W =0,

which is the Klein-Gordon equation.

4.8 Show that
" =y

Recall the 7 = 9, y¥T = 9k 999 = [ and y99% = —y*9° For u = 0,

POF = 50 = 50,0,0
Foru=k+0,

Y S SV OV SOV Y
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and therefore for u =0, 1,2, 3,
)" =0y

4.9 Starting from
Y pu—mu =0,

a) show that the corresponding equation for the adjoint spinor is
u(y*py—m)=0.

b) Hence, without using the explicit form for the u spinors, show that the normalisation
condition u'u = 2F leads to

uu =2m,

and that
uytu =2pt.

a) Taking the Hermitian conjugate of the Dirac equation (y*p, —m)u = 0 (remem-
bering that the p,, are just real numbers), gives

0=u'G" py—m)
= u'y "Y' y* py — m)
= u"y "y pu—my®)
= (" pu —myy°,

where one of the intermediate steps used the relation y%y*" = y#Ty0 for all u.
Finally, pre-multiplying y° by both sides of the above expression leads to

u(y*py—m)=0.
b) Consider the wy”x the Dirac equation and Dirac equation for the adjoint spinor
Xy u
wy"(y'py—mu=0 and u(y*p, —m)y’'u=0
and take the sum:
u(y"y* + y*y)puu = 2muy’u = 0
u2g" pyu = 2muy’u
p’uu = muy'u.
For the case v = 0 this reduces to
pOEM = muTyOyou
Euu = mu'u = 2mE

= uu = 2m.
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Substituting this back into the first line:
p’uu = muy’u
p’2m) = muy’u
= uy'u=2p".

4.10 Demonstrate that the two relations of equation (4.45) are consistent by showing
that

(o-p)’=p.

This can be shown either by writing out the explicit form of o - p using the Pauli
spin matrices or (more elegantly) by using the properties of the matrices, namely
O'i =l and oxoy = =00, from which

(o- p)2 = (pxOx + pyoy + D0 )P0y + PyOy t P:07)
= PrOL + Py, + plo+
Pxpy(o'xo'y + O'yO'x) + pp (00, + 0,0,) + Pypz(o'yo'z + O'ZU'y)
= pr+p,+ P}
4.11 Consider the ete™ — y — e*e™ annihilation process in the centre-of-mass

frame where the energy of the photon is 2E. Discuss energy and charge conservation
for the two cases where: a) the negative energy solutions of the Dirac equation are

interpreted as negative energy particles propagating backwards in time;

b) the negative energy solutions of the Dirac equation are interpreted as positive en-
ergy antiparticles propagating forwards in time.

a) In the first interpretation (left diagram), the intial-state positive e” of energy +E
emits a photon of energy 2E. To conserve energy it is now a negative energy e~ and
therefore propagates backwards in time. At the other vertex, the photon interacts
with a negative energy e~, which is propagating backwards in time and scattering
results in a positive energy e~.

b) In the Feynman-Stiickelberg interpretation (right diagram), the intial-state pos-
itive e~ of energy +E annihilates with a positive energy e to produce a photon
of energy 2E. At the second vertex the photon produces an e*e™ pair. All particles
propagate forwards in time.

(B 4.12  Verify that the helicity operator

. Ep 1fo-p 0
5wl )
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e (+E) e (+E) e (+E) e (+E)

YQE) Y(2E)

e (-E) e (-E) e"(+E) e"(+E)

The interpretation of the annihilation process e*e™ — e*e™. In both diagrams (which are
not Feynman diagrams) the time axis runs strictly from left to right.

commutes with the Dirac Hamiltonian,

ﬁD:a-ﬁ+ﬁm.

In the Pauli-Dirac representation

I 0 0 g
ﬁ‘(o-z) and “"‘(cr,- o)’

and since S contains the identity matrix it is clear that [ﬁ, =] mBh = 0 and therefore

it is only necessary to consider [iz, - f)].

[i,[f[]—i ogp 0 0 o-p\ (0 o-p\(fo-p O
PIE N 0 oplap 0 o-p 0 0 o-p

_L( 0 (o--f))z)_ 0 (o-py
“pll@p? 0 @-p? 0

=0.

@ 4.13 Show that

Pur(0,¢) = uy(m — 6,7+ ),

and comment on the result.

In the Dirac-Pauli representation

10 00 ¢
A 01 00 se'?
— 0 = — 4/
P=y = 00-10 and u1(6,¢) = VE+m Efmc
00 O -1 P it

E+m
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Therefore
10 0O ¢
. 0100 se'?
PMT(0,¢)— VE +m 00-10 ﬁc
00 O -1 %ﬂsei‘/’
c
se'?
“Em©

This can be compared to

—sin(r/2 - 6/2)

cos(m/2 — 6/2)e" 9™
e I )

——L_cos(n/2 — 0/2)e' @+

E+m
—C
= E +m p s
E+m©
_P_ it
E+m se

and therefore, up to an overall phase factor, PuT (6, ¢) = uy(7—0, m+¢). As expected
the action of the parity operator has the effect that p — —p (reversing the direc-
tion of the particle), but leaves the orientation of the spin unchanged in space, this
transforming a RH particle into a LH particle travelling in the opposite direction.

@ 4.14 Under the combined operation of parity and charge conjugation (CP) spinors
transform as

Yoyt =CPy=iyy'y.
Show that up to an overall complex phase factor

CPuy(0,¢) = v)(m— 6, + ).

In the Dirac-Pauli representation

1000 000 -i ¢
01 00 00i0 se'

0 _ 2 _ _

Yloo1 of Y|loioo| M m@hH=NErmp
00 0-1 000 D it

E+m
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Hence
000-iyf10 0O ¢
p 00io0flo1 00 se”'?
.20 .
CPuy(6,¢) = iy y ur(0,¢)" =i oioolloo-1 o VE +m ﬁc
- 000)LOO O -1 %nse—w)
000 - ¢
looio se”"¢
o ioo|VErM e,
000 —ﬁse‘iq}
0O 0 01 ¢
——10 0-10 se”"?
= E+m p
0 —1 0 0 —mc
1 0 00 —ﬁse‘i‘l’
_Efmsei(ﬁ]
_P
— E+m E+m?
_se_l¢
c
This can be compared to
Eﬁ%ms-(ﬁ —%ﬁse‘i"’
__P i . _p
v(r—0,0p+m)= VE+m E+m" | = e VE + m E+"1; ,
s —se
—ce'? c

and thus
CA’ISMT(Q, ¢) = —ei‘ﬁvl(ﬂ —-0,m+¢).

This overall (unobservable phase) could have been included in the original defini-
tion of the v;.

4.15 Starting from the Dirac equation, derive the identity

| .
u(p )y u(p) = %ﬁ(p’)(p + p) u(p) + iﬁ(p’) Zq,u(p),

where g = p’ — pand ¥ = L[y#,y"].

Starting with the Dirac equation for the spinor u(p) and the corresponding equation
for the adjoint spinor u(p’):

¥pu—mu(p)=0 and u(p")(y"p,—-m)=0,
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gives
y¥ puu(p) = mu(p) and  u(p’)y"p, = mu(p’). (4.2)

Now consider the u(p’) *”q,u(p) term, remembering that the p, are just numbers
and taking care to preserve the order of the y-matrices:

WP = quu(p) = 2 [P "y (P, = poup) = (0 )Y (P, = Py u(p)]

Wherever the terms u(p’)y”p;, and y*p,u(p) appear, the relations of (4.2) can be
used to simplify the above expression, hence

bl ’ i — 7 ’ — ’ — ’ - ’
w(p") 2" qyup) = 7 [u(p"yy"y" pyu(p) — mu(p"yy u(p) — mu(p"yy*u(p) +u(p"yy" pry*u(p)]
i — — 7 ’ ('
= o [=2mu(p )y ulp) +u(p"yy"y" pulp) + u(p)y" pyy*u(p)] -

The two terms containing two y-matrices can be simplified by using y*y” = 2g#*” —
yYy# to place them in the order where (4.2) can again be used.

— i — 7 —c v ’/

w(p") 2 qyu(p) = 7 [=2mu(p"yy"u(p) +u(p’)2g" = y"y")pu(p)

u(pH2g*” = y*y")pyu(p)]

= < [=2mp Yy "up) + 20 )" u(p) = TP )Py Y u(p)

+2u(p")p*u(p) = u(p'yy"y" pyu(p)]
= S 120 )y ulp) + 2P + ) ~ 2y (]
= L[ niipy ulp) + 2P ™ + pHu(p)]
= )T ) = mEp P u(p) ~ ST+ p )

. .
= u(p’ )y u(p) = %ﬁ(p’)(p"‘ + pu(p) + éﬁ(p’)i“vqyu(p),

as required.



Interaction by Particle Exchange

g 5.1 Draw the two time-ordered diagrams for the s-channel process shown in Fig-
ure 5.5. By repeating the steps of Section 5.1.1, show that the propagator has the same
form as obtained for the r-channel process. Hint: one of the time-ordered diagrams is

non-intuitive, remember that in second-order perturbation theory the intermediate state
does not conserve energy.

The two possible time-orderings are shown below. In the first a+b annihilate into X
and then X produces ¢ +d. In the second time-ordering, the three particles ¢ +d + X
“pop out” of the vacuum and subsequently a + b + X annihilate into the vacuum.

space
space

time time
For the first time-ordering, the transition matrix element is given by second-order
perturbation theory:

pav _ SFVIDGIVID _ (e + dIVIX)(XIVia + b
fi " E;—E;  (Eq+Ep) —(Ex)

The non-invariant matrix element V; is related to the Lorentz invariant (LI) matrix
element M;; by

Vii = M H(2Ek)_1/2 ,
k

where the index k runs over the particles involved at the interaction vertex. For the
simplest scalar interaction Mg.p_x = Mx_c+q = g and thus

ab 1 1 gz
T .= . ]
17 2Ex  QERER2EL2EN'V? (E, + Ep) — (Ex)

39
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and the corresponding LI matrix element is

1 g2
2Ex (E, + Ep) — (Ex)

b _

For the second time-ordering all five particles are present in the intermediate state
and thus,

ed _ (c +d + X|V|0)O|V|a + b + X)

It (Eg+ Ep) —(Eg+ Ep + Ec + Eq + Ex)’

where zero denotes the vacuum state. The corresponding LI matrix element is

JY — ¢ | g
fi 2Ex E.+E; + Ex 2Ex (E, + Ep) + Ex

The total amplitude is the sum of the two time-orderings

g 1 1
M= -
2EX Ed+Eb—EX (Ea +E},)+EX
_ g 2Ex
2Ex [(E, + Ep)* - E2

g2

C(Eg+ Ep?-E}

Writing Ef( =(p, +Pp)* + mf( gives

_ g
 (Eq+ Ep? — (p, +pp)? —m3
_ 7

¢ —my’

where ¢ = (pa + pp)>. This is exactly the same form as for the z-channel pro-
cess considered in the main text, and as before the four-momentum that appears in
the expression is obtained from conservation of four-momentum at the interaction
vertex.

5.2 Draw the two lowest-order Feynman diagrams for the Compton scattering pro-
cessye — ye .

The lowest-order diagrams have just two QED eey interaction vertices. Here there
is a t-channel and an s-channel diagram. It should be remembered that a Feynman
diagram is defined solely by its topology as it already represents all possible time-
orderings for a process. In both cases the virtual particle, labelled as e, represents
an e~ in one time-ordering and an e* in the other.
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Y e Y e
€
j e : I
e Y e” Y
® 5.3 Draw the lowest-order r-channel and u-channel Feynman diagrams fore*e™ — yy
and use the Feynman rules for QED to write down the corresponding matrix elements.

Because the there are identical particles in the final state, both ¢- and u-channel
diagrams can contribute. In the first diagram the virtual photon has four-momentum
q = p1—Pp3 = p4— p2, whereas in the second diagram g = p; — ps = p3 — p». Using

et Y et Y
) Z B ) P2
_ o P4
P1 p3 P1
e Y e Y

the Feynman rules for QED, and remembering to label the vertices with different
indices, the matrix elements are

i(yPqp + me)

—iM, = [&}(pa)iey u(py)] - [— o - [u(p2)iey” &, (pa)]

(]

i(vFP
—iM, = & (paiey u(py)] - [—l(yqfi—;me)] [u(p2)iey" e, (p3)] -

(¢
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@ 6.51

¥ = iy"y'y?y?, show that

r=1,

Y=y and yy*=-y"y.

Using the properties of the y-matrices of (4.33) and (4.34), and the definition of

5

i) Remembering that y#y” = —y”y* for u # v then the y-matrices can be permuted
and then removed using (y°)? = 1 and (y¥)? = —1:

) =

ii) Similarly

Y

5t

A 0 2 2o o A S

e e e o i T S

A 0 o 2 b e S

+y%y Y Yy

+y'y2 Yy

+ylyly vy

-2y

+y*yiyy?

+1.

= _iy3y2yly0

= +iySy2yy!
= —iy3yOy%y!

= +iy%93y%y!
= +iy%'532
= —iy%y1y%y?

:—ys,

Of course this can be shown much more quickly be realising that six permutations
of the form y*y” = —y"y* are required to reorder y°' into °.

42
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iii) Since
5 012 3
Yy =iy vyt
it takes three permutations of the form y#y” = —y”y* to place the y* at the front
of the expression. It is three, not four, because no permutation is required when y*
is next to the corresponding y-matrix. Thus
Vv =iy’ Y'Y = "y

6.2 Show that the chiral projection operators
Pr=11+y) and P =1(1-9),
satisfy
PR+PL=1, PRPRZPR, PLPLZPL and PLPRZO.

It is clear that P + Py = 1. Using ()/5)2 = 1, it is straightforward to show PgrPr =
P,
PrPp = 3(1+y)(1+7°)
=3(1+27° + ("))
=12+2y°) = Pg.
The relation Py Py = P follows in the same way. Finally
PrPr = 3(1+y)(1 =)
=71-0"%
=0.

6.3 Show that
m+ y* m— y#
STV gpg A= BT P
2m 2m
are also projection operators, and show that they respectively project out particle and
antiparticle states, i.e.

Atu=u, A v=v and Atv=A"u=0.

A+

i) Firstly it is necessary to show that the A* matrices are projections operators.
Clearly A™ + A~ = 1 as required. Secondly, it is necessary to show A*A* = A™,
such that the repeated action of a projection operator induces no change. Here
(remembering that the p, are just numbers):

AN = Zom+y¥p)m +7'p)
ez (m? + mly¥ py + 9" pl + pupy*y) -
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Because p,p,y*y" is a symmetric tensor it can be written as % puby(YHy” + ¥ yH)
and since yHy” + yYyH = 2gH

pubY*y’ = Spupy "y + ¥ y*)

=g"" pupy

= pup* = m’.

Thus

AN = 2o + mIy" pu + ¥ pol + pupy™y”)
= 5 @2m® + 2my*p,)

= ﬁ(m + Vﬂpu)
=A".

Similarly A*A™ =0and A"A™ = A™.
ii) The free particle u-spinors and v-spinors respectively satisfy
Y'py—mu=0 and (O p,+mu=0,

and therefore

y¥puu =+mu and y'p,v=-mv.
Therefore

Atu= ﬁ(m +yHpu

= ﬁ(m +mu=u.
The other relations follow in the same way.

6.4 Show that the helicity operator can be expressed as

0,,5
f_ 1 YYY-P
h=—-3—7"—.

P

In the Dirac-Pauli representation, the relevant matrices are

A 18 10'k0 k 0 (s 0 I 0 5 01
Sk:jzk:i(o crk)’ y:(—Uk 0)’ y=(0_1 w7 =

where k = 1,2,3 and S are the components of the spin operator for a Dirac spinor.

).
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The combination —%yOVSyk gives

I 0 017 0 o
_1. 0.5k _ 1 k
2V Yy 2(O—I)(I 0)(—o-k 0)

Il
U

Il
ST
~ —

and therefore

il = —= ) = ) ,
p p
which gives the projection of the spin of a particle along its direction of motion.

6.5 In general terms, explain why high-energy electron-positron colliders must also
have high instantaneous luminosities.

Because s-channel QED cross sections decrease as 1/s, as the centre-of-mass en-
ergy increases, higher instantaneous luminosities are required to obtain a reason-
able event rate, Rate = o L.

6.6 For a spin-1 system, the eigenstate of the operator $,, = n - S with eigenvalue
+1 corresponds to the spin being in the direction i. Writing this state in terms of the
eigenstates of §,, i.e.

|19+1>6 = a|1’_1> +ﬁ|130> +7|15+1>9
and taking n = (sin 6, 0, cos 6) show that

11, +1) = $(1 = cos ) |1, -1) + % sin@[1,0) + 1(1 + cosO) |1, +1).

Hint: write S, in terms of the spin ladder operators.

This question is a fairly straightforward but requires care with the algebra. Firstly, it
should be noted that a®+82+y? = 1. Secondly, by definition S ,|1, +1)y = +|1, +1)g,
where S, = n - S and, without loss of generality n taken to lie in the xz plane.

S, = n-S= sin9§x+cos9.§z.

The operator S, can be written in terms of operators in terms of the [s, m) states
using the angular momentum ladder operators,

A

SA+=SAx+i§y and §+=§x_isy,

and therefore S , = %(5‘ +S_). Hence

A A

Sp=n-8=15[S:+S_1+coS.,
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where for compactness the notation sy = sin 6 and cy = cos 8 has been used. Since
S, +1)9 = +|1, +1)y, then

(35084 +8_1+coS.) (@ll.=1) + BIL0) + ¥|1,+1)) = all, = 1)+BI1, 0)+y]1, +1).
Using

S ls,my = +/s(s+ 1) —m(m+1)|s,m+1)

S_|s,my= +/s(s+1)—m(m—1)|s,m— 1),

8,11, +1) can be expressed in terms of the eigenstates of the S, eigenstates:

Sull,+1) = a(V259]1,0) +co |1, 1)) + B V250 (11, =1) + |1, +1)) + y( V254|1,0) + ¢y |1, +1))

= (—acy + B V2sp) 11 = 1) + V2sg (@ +)[1,0) + (B V2sg + ycg) 11, +1) .

Since this must be equal to a|l, 1) + S|1,0) + y|1, +1), equating the individual
terms gives the simultaneous equations,

ﬁ‘/ﬁse =a(l +cyp)

V2sgla+7) =B

BV2sg=y(1 - cy).

From the first and third equations
a(l —cy) =y(l +cg) and 2,82 =ay,

which, when combined with ?+8?+y? = 1 implies that @ = 1(1-cg), ¥ = 3(1+cp)
and 8 = \/lise. Hence

_ 1 ) . 1
[1,+1)s = 5(1 —cosO) [1,-1) + 5 sinf[1,0) + 5(1 + cosO) |1, +1).

6.7  Using helicity amplitudes, calculate the differential cross section fore u™ — e"n~
scattering in the following steps:

a) From the Feynman rules for QED, show that the lowest-order QED matrix element
forey™ - ey is
2

e
My (1 - p2
where p; and p; are the four-momenta of the initial- and final-state e™, and p, and p4
are the four-momenta of the initial- and final-state p~.
b) Working in the centre-of-mass frame, and writing the four-momenta of the initial- and
final-state e™ as p!' = (E1,0,0,p) and p} = (Ey, psin6,0,p cos 6) respectively, show that
the electron currents for the four possible helicity combinations are

[u(p3)y*u(py)] [u(pa)y u(pa)]

uy(p3)y*uy(p1) = 2(Erc, ps, —ips, pc) ,
ur(p3)y*uy(p1) = 2(ms,0,0,0),
ur(p3)y*ur(p1) = 2(Ec, ps, ips, pc) ,
uy(p3)y*ur(p1) = —2(ms,0,0,0),
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where m is the electron mass, s = sin(6/2) and ¢ = cos(6/2).
c) Explain why the effect of the parity operator P = is

Pur(p,6,¢) = Puy(p,m— 6,7+ ¢).

Hence, or otherwise, show that the muon currents for the four helicity combinations are

u (pa)y*uy(p2) = 2(Ezc, —ps, —ips, —pc) ,
ur(pa)y*uy(p2) = 2(Ms,0,0,0),
ur(pa)y*ur(p2) = 2(Ezc, —ps, ips, —pc),
uy(pa)y*ur(p2) = =2(Ms,0,0,0),

where M is the muon mass.

d) For the relativistic limit where E > M, show that the matrix element squared for the
case where the incoming e~ and incoming p~ are both left-handed is given by

4e* 52
My = ————,
(p1 = pa)*

where s = (p1+p»)?. Find the corresponding expressions for Mg, %, IMgz|* and |Mz[>.

e) In this relativistic limit, show that the differential cross section for unpolarised e p~ —
e~ scattering in the centre-of-mass frame is

do 2a% 1+ 3(1+cos6)?

a0 s (1 — cos 6)?

This is a fairly long question, but provides a good introduction to calculating matrix
elements using helicity amplitudes.

a) The lowest-order (QED) Feynman diagram for the e"u~ — e u~ scattering
process is shown below The corresponding matrix element comprises three parts,

€ €

P2 P4

w u

the two vertices and the photon propagator. The product of these three parts is
equal to —iM. Remembering that the particle attached to the arrow leaving the
vertex appears as the adjoint spinor:

—iMyi = [A(p3)(—iQee)y u(p1)] [—i%] [apa-i0uery u(p)] .



48

Electron-Positron Annihilation

where Q. = -1, O, = -1 and g = p; — p3, hence

2
Myi = —Lﬂvz [(p3)y* ulp)] [u(pa)y"u(p2)]
(p1—=p3)
L

where the electron and muon currents are j.' = u(p3)y“u(p1) and Jy = u(pa)yu(p2).

b) For a particle of mass m the helicity eigenstate spinors are

C )
€i¢S €i¢C
ur = VE+m p and u; = VE+m p ,
[l;?+m§ E+ms¢
i Y __b
E+me § E+me ¢

where ¢ = cos(6/2) and s = sin(6/2).

For the incoming electron, with p; = (E,0,0, p), with 8 = 0,¢ = 0, the two
possible spinors are:

1 0

0 1

uT(pl) = \/El +m P and ul(pl) = \/El +m 0
Ei+m mop
0 _E1+m

For the outgoing electron, with p3 = (Ey, psin 6,0, p cos 6), the spinors are:

c -5

s c

ur(ps) = NEr+m| _p | and uy(p3)= vEr+m| _p
Ei\+m E\+m

p s __bp
E\+m E\+m

In the Dirac-Pauli representation, the four vector currents can be calculated from

UY°h = Y11 + Uada + Yads + Yads

UY'$ = Uids + Y3 + Y3y + Yad

Uy = =i 1¢a — Y23 + Y3 — Yad)

VY0 = U013 — Yads + Uzt — Yads.
Therefore, for the four possible combined helicity states of the initial- and final-
state electrons:

uy(p3)y*uy(p1) = 2(Eic, ps, —ips, pc)

ur(p3)y*uy(pr) = 2(ms,0,0,0),

ur(p3)y*ur(p1) = 2(E1c, ps, ips, pe),

uy(p3)y*ur(p1) = —2(ms,0,0,0),
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where m is the electron mass.

¢) The parity operator reverses the momentum of a particle (a vector quantity)
but leaves the spin (an axial-vector quantity) unchanged, and therefore has the ef-
fect ﬁuT(E ,p) = uy(E, —p). This can be utilised here to obtain the possible muon
currents from the electron currents (once the different masses have been accounted
for), since in the centre-of-mass frame the initial- and final-state electron and muon
momenta are equal and opposite. Hence

()Y uy(p2) = Pur(payy* Puy(p1)
= P ur(pa) Y ¥y ur(p1)
= ul(p)Y°Y’ vy ur(p1)
= ur(p3)y"y ur(p)
_ { W (p)y Y ur(pr) ifp =0
—ul(p3)y*y ur(pr) ifp=1,2,3
_ {ﬁT(m))/”MT(Pl) ifp=0
—up(p3)ytur(py) ifp=1,2,3 °

Therefore the muon currents can be obtained from the electron currents by revers-
ing the helicity states and multiplying the space-like components by —1, giving

u (pa)y*uy(p2) = 2(Exc, —ps, —ips, —pc) ,
ur(pa)y*uy(p2) = 2(Ms,0,0,0),
ur(pa)y"ur(p2) = 2(Eac, —ps, ips, —pc)
uy(pa)y*ur(p2) = —2(Ms,0,0,0),
where M is the muon mass and Ej is the energy of the muon in the centre-of-mass

frame.

d) For the relativistic limit where terms of order of the electron and muon masses
can be neglected, the only non-zero currents are:

oy, = w3y uy(pr) = 2E(c, s, —is, c),
Foyr = w(p3)y*ur(pr) = 2E(c, s, is, ¢),
Juuy = U(pa)y*uy(p2) = 2E(c, —s, —is, —c) ,
Jurr = W(pa)y*ur(p2) = 2E(c, —s, is, —c).

When the incoming e~ and incoming p~ are both left-handed, in this limit, the only
non-negligible matrix element is the one where “helicity is conserved” through the
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vertex:

&2

mieu “Jull

&2

= —m4E2 (C, S, —is, C)'(C, -, _iS7 _C)
82 2,2 2 2 2 ez 2 ¢
:_ﬁ4E (c+s"+s5 +c)=—-—"78E" =
P1— D3

42

= |/\/(LL|2 =4 -
(p1 — p3)*

Similarly,
M e
LR = —7 > Jell"J
(pr - pp)2 M

6‘2

= —————4E% (¢, 5, —is, 0)-(c, =5, +is, —C)
(p1—p3)

2 2

e e

= —ﬁ4E2 (+s2-s*+c?) =
P1— D3
&2
= _—(p p )zs(l + cos 6)
1—P3

- 8E’%cos*(6/2
(p1 — p3)? cos"(8/2)

842

S
—— (1 +cosb).
(p1 — p3)*

It is straightforward to show (and can be appreciated from spin arguments) that
IMgrl* = IMpo* and [Mge* = Mgl

d) In this ultra-relativistic limit, the spin-averaged matrix element squared is

2
= IMgl® =

1
IMP) = 3 (Marl® + IMLLP + Ml = IMil?)
B 2¢%s?
(p1 — pa)*

Neglecting the electron mass, (p; — p3)2 = —2E%(1 - cosf) = —%s(l — cos#) and
the differential cross section (in the centre-of-mass frame) is therefore

[1 +1(1+ cose)] .

do 1 9
o = eams MO
1 2¢% 57

_ 1
= 6an2s E*(1 — cos 0)? [1+4(1+cos6)]

202 [1 + le(l + cos 9)]
T s (1-cosh)?

where ¢* = 4na.

2

(p1 — p3)? C(p1-p3)?

2s
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@ 6.8%  Using y*y¥ + y"yH = 2g*”, prove that

Yive =4, vidy,=-2¢ and y by, =4a-b.

i) This question is a good exercise in the manipulation of y-matrices. The relation
Y*yu = 4 can be shown by writing
Y% = 9wy’
= 390 (V*Y + YY)
where the second line follows because g,,, is a symmetric tensor. Thus
Y% = 390 Y+ YY)
=99 i
=4.

ii) When written out in full (remembering that the components of a are just num-
bers),
vy, = ay 'y vu
=a, (29" =YY" vu
=a, (27 = ¥'v"%)
=a,(2y" - 4Y")
= =24,

where the result from the first part of the question was used in the second to last
step.

iii) When written out in full,

y by,

aybpy 'y Y vy

ayby 29" =y y*) ¥ yu

aby (297 =YY"y V)

= ayby 207y = ¥' 129" = ¥*¥" 1y,
= ayby (2r"Y =20V + 7 ¥ Y )
= ayby, 2yPy" = 2y"y" + 4y"y")

= 2a,b, (YY" +¥"y")

= 4a,b,g"”

=4a-b;

fun if you like this sort of thing.
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> 6.9*%  Prove the relation [%f”ysqﬁr = dpyFyy .

In the main text it was shown that for a vector interaction (e.g. QED and QCD)
where the current has the form j = yy*¢, then j* = ¢y*y. For the weak interaction
one has to consider the axial-vector current j = y“y .

[ v'e] = Wiy el

="y Ty Yy

= ¢y y

=" y" Yy

="y Yy

=o'y,
and thus, taking the hermitian conjugate of an axial-vector current retains the form
of the current.

@ 6.10%  Use the trace formalism to calculate the QED spin-averaged matrix element
squared for ete™ — ff including the electron mass term.

The QED matrix element for the Feynman diagram shown below is

Ore? _

Myi = 7 [0(p2)y u(p1)] Gy [(p3)y"v(pa)] -

Noting the order in which the spinors appear in the matrix element (working back-

e” f
P1 pP3
Y
i v
p2 P4
e’ I

wards along the arrows on the fermion lines), the spin-summed matrix element
squared is given by

QZ 4
3 IMul = ;f Te ([p, — mely*Ip, + mely”) T (Ips + milyulp, - mily,) -

spins
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Since the trace of an odd number of gamma-matrices is zero, the two traces are:

Tr ([p, — mely [p, +mely”) = Te(pyy*p,y") - miTr (y*y")
= 4p/py — 49" (p1-p2) + 4p\ph — 4mig"” ;
Tr ([ + melyulp, — melyy) = Te(pyyvupsyy) - miTre (vum)
= 4p3upay — 49 (P3-P4) + 43y Pay — 4mig uy .
Therefore
DMl = %4%64 (PPs = 9" (p1-p2) + i Py — m3g"”) x
spins

(P3upay = 9 (D3 P2) + P3vPay = MG )

16 Qe s
S [+(p1-p4)(pz-p3)—(p1-pz)(p3-p4)+(p1-p3)(pz-p4)—mf(prpz)

= (p1-P2)(P3-Pa) + 4(P1-P2)(P3-pa) — (P1-P2)(P3-Pa) + 4mi(p1-p2)
+(p1-p3)(p2-pa) = (1-p2)(P3-pa) + (p1-pa)(pa-p3) — mi(p1-p2)
—mZ(p3-pa) + 4m3(p3-pa) — mA(p3-pa) + 4mImi] ,

where all sixteen terms are shown for completeness. From this expression, it fol-

lows that

8Q%e*

m X [ (p1-pa)(p2-p3) + (p1-p3)(pP2-pa)

(IMyil?y =
+mZ(p3-pa) + mi(p1-p1) + 2’"5’"%] .
The same result could have been obtained by applying crossing symmetry,
pr—=pi, p2—-pis, p3—-p2 and ps—p;3.

to the corresponding #-channel matrix element of (6.67) in the main text.

6.11*  Neglecting the electron mass term, verify that the matrix element fore™f — e f

given in (6.67) can be obtained from the matrix element for efe™ — ff given in (6.63)
using crossing symmetry with the substitutions

PiL— D1, P2—-p3, p3—>ps and ps— —p;.

The spin averaged matrix element squared for the s-channel process ete™ — ff is
given in (6.63) of the main text:
2,4

0
My, = zm [(P1-P3)(P2-pa) + (p1-pa)(p2-p3) + mi(p1-p2))| -
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Making the replacements

p1—p1, P2— -p3, p3—ps and ps— —ps.

gives the corresponding matrix element for the #-channel scattering process:

2 4
Mi2,22f—e . e — ._ - 200 . _
IMG =2 s |(P1-pa)(=p3-=p2) + (P1-=p2)(=p3-pa) + mi(p1-=p3)]
Q%e4 2
=2—— [(p1-P)(P2-p3) + (p1-P2)(P3-ps) — mi(p1-p3)] -
(p1-p3)

This can be compared to the matrix element for e"f — e™f calculated using the
trace formalism, i.e. equation (6.67) of the main text, taking m, =~ 0.

6.12*%  Write down the matrix elements, M; and M,, for the two lowest-order Feyn-
man diagrams for the Compton scattering process e”y — e~y. From first principles,
express the spin-averaged matrix element (|M; + M,|*) as a trace. You will need the
completeness relation for the photon polarisation states (see Appendix D).

The two lowest-order Feynman diagrams for the Compton scattering process e (p)+
v(k) — e~ p’+vy(k’) are shown below. In both diagrams the vertex with the incoming
photon is labelled p.

From the QED Feynman rules, the matrix element for the s-channel diagram is
given by

. * /N — ’ . .qp7/p +m .
—iM, = &R,k T(p) |iey i1 eyt |u(p)
q- — me

prk+m
m)’“} u(p),

where ¢ = k + p and the slashed notation has been used. Similarly, the matrix
element for the second diagram is

M, = —e*,(k)e, (K ) u(p’) [VV

M, = =g, (k)e, (K ) u(p) [7” pokim ﬂv} u(p) .

(p—k)?* —mg
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Therefore the total amplitude, M = M; + M,, is given by

(=, prk+m p—k+m ] }
M= - k)e,(k V—e———yH )t ————" .
g, (key(K') {u(p)[y prkr-m T orom? u(p)
The matrix element squared is given by MM" where M is given by
+
tT__ 2 ® 7! — 7 o p+k+m p_k-i_m o

M’ = —e*gp(k)e5 (k') {u(p ) [7 PR meﬂp +v” o) |10y
Hence |IM[> = MM is given by

IMP = MM = e &b (s ()&} (el (k’){ }{ }T ,

where the photon polarisation states are now made explicit. There are two possible
initial-state photon polarisations and two possible spin states for the initial-state
electron. Hence the spin-averaged matrix element is give by

My =1 S TS S s wielioet @] H )
A=1220=12r=12r=12

where r and r’ are the intial- and final-state electron spins. From the completeness
relation for photons (see Appendix D),

D el 0epk) = ~gp

A=12
and thus
AIMPy = g Gvo
o rZIZZrZIZZ{ }{ }
_é Z Z{ﬁ(/)[v y+k+m /1+ M p_k-i-m V]u()}
B 4g’1"gv‘7r:1,2r,:1’2 rAPY (p+k)2—m§y 7 (p—k)z—mgy P
e prEEm o p—ktm U_] }T
X{”’(”)[y oot Y ke |
p+k+m p—k+m } }
=_ ~( [V Kyt i’ r
rZIZrZI“Z{M p) ( +k)2 y 4 (P_k)z_mgy u(p)
_ ., prk+m p—k+m } }T
X{urf(p)[% kP e ur(p)
=—Z Z (i (p) [y Ty + v Ty ur(p)y (i () [T+ +y,,F_yy]ur(p)}T,
r=12r=1,2
where
r, - p+rk+m

(p+h2-m2’
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Electron-Proton Elastic Scattering

@ 7.1 The derivation of (7.8) used the algebraic relation
v+ DA -k =4,
where

_ _ 22 —
K—7+1 and (1-8)y " =1.

Show that this holds.

Using the expression for «

By

— 2y _ —
y+DA-H)=@+1D b+’

and from the definition of the Lorentz factor,

By =y -1=@x+Dy-1),

and therefore

F+DA-AH=@+DhH-(y-1)=2.

@ 172 By considering momentum and energy conservation in e p elastic scattering
from a proton at rest, find an expression for the fractional energy loss of the scattered
electron (E| — E3)/E, in terms of the scattering angle and the parameter

Ei+m. y+1°

This question should be ignored - finding a general solution is non-trivial and
involves a lot of uninteresting algebra.

The four-momentum of the initial-state proton in the laboratory frame is p, =
(mp, 0,0, 0) and from conservation of four-momentum and the four-momentum of
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the final-state proton is

pa=(p1+p2—p3)
= P =pi+ps+ps+2pipa—2p1p3 —2paps
= my = 2m; + m + 2my(E1 — E3) = 2(E\E3 — p1p3 cos 6)
= my(Ey — E3) = (E\E3 — pip3 cos 6) — m}
= E\E3(1 - B1B3cosb) —m?.

Assuming the electron is sufficiently relativistic that 8; ~ 83 ~ 1, then

mp(E1 - E3) =~ E1E3(1 — COS 9)

Eymy,
= E3 =
mp + E1(1 — cos 6)
E\-E3 1 —cos@
E, mp/E; + (1 —cos6)

@ 73 Inan e”p scattering experiment, the incident electron has energy E| = 529.5 MeV
and the scattered electrons are detected at an angle of 6 = 75° relative to the incoming
beam.

a) At this angle, almost all of the scattered electrons are measured to have an energy
of E5 ~ 373 MeV. What can be concluded from this observation?

b) Find the corresponding value of Q?.

a) If the process corresponds to the elastic scatter of an electron from the proton
one would expect, (7.31),

3 Eymy,
B my + Ei(1 —cosf)

E3

For E1 = 529.5MeV and 6 = 75°, elastically scattered electrons would have an
energy of 373.3 GeV, consistent with the observed value. Hence the scattering is
predominantly elastic in nature.

b) For elastic scattering, Equation (7.32), gives

2 _ 2mpEf(1 - cos6)
myp + E1(1 = cos 6)
Q =541.3MeV.

@ 7.4 For a spherically symmetric charge distribution p(r), where

fp(r)dsrz 1,
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show that the form factor can be expressed as
4 00
Fa) =2 [ rsinanpe .
q Jo
1
~1--* R +...,
¢4 (R%) +

where (R?) is the mean square charge radius. Hence show that

dr ((12)}
dq2 q2=0 '

(R* = —6[

Starting from the definition of the form factor and measuring the angle 6 with
respect to the (arbitrary) z axis:

F(q®) = f p(r)e'dT dr

= f f f p(r))e’ 9 %% sin 9 d6 de dr
=2 foo l [e‘-qrcosg]Ir dr
r=0 14 0
= 27rf L e lar — e”qr] dr
r=0 qr
4 (.
= — f rsin(qr)p(r) dr.
q Jo

Expanding the sine gives, sinqr =~ qr — %(qr)3 + ..., and therefore
4 (o]
Fg) = f rsin(@rp(r) dr
q Jo

= %rj(;m go(r) (qr— é(qr)3 + ) dr

1
=1-=-g*(R> + ...,
6q< )+

where the following relations were used
f 47rr2p(r) dr=1 and f 47rr2r2p(r) dr = (R2>.

Differentiating with respect to > and noting that the higher order terms (higher
powers of q) vanish at q> = 0 gives the desired result of

dF(q?) ]
dq2 q2:0 .

(R*) = —6[
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® 7.5 Using the answer to the previous question and the data in Figure 7.8a, estimate

the root-mean-squared charge radius of the proton.
From Figure 7.8a the gradient at Q> = 0 is approximately,
(R?) = 6/0.4GeV >
2,3 1
(R%)2 =3.9GeV .

Converting into S.I. units using 7ic = 0.197 GeV fm gives a value for the rms charge
radius of the proton of approximately 0.8 fm.

7.6  From the slope and intercept of the right plot of Figure 7.7, obtain values for
Gu(0.292 GeV?) and G£(0.292 GeV?).

The form factors can be obtained from
NE NE
[Ge(OD] +7 [Gu(0?)]
(1+71) ’
where 7 = 0? /4m§ = (0.083. Here the intercept and slope are ¢ =~ 0.38 and ¢ ~ 0.27
giving

Gu(0? =0292GeV?) =1.26 and Gg(Q® = 0.292GeV?) = 0.52.

m=2r [Gu(@)| and c=

7.7  Use the data of Figure 7.7 to estimate Gz(0Q?) at 02 = 0.500 GeV>.

This slightly fiddly data-analysis question illustrates how the measurements of the
electric and magnetic form factors are determined from the raw data. The exact an-
swers obtained will depend on how the interpolation between different data points
is performed. The cross section values corresponding to Q% = 500 MeV? can be
found from Equation (7.32) which can be rearranged to give a quadratic equation
in E 1

2mp(1 — cos@)Ef - 0'(1 - cosH)E; — me2 =0.

Hence for each of the values of 6, shown in the plot, the corresponding value of
E; for Q> = 500 MeV? can be obtained, enabling the cross sections to be read off
from the lines, these can then be compared to the expected Mott cross section for a
point-like charge. The numbers obtained should be close to those given in the table
below.

The plot of the ratio of the measured (interpolated) cross section to do-/d€)g plotted
against tan?(6/2) is approximately linear with an intercept of ¢ = 0.27 and gradient
of m = 0.28. The form factors can be obtained from

[Ge@D] + 7 [Gu(0d]

2
m =2t [Gu(Q)] and c= a0 :
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6 E{/MeV do/dQ do/dQg ratio tan(6/2)

45° 1066  ~4x 10732 cm?/sterad. 1.3 x 1073 cm?/sterad.  0.29 0.17
60° 853 ~2x 10732 cm?/sterad. 5.9 x 10732 cm?/sterad.  0.34 0.33
75° 729 ~1x 10732 cm?/sterad. 2.8 x 10732 cm?/sterad.  0.36 0.59
90° 650 ~8x 1073 cm?/sterad. 1.4 x 10732 cm?/sterad.  0.55 0.99
120° 560 ~4x 1073 cm?/sterad. 3.8 x 10733 cm?/sterad.  1.04 2.99
135° 538 ~3x 1073 cm?/sterad. 1.8 x 10733 cm?/sterad.  1.65 5.99

where 7 = Q? /4mg = 0.142. Using these values
Gu(0?> =05GeV?) =0.99 and Gg(Q? =0.5GeV?) =041,
roughly in the expected ratio of 2.79.

7.8 The experimental data of Figure 7.8 can be described by the form factor,
G(0)
(1+ Q%027

with Qy = 0.71 GeV. Taking 0? ~ g2, show that this implies that proton has an expo-
nential charge distribution of the form

G(Q%) =

r/a

p(r) = poe™"",
and find the value of a.

For the exponential charge distribution p(r) = pge™":

4 00
G(g?) = % f re~V sin(gr) dr
0

_ 4mpo l ~ rlemtrsiar — gar-iar] g
q 2iJo

Integration by parts gives

« 1

f re”" dr=—

0 @
for any constant @, so that

G(?) = 27pg 1 B 1 _ 8mdpy _ 87:po 1
T g [A=igr T rigr| T B ? T X (v g

Thus the form factor is of the required “dipole” form:
G(0)

2\ _
G = T A0TTe
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with G(0) = 87py/A> and A = Qq. Therefore

1/a= 2= V0.71 GeV? = 0.84 GeV .



Deep Inelastic Scattering

® 8.1 Use the data in Figure 8.2 to estimate the lifetime of the A* baryon.

The full-width-half-maximum height of the resonance (the total decay width) is (in
natural units) equivalent to the total decay rate, I'. From the diagram, the A* peak

has a FWHM of
I'~1GeV.
Hence the lifetime is
fi
7=1T~1GeV ' = —— s=66x105s.
1.6 x 10~10

@ 8.2 In fixed-target electron-proton elastic scattering
Q% =2my(E, — E3) = 2myE1y and Q7 = 4E,E;sin’(6/2).

a) Use these relations to show that

2 2.2
6 E;m E 6 myy
sin? (5) = E—;Q—gyz and hence E—? cos? (5) =1l-y- é )
b) Assuming azimuthal symmetry and using equations (7.31) and (7.32), show that
do _|d@)do _ x do
do?  |d@?ldQ ~ E2dQ°
¢) Using the results of a) and b) show that the Rosenbluth equation,
do a? E; (G%+TG12W , 0 9)
— = — cos® = + 2t G2, sin® = |,
dQ  4EZsin(/2) Ex | (1+7) 2 )

can be written in the Lorentz invariant form
Gé + TGI%,I
(1+71)

do B 47a?

@~ ot

miy*\ 1
52 )-l— §y2G12\4:| .

a) From second expression given at the start of the question

: E, 0*
2 1

sin“(6/2) = ——,
612 = Fp

63
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and from the first expression E1 = Q?/ 2mpy and this,

2
E, m
2 17p 2
0/2) = ——=y".
sin“(6/2) E 02/
Therefore
2
2 .2 1M 5
0/2)=1- 0/2)=1-——=y",
cos“(6/2) sin“(6/2) £ 02!
or equivalently
2 2
1, E, m, my
— 0/2)=— - =y =1-y—- —=y-,
cos”(6/2) B 0 v

which is the desired result.

b) Assuming azimuthal symmetry an element of solid angle (integrated in ¢) is
just dQ = 2nd(cos #). Because there is only one independent variable in elastic
scattering, the differential cross sections in terms of dQ* and dQ are related by

do |40
do?  |dQ?

do

E—ﬂ'

d(cos 6) d_(r
do? |dQ°

Equation (7.32) gives the expression for Q7 in terms of the cos 6:

2mpE%(1 —cos6)

2
= , 8.1
mp + E1(1 — cos 6) ®.1)
which can be differentiated giving
do? —2m2E?
- Q = Pl 5. (8.2)
(€0SO) [y + E1(1 - cos )|
and the denominator can be eliminated using (7.32), giving
do? 2
= -2F3%. 8.3
d(cos 6) 3 8.3)

Thus

do _5 ‘d(cosﬁ) do & do
do? d@? |dQ ~ E2dQ°

¢) The Lorenz invariant form of the Rosenbluth equation can be obtained by sub-
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stituting the results from a) and b) into the original expression:

do n do

2 2

= 12 'ai E(GE-’-TGM cos2€+27'Gﬁ,[sin2 g)

E54E7sin*(0/2) E1 | (1 +7) 2 2

2,2 2

B 116E%E§a/2 G% +TG%/I Ly mgy P @ )
TE et | (4o 0? 2!
_ 4ma’ G% + TG%/[ . m]%!/2 N lysz

ot | I+ Q2 | 27 TMI”

@ 8.3 In fixed-target electron-proton inelastic scattering:

a) show that the laboratory frame differential cross section for deep-inelastic scattering
is related to the Lorentz invariant differential cross section of equation (8) by
dc  EE; &o  EE2my do
dE;dQ 71 dE;dQ>  n Q% dxdQ*’
where E| and Ej are the energies of the incoming and outgoing electron.
b) Show that

2.2
mxy? E;

— = —cos
0 E;

¢) Hence, show that the Lorentz invariant cross section of equation (8) becomes

d? 2 F 0 2F .,0
g d Zeos? -+ lgin?2 2|

dE3dQ ~ aE2sin‘e2| v 2 m, 2

2mpx> 2 1 E 0
Ll :——3$in2§ and 1-y-

29
>

d) A fixed-target ep scattering experiment consists of an electron beam of maximum en-
ergy 20 GeV and a variable angle spectrometer that can detect scattered electrons with
energies greater than 2 GeV. Find the range of values of 8 over which deep-inelastic
scattering events can be studied at x = 0.2 and Q? = 2 GeV>.

a) Changing variables from dQ = 2nd(cos 6) to
0% = —¢*> = 2EE3(1 — cos 0)
gives
do 1 do 1
dE;dQ  2ndEszd(cosf) 2x

ag? | & 1 d?
Q T _Llopg 4T
d(cos6)| dE5;dQ? 2n dE;dQ?
and hence (remembering that £ is the fixed initial-state electron energy)
d’c  EE3 d’c  E\E3 do
dE;dQ 7 dE;dQ? 1 dvdQ?’

(8.4)
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To change variables from v to x, use

2 2
rE 21?11)1/ - 2§px
Fo_|o| do
dxdQ? |dx|dvdQ?
which gives directly
d’oc 2mpx*  d2o

dvdQ? 0% dxdQ?

and thus
d20' _ E\E; dZO' _ E\E; 2mpx2 dZO'
dE;dQ n dE3dQ*>  n @ dxdQ?’
b) Since
0? = 4E|E5 sin®(6/2)
and
%
y= E,
then
E; ., Q2 szz
— 0/2) = — = .
g, S/ 1B M2

Furthermore, using v = 0?/2Mx, one then obtains

2mpx® | 5, 1 E3 56
s sy = ——sin“ —. 8.5
QZ Zy mp El sin 2 ( )
Hence
2.2.2
my X"y E 0
p _ E3 2
1- Yy — Q2 = E_l COS E . (86)

¢) Starting from Equation (8).

mpx*y*\ Fy(x, Q%)
1-y- I P

d®o B 4ra?
dxdQ?> ¢

+fﬂwgﬂ,

and using the result of part a) gives

d*o _ E\E3 2mpx2 A l(l Y- m}%xzyz] Fa(x, 0%
x

dE3 dQ B T Q2 Q4 Q2 + yZFl(x’ QZ)] .
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Using the results from part c) leads to

& - 8E1E3mpx2a'2 [(E cos’ g) Fa(x. 0% +( % E sin® = )F x, 0 )]
22 F 1

dE3dQ Q° E 2 X msx? E
8E2m,a? X , 0 1 50
— 3Q—4p[(Q2 cos 5)Fz(x 0 )+(m sin E)Fl(x 0 )}
P

But x/Q? = 1/(2m,v) and Q? = 4E, E5 sin*(6/2) and therefore

o mpa? 1 2 0 Fa(x, Q%)
dE;dQ ~ 2E2sin*(6/2) [ co8
B a? R 1C 0%
42 sin4(0/2)[ ©

+— F1(x Q )}
m

2mpv 2 X 5

+ — sin? Fl(x, QZ)] s

2 X my

as required.

d) This is a tricky question, but is informative. It very much follows on from the
previous discussion of the measurement of form factors in elastic scattering, except
here there is an additional kinematic degree of freedom. Given that we wish to
measure the structure functions at x = 0.2 and Q% = 2 GeV?, the electron energies
E| and E3 are constrained via

0? 2GeV?
E|—Es = - = 533GeV 8.7
LT T oMy T 2x(0.938GeV) x 0.2 © ®.7)
and
Q2
E\E;= —2 8.8
5T 4sin? )2 8:8)

The experimental limitations, £; < 20GeV and E; > 2GeV, then lead to con-
straints on the scattering angle 6. Here it helps to think in terms of graphical solu-
tions of Equations (8.7) and (8.8) on a plot of E3 versus E;. Equation (8.7) corre-
sponds to a straight line running at 45°, while Equation (8.8) gives an infinite set
of hyperbolae, each hyperbola corresponding to a different possible value of 6.

The minimum possible value of 8 corresponds to taking the maximum possible
beam energy E; = 20 GeV:
0’ 2

) -3
9/2 = - = 1.70 x 10
SN0/ = S E T A% 20x(20-533) %

which gives

Omin = 4.73°.
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The maximum possible value of 6 is determined by the minimum detectable scat-
tered electron energy of E3 = 2 GeV:

0 2

. 2
0/2 = -
SN0/ = S E T Ax (21533 %2

=0.034

which gives

Omax = 21.3°.

Therefore, the experimental strategy is to choose several values of 6 between ap-
proximately 5° and 20°, and for each angle, measure the reduced cross section,

d?c  4Elsin*0/2 [F, 2F, ,0
X =|—+—tan" = |,

dE;dQ  a?cos?8/2 voomp 2

and plot this versus tan” 8/2. This should give a straight line (since v is fixed here)

with slope 2F/m,, and intercept F>/v.

Each 6 value requires a different beam energy given by solving the quadratic equa-
tion

QZ
E((E;-533)= —
1(E1 ey
This gives
Q2
2E| =533+ 4[(5.33)* + — 3 )
sin“ 0/2

and thus £; = 19.1GeV for § = 5° and E| = 7.5GeV for 6 = 20°. Note that
y = (E; — E3)/E; varies between 0.28 and 0.71, giving a significant contribution
from F (which is necessary for it to be determined accurately).

8.4  If quarks were spin-0 particles, why would F\"(x)/F5’(x) be zero?

If quarks were spin-0 particles, there would be no magnetic contribution to this
QED scattering process. Consequently F Tp(x), which is associated with the sin” §/2
angular dependence, would be zero.

8.5 What is the expected value of fol u(x) — u(x) dx for the proton?

Writing both u(x) and u(x) in terms of sea and valance contributions, u(x) = uy(x)+
us(x) and u(x) = ug(x) and making the very reasonable assumption that the sea
contributions for quarks and antiquarks are the same,

1 1
f u(x) —u(x)dx = f uy(x)dx =2.
0 0
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@ 8.6 Figure 8.1 shows the raw measurements of the structure function F,(x) in low-

energy electron-deuterium scattering. When combined with the measurements of Fig-
ure 8.11, it is found that
i F$P(x) dx

— ~0.84.
Jy FP(xdx

Write down the quark-parton model prediction for this ratio and determine the relative
fraction of the momentum of proton carried by down/anti-down quarks compared to
that carried by the up/anti-up quarks, fi/ fu.

0.4
QA
St
= o
qﬁLN S %'U‘\
I .
0.2 "2‘ .
3
e
5’
v,
0 L | T\\.
0 0.5 1

SLAC measurements of F’ ;D(x, 0% infor 2 < Q?/ GeV? < 30.

The significance of this questions is that it relates to the actual early measurements
of structure functions where the target was usually either liquid Hydrogen or Liquid
Deuterium. From (8.27) and (8.28), which are written in terms of the PDFs of the
proton,

F3P(x) = x(gu(x) + éd(x) + gﬁ(x) + éc_i(x)) :

ey o2 1 0+ L
F3'(x) = x(gd(x) + 9u(x) + 9d(x) + 9u(x)) .

Therefore the structure function of the deuteron, with one proton and one neutrino,
is given by

1, . on 5 _ -
F$P(x) = 3 (FPG) + F§"()) = Ex(u(x) +d(x) + u(x) + d(x)) .

Hence the integrals of the measured F, distributions give:

1 1
[ Frwar=Shagn ad [ FP@A= s,
0 0
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where f, and fj are defined by

1 1
fu= f [xu(x) + xu(x)]dx and f4= f [xd(x) + xZ(x)] dx.
0 0

Hence the ratio
1
FEP(x)dx
Jo FPdx S fut fo

B 24AH S0
and thus
JutJa o336
4f ut f d
From this relation is straightforward to show that
Ja/fu =052,

which is consistent with the result quoted in Chapter 8.

8.7 Including the contribution from strange quarks:
a) Show that 3" (x) can be written

FP(x) = gx [u(x) + u(x)] + éx |d() +d(x) + s(x) +3(x)] .

where s(x) and 's(x) are the strange quark parton distribution functions of the proton.
b) Find the corresponding expression for F5"(x) and show that

1 Fep( ) — F(x) 1 —
L de ~ % + %j(; [ﬁ(x)—d(x)] dx,

X

and interpret the measured value of 0.24 + 0.03.

a) Since strange quarks have charge —1/3, they couple to the photon in the QED
deep inelastic scattering process in the same way as down quarks and therefore

FP(x) = gx [u(x) + u(x)] + éx |d(x) + d(x) + 5(x) + 5(0)]

b) Remembering that the PDFs in the above expression refer to the PDFs for the
proton,

F&'(x) = gx [ (x) + 7"(0)] + %x [d"G) +d"(x) + s"(x) + 5"(x)] -

Making the assumption that uP = d", this can be written in terms of the proton
PDFs as

F3'(x) = gx [d(x) + ;l(x)] + %x [u(x) + u(x) + s(x) + 5(x)] ,

where it has been assumed that the strange quark PDFs from the proton and neutron
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are identical. This is a reasonable assumption since the strange quark content of the
nucleons are from the sea.

Using the above expressions

HFP@ - F@| - _
f dx =— f (u(x) — d(x) + u(x) — d(x))dx.
0 x 3Jo

Writing the quark PDFs in terms of valence and sea contributions, and assuming
that the quark and antiquark sea contributions (which arise from gluon-splitting)
are the same, i.e. ug(x) = u(x) and dg (x) = d(x), then

HFP@ -Fe@| g -
f dx = = f (uy(x) = dy(x) + us (x) — ds (x) + u(x) — d(x)) dx
0 x 3 Jo
1
= % f (uy(x) = dy(x) + 2u(x) — 2d(x)) dx
0

1
1.2 fo @) - dw)) dx.

where the last step follows from there being two valance up quarks and one valence
down quark. The measured value can therefore be interpreted as

1
f (u(x) — d(x))dx = % [0.24 - 0.33 £0.03] = -0.14 £ 0.05,
0

demonstrating that there is a deficit of U quarks relative to d quarks in the proton,
as can be seen in the global fit to a wide range of data shown in Figure 8.17.

8.8 At the HERA collider, electrons of energy E; = 27.5 GeV collided with protons of
energy E, = 820GeV. In deep inelastic scattering events at HERA, show that Bjorken
x is given by

E; 1—cosf

YT | 2= (EsJED( +cos0) |

where 6 is the angle through which the electron has scattered and E; is the energy of
the scattered electron. Estimate x and Q? for the event shown in Figure 8.13 assuming
that the energy of the scattered electron is 250 GeV.

For e*p — e*X DIS at HERA, the masses of the electron and proton can be ne-
glected and thus the four-momenta can be written:

p1=(E1,0,0,E1), p2=(E20,0,—E>) and p3=(E3, E3sin6,0,E3c0s6).
Using these four-momenta

q2 = —-2p1.p3 = —2E1E3(1 — cos0)
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and
P2-q = p2.p1 — p2.p3 = 2E1E> — E2E3(1 + cos6).

Thus, the Bjorken scaling variable x, defined as

_ 7
C2p2q’
can be written
B3 1 —cosf
T E [2 — (E3/E)(1 + cose)} ‘

For the event shown in the text § ~ 150°. Thus
0 = 2E\E5(1 —cos ) = 2-27.5-250(1 — cos 6) =~ 3 x 10* GeV?2.

Similarly

250 1—-cos@ 7
X = — ~
82012 —(250/27.5)(1 + cos 0)

Hence the DIS interaction shown is one of the highest Q% DIS interactions observed
at HERA and has high x.
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@ 9.1 By writing down the general term in the Binomial expansion of

1 R n
(1 +i—a/-G) s
n
show that

A 1 A\
U(e) = lim (1 +i;a-G) =exp(i@-G).

n—oo

For compactness, writing x = i - G, the required expression can be written

2

(1 + %) =1+ n% + 2l!n(n - 1)(%) + %n(n - 2)(%)3 +.

Taking the limit as n — oo terms such as n(n — 1)(n — 2)/ n® — 1 and thus

2 3
. x\"* X
11m(1+—) =l+x+—+—+..=¢",
n—0co n 2! 3!

and therefore

N A
U(a) = lim (1 + i;a-G) =exp(ia-G).

@ 9.2 For an infinitesimal rotation about the z-axis through an angle € show that
U=1-iel.,

where J, is the angular momentum operator J, = XPy = YPsx.

Here we need to distinguish between active and passive rotations. As written, the
question refers to a rotation of the axes through a positive angle e, it could be
interpreted as a rotation of all the coordinates in which case the corresponding
Unitary operator would be (1 + iefz). For a infinitesimal rotation of the x and y
axes

x— x = xcose+ysine ~ x— ey

y—>y =ycose— xsine ~y+ ex.

73
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Under this coordinate transformation, wavefunctions transform as

Y(x,y,z2) — l///(x, Y,2) =¥(x + €y, y — €x,2)
o oy
=Y(x,y,2) + ye— — xe— .
Y(x.y.2) + yeo- By
The partial derivatives are related to the quantum mechanical momentum operators

(in Natural Units) by

g =ip, and — =ip
8)6 - px ay - py s
and therefore
’ 0 0
Y(x,y,2) > Y (xy,2) =¥(xy,2) + ye—w - xe—w
Ox Oy
=y¥(x,y,2) + ie(ypx — xepY(x,y,2)

= (1 - iefz) /8
Thus the corresponding Unitary operator for the transformation is

U=1-iel,.

9.3 By considering the isospin states, show that the rates for the following strong
interaction decays occur in the ratios
IA~ - an):TA° - ap):TA° - a’) : (A" — a'n):
A" - a’p):T(A™ > a'p)=3:1:2:1:2:3.

This is an interesting application of the use of isospin in strong interactions. We
have asserted that SU(2) flavour symmetry is an exact symmetry of the strong
interaction. One consequence is that isospin and the third component of isospin is
conserved in strong interactions. Furthermore, from the point of view of the strong
interaction the A=, A°, A~ and A*™* are indistinguishable. The amplitudes for the
above decays can be written as

M(A — aN) ~ (ﬂNlﬁstrong|A> >
which in the case of an exact SU(2) light quark flavour symmetry can be written as
M(A — aN) ~ A(@@N)IP(A)) ,

where A is a constant and ¢ represents the isospin wavefunctions. Here (¢(tN)|¢p(A))
expresses conservation of isospin in the interaction. The question therefore boils
down to determining the isospin values for the states involved.
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Consider the decay A~ — st n, which in terms of isospin states corresponds to
$(3.-3) > 01, -Dp(5.-1).

The decay rate will depend on the isospin of the combined st n system. Since I3

is an additive quantum number the third component of the combined ™ n system

is —3/2 and this implies that the total isospin must be at least 3/2. But since the

total isospin lies between |1 — 1/2| < I < |1 + 1/2], the isospin of the &~ n system is
uniquely identified as

g n) =¢(1,-D¢(3,-1) = 6(3,-3).
Consequently the amplitude for the decay is given by
MA™ = n7n) ~ Alp(nn) | ¢(A)) = A(g(3.-3)ie(3.-3)) = A.

Now consider the decays of the A® which the isospin state
p(A) =0 (3.-1).
The decomposition of this state into the equivalent N system (and isospin-1 state

combined with an isospin-1/2 state) can be achieved using isospin ladder operators.
Starting from the unique assignment

6(3.-3) =60 -n6(3.-4).
the isospin raising operator gives
7.0(3.-3) = (0 (1.-D) 0 (3.-3) + (1.1 (Tr0 (3.-3))
¢(3.-3) = V26 (1.0 (3. ~1) + 6 (1.~ (3. +3).
or equivalently
#(a°) = 206 + \[lop).
Thus the decay amplitudes of the A° can be written
M = 2n) ~ A<¢<n0n>| 2o + \@¢<n‘p>> SNEVY
and
M@ = 77p) ~ A<¢<n—p>| V2o’ + \@¢<n‘p>> - 14,
Since decay rates are proportional to the amplitude squared
I'A™ - @ n): F(AO - T Pp): F(AO - non) =3:1:2.
The other ratios follow from the same arguments.

@ 9.4 If quarks and antiquarks were spin-zero particles, what would be the multiplicity
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of the L = 0 multiplet(s). Remember that the overall wavefunction for bosons must be
symmetric under particle exchange.

Since the colour quantum numbers of the quarks has nothing to do with spin, the
colour singlet states are still

1
V6

Hence, due to colour confinement, we still expect to see mesons containing a quark
and an antiquark and baryons containing three quarks.

1 _
$(ﬁ + gg + bb) and (rgb — grb + gbr — bgr + brg — rbg) .

Mesons: Since the flavour quantum numbers of the quarks remain unchanged, the
flavour wavefunctions for mesons retain their usual SU(3) form, and we would
expect to see the usual flavour nonets. Since there is no spin degree of freedom, the
would be a single nonet corresponding to each value of L. The overall parity of a
two particle system in a state with orbital angular momentum L is

P=P.Py.(-D.

Spin 0 quarks would be bosons, and would have the same intrinsic parity, thus
P = P,. Hence, for a meson formed from spin-0 quarks:

P(qq) = (=D".
Consequently one would expect to see nonets (with the total angular momentum
equal to L) with
JP=0%17,2437,...
which is in contradiction to the observed meson states.
Baryons: for baryons, regarded as being built up from three “identical” spin-1/2

quarks, with appropriate colour, spin and flavour quantum numbers, the overall
wavefunction is

¥ = Piavour Xspin &colour Mspace -

For spin-1/2 quarks, i.e. fermions, ¥ must be totally antisymmetric under inter-
change of any pair of quarks within the baryon. For baryons made from spin-0
quarks, the wavefunction would become just

¥ = Pfavour § colour TJspace -

and the overall wavefunction ¥ would be totally symmetric under quark interchange
since quarks are now bosons. For spin-0 quarks, the colour wavefunction is the
usual SU(3) colour singlet, which is totally antisymmetric under interchange of
any pair of quarks within the baryon. Hence,

¢(flavour) p(space) must now be totally antisymmetric .
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For L = 0 baryons, y(space) is totally symmetric, so y(flavour) must be totally
antisymmetric. The only totally antisymmetric flavour wavefunction which can be
constructed out of the three flavours u, d and s is

1
n(space) = —(uds — dus + dsu — sdu + sud — usd) .
V6

Hence, for spin-0 quarks one would expect only a single L = 0 baryon state, with
the flavour content uds. This baryon would have parity P = +1.+ 1.+ 1.(=1)° = +1
and total spin zero (since L = 0 and S = 0) giving a

JP =07 singlet
as the lightest baryon multiplet.
9.5 The neutral vector mesons can decay leptonically through a virtual photon, for
example by V(qq) — y — ee”. The matrix element for this decay is proportional to
WlQyly), where y is the meson flavour wavefunction and Q, is an operator that is

proportional to the quark charge. Neglecting the relatively small differences in phase
space, show that

I’ -se'e):T(w—oee): T(p—ee)~9:1:2.

The underlying process is the QED annihilation process qq — e*e”, where the
matrix element can be expressed as

M(qq — e*e”) ~ (e*eT1Qqlqq) = AQq.,

where A is assumed to be a constant and Qy is the charge of the annihilating quark-
pair. For the ¢ which is a pure ss state, the matrix element

M(d — ete?) ~ (eteT|QglsS) = AQs = —1A.
For the p® with wavefunction |p0, :> \/Li(uﬁ — dd), the phases of the two compo-
nents are important and the total amplitude depends on the coherent sum of the

contributions from the decays of the uti and dd. Here the matrix element can be
written

0 _, .- R Y A N 4l (2, 1) _ 1
M(p® = e*e”) ~ (eteT|Qgl G5 (ui-dd)) = A5 (Qu = Q) = A5 (5 +5) = 4.
Similarly,

+ .- +.-19 11 = I4)\\ — 1 _ 1 (2 1y _ _1
M@ — e*e?) ~ (e Qg| 5 (uT+dd)) = A5 (Qu— Q) = A5 (5 — ) = 3554
Neglecting the relatively small differences in phase space, I «« M? and thus

I’ »efe):T(w—ete): T(p—ete)~9:1:2.
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@ 9.6 Using the meson mass formulae of (9.37) and (9.38), obtain predictions for the

masses of the ni*, a°, 0, v, p°, p*, w and ¢. Compare the values obtained to the
experimental values listed in Table 9.1.

This is a fairly straightforward question, using the meson mass formula
A

mpmy

m(qiqy) = my +my + (S1+82), 9.1)

the masses of the pseudoscalar and vector mesons are given respectively by (9.37)
and (9.38):

3A
Pseudoscalar mesons (s=0): mp = m| +my — ,
dmimy
A
Vector mesons (s=1): my =mj +mp + ,
dmimy

where the constants can be taken to be
mg =my =0307GeV, mg=0490GeV and A =0.06 GeV?3.

The only complication is how to handle states composed of more than one quark
type, for example the v with

— 1 1 _ 9T
m) = \@(uu+dd 2s8).

As is often the case, it helps to think of this in terms of a meson mass operator for
a qq system, such that the expectation value of the mass operator is the mass of the
bound qq system

(19| Mggla1T,) = m(qiq,) .

where m(q;q,) is given by (9.1). Stating the problem in this manner, one can write
the mass of the 1) as

my = (ﬂquqh])
1 _ . _
= (T + dd — 259)| Mg |(u + dd - 255)
1 _
=z [m(u, ) + m(d, d) + 4m(s, 5)] .

Using the meson mass formula for the S = 0 pseudoscalar n):

1 A A A
my = = |2my + 2mqg + 8mg — 3 - 3 —43 =573 MeV,
176 m2 4m§ 4m?

in reasonable agreement with the observed mass of 548 MeV.

The meson mass formulae works well for all of the mesons in the question, with
the exception of the 1, where the prediction of approximately 350 MeV is very
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different from the measured mass of 958 MeV. However it should be noted that
the 1" is a flavour singlet state and in principle it could mix with flavourless purely
gluonic bound states and given the special nature of the 1, it is not surprising that
the simple mass formula does not work.

9.7 Compare the experimentally measured values of the masses of the J© = §+
baryons, given in Table 9.2, with the predictions of (9.41). You will need to consider the
combined spin of any two quarks in a spin-% baryon state.

Any two of quarks in a spin—% baryon, can be in a combined spin-0 or spin-1 qq
state. If they are in a spin-0 state, the additional third quark will always result in
a spin—% qqq state. Hence, any two quarks in a spin—% baryon must be in a spin-1
state. Consequently, for any two quarks
S= Sl' +S j
=  2§;-8;,=8>-8?-82
= 2(S;+S;) = s(s+ 1) = s1(s1 + 1) — 52(52)

-2-3-
1
= <S,‘SJ>:Z

Thus the baryon mass formula of (9.41), when applied to the spin—% decuplet be-
comes

A 1 1 1
m(q192q3) = my +my +m3 + Z( + + ) ‘
mpmy  mpmz  nms3

Taking the mass of the u and d quarks to be equal, the predicted masses of the
decuplet baryons depend only on the number of strange quarks:

A3
A : Wl=3l’l’lu+zln—g
. Al 2
X m=2my+mg+—|—+
4 mﬁ niymg
—_ Afll 2
0 m=my+2mg+ —|— +
4\m2  mums
A3
Q : l’l’l:?)n’ls'i'Z’n—g

Using
mg =my =0.365GeV, mg=0.540GeV and A’ =0.026GeV?,

the predicted masses are: ma = 1.241 GeV, mz- = 1.385GeV, m=- = 1.533 GeV
and mg = 1.687 GeV, which are in good agreement with the measured values.
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@ 9.8 a) Obtain the wavefunction for the X° and therefore find the wavefunction for the

A.

b) Using (9.41), obtain predictions for the masses of the £° and the A baryons and
compare these to the measured values.

a) This is a difficult question that requires some insight. If the SU(3) flavour sym-
metry were exact, the A(uds) and >%(uds) baryons would have the same mass —
they don’t. The situation is similar to the that of the neutral mesons, where the
quark flavour wavefunctions for the m® and 1 can be obtained from the operation
of the ladder operators on the six states around the “edges” of the octet. The phys-
ical states are linear combinations of these states. How treat this ambiguity is not
a priori obvious. Following the discussion of the light meson states, one expects
that the u and d quarks in the uds baryon wavefunction obey an exact SU(2) flavour
symmetry.

Starting from the wavefunction for the X~ (dds), which has the same form as that of
the proton:

|Z71) o« 2dTdTsl—-dTdlsT—-d|ldTsT+ cyclic combinatorics.

Note that in this wavefunction the d quarks appear in symmetric spin states. This
must be the case since the flavour wavefunction of the dd is always symmetric and
for the overall wavefunction to be antisymmetric under the interchange of the two
d quarks, they must be in a symmetric spin state (since the colour wavefunction is
anti-symmetric). Following the (almost) exact SU(2) light quark flavour symmetry,
the wavefunction for the X° is expected to have the form:

=91 «c2dTuts{—dTulsT—uldsT+ cyclic combinatorics.

The A wavefunction must be orthogonal to this state and satisfy the overall require-
ments of the approximate SU(3) flavour symmetry. We could construct this state
by applying ladder operators to the states around the edge of the baryon octet. Al-
ternatively, since in the £ state identified above, the u and d quarks are in flavour
and spin symmetric states (s,g = 1) and orthogonal state can be written down by
placing the u and d quarks in flavour and spin anti-symmetric states (syg = 0), in
this case:

AT cdTulsT—uldTsT+ cyclic combinatorics

b) Following the above arguments the total spin of the ud system assume that the
ud quarks in the A and 39 are either in a spin-0 or spin-1 state, sug = 0 or syq = 1.
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The total spin of the three quark system can be written:

S=S.+S4+8S;
S? =S +83+82+28, - Sa +2S; - (Su + Sa)
(S%) = (S0 +(S3) + (1) +2(Su - Sa) + 2(Ss - (Su +S0))
s(s+ 1) = 3sq(sq + 1) + 2(Sy - Sq) + 2(Ss - (Su + Sq)) .
Here the total angular momentum (”’spin”) of the baryon is 1/2 and the above equa-

tion can be rearranged to give an expression for the term involving the s-quark
spins in terms of the total angular momentum of the ud system.

2(Ss - (Su+8Sa)) = -3 — 2(Sy - Sa)?? 9.2)
If the total spin of the ud system is S,q, then

Sud = Su + Sd
(S2,) = (SI) +(S7) + 2(Sy - Sa)
Sud(Sud + 1) = 3/2 + 2(Sy - Sq) .

Substituting this back into (??) gives

2(Ss - (Su+8Sa)) = =3 + 3 — sua(sua + 1)
<Ss : (Su + Sd)> = _%sud(sud + 1) .

Now, neglecting the differences in up and down quark masses, the baryon mass
formula for the uds system can be written:

m(uds) = 2my + mg + _2<S“ -Sq) +

u
’ ’

— A 1 3 A
=2my + mg + m_% (Esud(sud +1)- Z) — msud(é‘ud +1).

<Ss : (Su + Sd)>

nynig

Putting in the appropriate values for the quark masses and A’ gives the numerical
result:

m(uds)/GeV = 1.124 + 0.032sy4(syg + 1) .

For the case when the ud quarks are in a anti-symmetric/symmetric spin state (syq =
0/sug = 1) the resulting masses are predicted to be

sud =0 m(A) =1.124 GeV
sa=1 : mE%=1.187GeV,
In reasonable agreement with the observed values of m(A) = 1.116 GeV and

m(2°%) = 1.193 GeV.



Symmetries and the Quark Model

@ 9.9 Show that the quark model predictions for the magnetic moments of the X*, -
and Q™ baryons are

HEY) = Gy —pg) . p(E7) = § (4ua —pg)  and  p(Q7) = 3pus.

What values of the quark constituent masses are required to give the best agreement
with the measured values of

=Y = (246 0.0y, uE) = (-1.16£0.03)uy and Q) = (—2.02=0.06)uy .

Since the X*(uus) and X~ (dds) are part of the same multiplet as the proton (uud),
the wavefunctions follow from that of the proton with the respective replacements
d—>sandd — s/u — d:

27T «c2dTdTsl—-dTd]lsT—d]ldTsT+ cyclic combinatorics.
and
IZ*1Y oc 2uTulsl—uTulsT—ululsT+ cyclic combinatorics .

The derivations of the magnetic moments then follow exactly that for the proton in
the main text. Since

Hp = 3t — pd,
it follows that
PET) = fua = zus and p(E7) = Fpu = gHs -

The Q" sss is part of the spin—% baryon decuplet. The wavefunction for the extreme
spin state (mg = +3/2) is simply:

|Q7°T) =sTsTsT,

and the magnetic moment is clearly just the sum of the magnetic moments of the
individual quarks:

H(Q7) = 3.

The simplest way to interpret the data is to use the measurement of the u(€27) to
determine the magnetic moment of the s quark:
3us = (-2.02 £ 0.06)uy = ps = (—0.673 £0.02)uy,
and then to use the other two measurements to determine y, and uq:
Tua—tus = p(E7) = Tua+0.224uy = (-1.1620.03)uy = pg = (—1.04£0.02)uy ,

and

Tu—ips = p(E7) = 3ua+0.224uy = (2.46+0.0Duy = py = (+1.68+0.0D)uy ,
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All that remains is to determine the best values of the (effective) quark masses

~ e 2m
= @D = (+3) 50 =+t
u u
A e m
pa =(dT1A:1dT) = (—g)z_md _ __3’;(1%
A e m
p = (TRl = (=5) 50— =~ —u
s s

Using the above measurements, one obtains:

2m
fu = (+1.68 % 0.0y = +3 Puy = my =0.39m, ~ 370MeV,,
nmy
m
ta = (=1.04 £ 0.02)uy = —3—PMN = mg=0.32m, ~300MeV,
mgq
m
ps = (=0.673 £0.02)uy = ———puy = ms = 0.50m, ~ 465 MeV .

3myg

@ 9.10 If the colour did not exist, baryon wavefunctions would be constructed from

Y= ¢ﬂav0urXspin Mspace -

Taking L = 0 and using the flavour and spin wavefunctions derived in the text:

a) Show that it is still possible to construct a wavefunction for a spin-up proton for which
Dfiavour X spin IS totally antisymmetric.

b) Predict the baryon multiplet structure for this model.

c) For this colourless model, show that 4, is negative and that the ratio of the neutron

and proton magnetic moments would be
/ﬂ
Hp

=-2.

a) If the colour did not exist, baryon wavefunctions would be constructed from

¥ = Pfavour Xspin Mspace -

For the L = 0 baryons, the spatial wavefunction is symmetric and the requirement
that the overall wavefunction is anti-symmetric implies that the combination of
Gflavour X Xspin Must be anti-symmetric under the interchange of any two quarks.
The linear combination

U = adsxa +Boaxs

is clearly anti-symmetric under the interchange of quarks 1 < 2 and for the right



84

Symmetries and the Quark Model

choice of @ and 8 is anti-symmetric under the interchange of any two quarks. Using
the forms of the flavour and spin wavefunctions given in the main text,

1/ -4 2ululdT-2ulutdT—uldlulT+uldTuT—-dTululT+dlutTu?) +
Vi2

i(2quTu\L—2dTuTul—quluT+dTuluT—uldTuT+dluTuT) .
Vi2

The relation between the coefficients @ and S can be found by considering the
transformation properties under interchange of quarks 2 < 3 (or 1 < 3):

W' =263
_*
Vi2

i QuTuldT-2dTuluT—uTutdl+dTuTul—-uluTdT+dlutu?) .
V12

The requirement of overall anti-symmetry implies that ¢,.,3 = —¢. For example
consider the uud parts of the above wavefunctions, the requirement of antisymme-
try implies:

QuTtdTul—-2uldTuT—ufTufdl+uluTdT-dTuful+dluTul) +

2cuTuldT—2aululd=
auTuldl—auluTdT-2B8uTuldT+BuTuldl+BuluTdT,
which is satisfied for 8 = —a and hence
Y= \/% (psxa — daxs) -
With a little straightforward algebra it can then be shown that

Y= Vig (utuldT—ulutdT+uldTul-dTuluT—uldTul+dTuTul). (9.3)

b) Within the assumed SU(3) flavour symmetry, just as before, the combinations
of mixed symmetry flavour and spin states will give rise to a spin—%octet. In addi-
tion, it is is possible to construct a state where @gayour X Xspin 1S anti-symmetric by

. . . . . . . . 3
combining the totally anti-symmetric flavour singlet with a symmetric spin-3 state.

Hence, in this model there would be an octet of spin—% baryons and a singlet spin—%

uds state.

¢) In this model the wavefunctions of the “spin-up” proton and neutron are
IpT) = VLE(uTuldT—ulquT+uldTuT—dTuluT—quTul+dTuTul) ;
and
InT) = \/ig(deluT—dldTuT+dlquT—quldT—dTqul+qule) :

Since, for each term, the spins of the two like quarks are always opposite, they do
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not contribute to the overall magnetic moment, which is determined solely by the
magnetic moment of the other quark. Hence, taking m, ~ mq,
o _ Hu
Hp - Hd
This colourless model, therefore, does not predict the observed ratio of magnetic
moments of the proton and neutron.

=-2.
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@ 10.1 By considering the symmetry of the wavefunction, explain why the existence

86

of the Q7 (sss) L = 0 baryon provides evidence for a degree of freedom in addition to
space x spin X flavour.

In the absence of colour, the overall wavefunction has the following degrees of
freedom:

¥ = Phavour X spin Tspace -

The overall wavefunction must be anti-symmetric under the interchange of any two
quarks (since they are fermions). For the a state with zero orbital angular momen-
tum (¢ = 0), the spatial wavefunction is symmetric. The flavour wavefunction sss
is clearly symmetric under the interchange of any two quarks. Therefore, the re-
quired overall anti-symmetric wavefunction would imply a totally anti-symmetric
spin wavefunction, however, there is no totally anti-symmetic spin wavefunction
for the combination of three spin-half particles 2 ® 2 ® 2 = 4 & 2 @ 2). Hence,
without an additional degree of freedom, in this case colour, the Q= would not
exist.

10.2  From the expression for the running of as with Ny = 3, determine the value of
¢* at which a5 appears to become infinite. Comment on this result.

The strong coupling constant runs according to

as (u?)

as(q?) = ,
1 + Bas(u?) 1n(q—2)
M

where B = (11N.—2Ny)/(12r). For N. = 3 colours and Ny = 3 (valid at low values
of |¢?)),

27
127
The strong coupling constant appears to become infinite when
2
2 e\ 127
Q’S(]J )ln(#—z) = —7 .
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At |g| = 10GeV, as ~ 0.18, and therefore &g becomes infinite when

2
q5 127
0.18In|—|=—-——
n(lOO) 27
C]2 4
I _43% 10
= 100 3x10

= (o ~200MeV.

At this scale, known as Aqcp, QCD is clearly non-perturbative.

10.3  Find the overall “colour factor” for qq — qq if QCD corresponded to a SU(2)
colour symmetry.

If QCD corresponded to an SU(2) rather than SU(3) “colour” symmetry, the corre-
sponding vertex factor would be

_%igS/l?iV'u - —%igg()'(;i’y” )
where the colour indices i, j=1,2 and o with a = 1,2,3 are the three Pauli spin
matrices corresponding to the three ”gluons” in this model.

(o1 (0= g g (10
17\ 1o0) 27 io) ™ 7T o)

Following the arguments for SU(3) QQD, the colour factor for a particular q;qx —
q,q; scattering process is

3
1
a%*m:ZZﬁﬁr
a=1

Denoting the colours as r and b, it is straightforward to obtain the following results
C(rr — rr) = C(bb — bb) = 3(H(1) = 1,
C(rb — rb) = C(br — br) = }L(l)(—l) = —i ,
C(rb — br) = C(br — rb) = 3 [(H(1) + ()(=D)] = 5,

and all other combinations are zero. Hence the spin-averaged colour factor (av-

eraging over the four possible initial colour combinations of the two initial-state
quarks) is

2
1 g
ICPy =3 D ICGj— kP
i jkl=1

i

16

1
4
3
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@ 104 Calculate the non-relativistic QCD potential between quarks q; and q, in a

q192q3 baryon with colour wavefunction
1
W = —(rgb — grb + gbr — bgr + brg — rbg) .
V6

The NRQCD potential between two quarks can be expressed as

Veq(r) = +C==
T

where C is the appropriate colour factor. Consequently, the expectation value of the
NRQCD potential between quarks 1 and 2 an a baryon with colour wavefunction

4

(VaZy = (W Vqqlh)
= é((i’g —gr +gb — bg + br — rb)|Vygl(rg — gr + gb — bg + br — rb))
= +(;—i [6C(rg — ]"g) — 6C(rg — rg)]
_ % 1 1
=+=-[6(-¢)-6(+3)] .
and thus
2a
12\ _ S

Hence, in the non-relativistic limit, the QCD potential between any two quarks in
a baryon is attractive.
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@ 10.5 Draw the lowest-order QCD Feynman diagrams for the process pp — 2jets + X,
where X represents the remnants of the colliding hadrons.

There are diagrams involving: i) the scattering of quarks and antiquarks, ii) the
scattering of a quark/antiquark and a gluon and iii) the scattering of gluons, where
the anti-quarks/quarks can either be from the valance or sea content of the proton
and antiproton.

=0
SO0
A0
OO

e
B
Jl
gL X

XA



Quantum Chromodynamics (QCD)

@ 10.6 The observed events in the process pp — 2jets at the LHC can be described
in terms of the jet pr and the jet rapidities y3; and y,.

a) Assuming that the jets are massless, E? = p% + p?, show that the four-momenta of
the final-state jets can be written as

p3 = (prcoshys, +prsin g, +pr cos ¢, prsinhys),
p4 = (prcoshys, —prsing, —pr cos ¢, prsinhys) .

b) By writing the four-momenta of the colliding partons in a pp collision as
\/E
2

show that conservation of energy and momentum implies

s
p1=—(x1,0,0,x1) and p;= %(xz,O,O, -X1),

x| = ﬂ(e*"3 +e) and x = ﬁ(e‘”3 +e).
s s

¢) Hence show that
0% = pr(l + ™).

a) From the definition of rapidity

E+ E +
2y = ln( pz) = %= —pz,
E - p; E-p,

which can be rearranged to give

E@ -1)=p.(e¥ + 1)

E e¥+1 e'+e? coshy
= = = = — .
p. e¥—1 e—eY sinhy

In the massless limit, the jet energy is the sum of the squares of the transverse and
longitudinal momentum components E> = p% + p? and thus,

E2—p2=p%
2
2 p 2
eli-5) -t
R E2(1 sinhzy) )
— :p
cosh? y T

= E’= p% coshzy,

from which it follows that pg = E? - p% = p?r sinh? y. Therefore the jet four-
momentum can be written in terms of y, pr and the azimuthal angle,

p = (prcoshy, prsing, pr cos ¢, prsinhy),
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and since the two jets here are produced back-to-back in the transverse plane:

p3 = (prcoshys, +prsing, +pr cos ¢, prsinhys),
p4 = (prcoshys, —prsing, —pr cos ¢, prsinhys) .
First recall that
coshy +sinhy=1(/ +e?)+1(eV—e¥)=¢! (10.1)
coshy — sinhy = % (¢ +e™Y) - % (Y —e V) =¢". (10.2)

Here conservation of energy and momentum imply
%xl +x,) = pr(coshys + coshy)

and g(xl — xp) = pr(sinhys + sinh yy) .

Taking the sum and difference of these two relations and using the identities of
(10.1) and (10.2) gives

Vsx; = pr(coshyz + coshys + sinhyz + sinh ys) = p(e’> + e¥*)
and  Vsxp = pr(coshys + coshyy — sinhys — sinhyy) = pr(e™ + &%),

and, as required,

T T, _ _
x| = p—(eer3 +e™) and x, = p—(e U 4oV,
s Vs

In the massless limit (p% = p% = 0), the four-momentum transfer

0% = —¢* = —(p1 — p3)* = 2p1-p3

\/_

_ 27s(x1, 0,0, x1)-(pr cosh ys, +pr sin @, +pr cos ¢, pr sinh y3)
= pr Vsxi(coshyz — sinh y3)
= prVsxje™” .
Using the result for x; from part b) above,
Q* = prVsxje™”
= p%(ey3 + e¥)e Y3
= p%(l + 7Y,
It is worth recalling that rapidly differences are invariant under boosts along the z-

direction, and therefore the result for (the Lorentz invariant) quantity 0? is invariant
under boosts along the z-direction (as it must be).
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@ 10.7 Using the results of the previous question show that the Jacobian

3 yap7) 1
ox1,x2,q%)  Xix2

The transformation from {ys, y4, Qz} to {x1, X2, pr} is defined by the relations

T
x| = p_(e+y3 + e+y4) ,

s

T, _
xzzp—(e Bre ™y,

s

Q% = pr(1 + "%,
and the differential elements are related

(Y3, Y4, PT)

— U dxydx,dQ? .
A(x1, x2, 0?) *1dr2dQ

dysdyzdp3 =

Since we already have {x|, x», pr} expressed in terms of {y3, y4, 0%}, it is simpler
to calculate

d(x1, x2, 0%) 03, ys, P¥)  (8(x1,x2, 0%) -
— and use = 5 .
0y, ya, p1) d(x1,x2,0%)  \0(y3,Yy4, P})

The actual calculation requires care but is fairly straightforward. Here, the Jacobian
(it terms of pr rather than p2) is

o Ox Ox
2 dys  Oys Opr
_001,0,00) | o ow dn

= =| By, gy 0
03, Y4, P1) | 500 500 o0b

dy3  Oys Opr

l\’/_TEeyz PTTEem ‘/Lg(eys + e%)
= _%e—m _%e—y4 \/Lg(e—lh +eY4)
- p%em—ys p%ey“‘m 2p1(1 + e¥47v3)
3 e o4 Y3 4 o4
T

N _e_y3 _e_y4 e_y3 + e_y4
S 1 _etas o3 (] 4 eh4¥3)
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Multiplying out the terms in the determinant leads to

3
J= lﬁ { e’ [_2(6—!44 + e—!/3) — eY4Ys (e—!/a + e—y4)]
N

— ey4 [_e_US(l + ey4—!/3) + ey4—y3(e—y3 + e—y4)]

+ (&% + e [_ey4—2y3 _ e—m] }

3
_ _lﬁ [2@y3_y4 4TV ] — DAY _ Dp2WAm2Y3 4 204 2y3
)

LYY 4 oYATY3 4 ] 4 o2Y4T 25 4 ey4—y3]
3
= _lﬁ[z 4 MY | s
s

= -2pTXx1X2.
The next step is to transform from Q? — ¢* = —~Q? and from py — p3 giving

A1, x,4%) _ 1 8(x1,x2,0%)

O3, ya, p3) 20T 83, ya, P2

= X1X2,
and from the reciprocity properties of the Jacobian J, the require result is obtained:

Nys,yapp) 1
A(x1,x2,¢%)  xi1x2

10.8 The total cross section for the Drell-Yan process pp — u*u™X was shown to be

4ra?
8ls

1 1
1 - -
ooy = f f —— [4uCe)uter) + 4i0x)ii(x) + d(x1)d(x2) + d(x1)d(x2) | dxdxs
0 Jo X1X2

a) Express this cross section in terms of the valence quark PDFs and a single PDF for
the sea contribution, where S (x) = u(x) = d(x).

b) Obtain the corresponding expression for pp — ufu~X.

c) Sketch the region in the x;-x, plane corresponding s > s/4. Comment on the
expected ratio of the Drell-Yan cross sections in pp and pp collisions (at the same

centre-of-mass energy) for the two cases: i) § < s and ii) § > s/4, where § is the
centre-of-mass energy of the colliding partons.
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a) Writing u(x) = uy(x) + S(x) and d(x) = dy(x) + S (x),

= Ao
2 _pPp _
d “py = 8ls

{4luy(x1) + S (e ][uy(x2) + S (x2)] + 48 (x1)S (x2)+

X1X2
[dv(x1) + S (xD)]ldv(x2) + S (x2)] + 5 (x1)S (x2)}dx1dxs

4ra?

=3 {4uy(x))uy(x2) + 4uy(x1)S (x2) +4S (xp)uy(x2) + 108 (x1)S (x2)+
SX1X2

dy(x1)dy(x2) + dy(x1)S (x2) + S (x1)dy(x2)}dx1dx;

If we also assume that uy(x) = 2dy(x) then

_ 2
P2oPP = dra

= 17d d
DY 8ISX1.X2{ V(xl) V()C2)+

9dy (x1)S (x2) + 95 (x1)dy(x2) + 1085 (x1)S (x2)}dx1dx; .
b) For pp collisions, the Drell-Yan cross section is

2
PofP = 4ra
DY — 81sx1x)

{4u(x)u(xz) + 4u(xu(x:)+
d(x)d(x2) + d(x1)d(x2)}dxidy
This can be expressed in terms of sea and valance quark pdfs:

2
2o™ = drrar
DY — 81sx1x2

{duy(x1)S (x2) + 48 (xuy (x2)+
dy(x1)S (x2) + S (x1dy(x2) + 108 (x1)S (x2)}dx;dx;
If we again assume that uy(x) = 2dy(x) then

Ao
2 pp _
d Ony = g1

1 {9dy(x1)S (x2) + 98 (x1)dv(x2) + 108 (x1)S (x2)}dx1dxz

¢) Since § = x1x25, lines of constant § define hyperbolae in the {x;, x;} plane.
For § <« s both x; and x, will usually be small, and in this region the Drell-
Yen cross section will be dominated the sea quarks and, from the above results,
dzapDI; ~ a’%}. Consequently the cross section for the Drell-Yan production of
low-mass w*u~-pairs will be approximately the same for pp and pp collisions. In
contrasts for § > s/4, both x| and x;, will be greater than 0.5 and the valance quark
contributions will dominate over the sea. In this case d?chh, > o), and the cross
section for the production of high-mass pw*p™-pairs will be much greater for pp
collisions.

10.9  Drell-Yan production of p*u~-pairs with an invariant mass Q” has been studied

in * interactions with Carbon (which has equal numbers of protons and neutrons).
Explain why the ratio

o(@*C - pruX)
o(@ C — pru~X)
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tends to unity for small Q* and tends to 1 as Q* approaches s.

The PDFs for the t* (ud) can be written in terms of valance and sea quark distribu-
tions:

u’ﬁ(x) = u’{(x) +S “+(x) = up(x) + S™(x)
;ln+(x) = Eij(x) +85™(x) = c_l?,(x) +85™(x)
d"(x) = S™(x) = S™(x)
THOERUMOERROR

where the symbols with a superscript 5t implicitly refer to the PDFs for the 7t*. As-
suming isospin symmetry, e.g. the down-quark PDF in the ™ (du) will be identical
to the up-quark PDF in the wt*, the PDF:s for the i~ are

u™(x) = ST(x) = S™(x)
d"(x) = ST(x) = $™(x)
d™(x) = df, (x) + S™ (x) = uf(x) + S™(x)
() = W0 (x) + ST(x) = dy(x) + S™(x).

For low Q? Drell-Yan production annihilation of sea quarks will dominate and
therefore

+ +,, -
oW Con X s 0250,
(@ C - ptpnX)

As Q% — s, both x| and x, tend to unity and the annihilation of valance quarks will

+

. . —n - .
dominate. Since d (x) = u"(x) and carbon contains an equal number of valance
up- and down-quarks

oC oK) 02d" (1)d°(1)
o C—-puX)  QZm(HuC(l)

! 0*
—_ — as = — .
4



The Weak Interaction

@ 11.1  Explain why the strong decay p® — m~n* is observed, but the strong decay
p? — 7’7’ is not.
Hint: you will need to consider conservation of angular momentum, parity and the sym-
metry of the n°z® wavefunction.

The spins and parities of the particles involved are:
n, a1, 7t JP=0"
pO P =1

Conservation of angular momentum implies that the two pions in the final state
must be produced with one unit of orbital angular momentum, £ = 1. Conservation
of parity in this strong decay requires that

Py =Pz Py (-1)
=D D (-h=-1V

and therefore angular momentum and parity are conserved in the decay, explaining
why p® — mm* is observed. In the decay p® — n’n, the final state consists of
two identical boson that must be produced in an overall symmetric wavefunction,
which is not the case, since the orbital angular momentum ¢ = 1 stare is anti-

symmetric under the interchange of the two ni’s.

@ 11.2  When i~ mesons are stopped in a deuterium target they can form a bound
(m~ — D) state with zero orbital angular momentum, ¢ = 0. The bound state decays by
the strong interaction

7D — nn.

By considering the possible spin and orbital angular momentum states of the nn sys-
tem, and the required symmetry of the wavefunction, show that the pion has negative
intrinsic parity.

Note: the deuteron has J = 1* and the pion is a spin-0 particle.

This is an example of how the parity of particles can be inferred from their decays.
Writing the spin (total angular momentum) and parity of the pion as J£ = 0P~ and
the total orbital angular momentum in the final state as L, conservation of parity in

96
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the strong interaction implies that parity of the initial state is equal to the parity of
the final state:

Pr-Pp-(=1)j = Py - Py (D"
Pr-(+1)- (+1) = PA(-D)F
Pr=(-DF.
Conservation of angular momentum implies that

Jop+J:+€=L+Smn
1=L+Smn (11.1)

where Sy, = 0 or 1, is the total spin of the neutron-neutron system. Since the final
state consists of identical fermions the overall wavefunction of the neutron-neutron
system must be anti-symmetric:

Wspace X Yspin : anti-symmetric .

If the neutrons are produced in the anti-symmetric spin-0 final state, this implies
that L. must be even, i.e. L = 0,2,4, .., however in this case, it is impossible to sat-
isfy (11.1). Consequently in can be inferred that S, = 1. In this case, the spin part
of the wavefunction is symmetric and thus the spatial part must be anti-symmetric:
Lis odd. If L = 1, then the condition for conservation of angular momentum (11.1)
becomes:

1=1+1.

Remembering that total angular momentum sums as a vector and therefore 1 +
1 =20, 1 or 2, and therefore it is possible to satisfy both the overall symmetry
requirement on the nn system and conservation of angular momentum with (and
ono;y with) L = 1. Thus the intrinsic parity of the pion is negative since Py =
(D"
11.3 Classify the following quantities as either scalars (S), pseudoscalars (P), vectors
(V) or axial-vectors (A):

a) mechanical power, P=F-v ;

b) force, F;
c) torque, G=rxF ;
d) vorticity, Q =V xv;
e) magnetic flux, ¢ = [B-dS;
f) divergence of the electric field strength, V- E .

Classify the following quantities as either scalars (S), pseudoscalars (P), vectors
(V) or axial-vectors (A):

a) P =F .v:scalar - scalar product of two vectors ;

b) F : vector;
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¢) G =r x F: axial-vector - cross product of two vectors ;

d) Q =V x v : axial-vector - cross product of two vectors (even if one is a
vector operator) ;

e) magnetic flux, ¢ = f B - dS : pseudo-scalar - scalar product an axial vector
(B) with a vector ;

f) divergence of the electric field strength, V - E : scalar - scalar product of
two vectors .

@ 11.4 Inthe annihilation process e*e~ — qq, the QED vector interaction leads to non-

zero matrix elements only for the chiral combinations LR — LR, LR — RL, RL — RL,
RL — LR. What are the corresponding allowed chiral combinations for S, Pand § — P
interactions.

First consider a scalar interaction at the ete™ vertex for the LR chiral combination
ELMRI
VLUR = vaouR
7.0
= (Prvr)"y Prug,

where the appropriate chiral project operators have been inserted (remembering
that for antiparticles, vy, = Pgv). Hence

U UR = UIP;’}/OPRMR

=0) 31+ )05+ ug

= JoL L+ (0 + 7 g (using y° =)
= L2 =) + 9 )ug (using ¥y = ¥%y°)
=0 (since (y°)? = 1)

In the same way it is straightforward to show that the RL combination yields zero,
but the LL and RR are non-zero. Hence for a scalar interaction, the chiral combina-
tions that contribute to the annihilation process are LL — LL, LL — RR,RR — LL
and RR — RR.

For a pseudoscalar interaction of the form ELyS UR:
Uy ug = U2P£7075PRMR

=0l LA+ )0 L0+ ug

= 10,1+ Y0+ Y ) (using y* = ¥°")
= }vayo(l V) (1 + 9 )ug (using y7y° = y097)

_1

"Y1 =)+ g
=0, (since (y°)? = 1)
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and thus for a pseudoscalar interaction, the chiral combinations that contribute to
the annihilation process are LL — LL, LL — RR, RR — LL and RR — RR.

For an S — P interaction, the e*e™ vertex has a factor (1 — y°)u, and the 1 — >
factor projects out LH chiral particle states and therefore the only chiral combina-
tion in the initial state is LL. The qq vertex factor is %(1 — y°)v. Here the 1 — 3>
factor projects out RH chiral antiparticle states. Hence, for an S — P interaction the
annihilation process, the only non-zero contribution to the amplitude comes from
RR — LL.

11.5 Consider the decay at rest 1= — nv;, where the spin of the tau is in the
positive z-direction and the v, and st~ travel in the + z-directions. Sketch the allowed
spin configurations assuming that the form of the weak charged-current interaction is
i)V-Aandii) V +A.

i) Here the V — A for of the interaction projects out LH particle states and RH
antiparticle states. Hence in the decay T~ — 7~ v,, the neutrino is produced in a LH
chiral state. Since the neutrino is almost massless, it is highly relativistic and the
chiral and helicity states are the same. Hence the neutrino must be produced in a
LH helicity state and the allowed spin combination is:

T
Vi < . T
—)

v

ii) Here the V + A for of the interaction projects out RH particle states and LH
antiparticle states. Hence in the decay T~ — n~ vy, the neutrino would now be
produced in a RH chiral state:

11.6  Repeat the pion decay calculation for a pure scalar interaction and show that
the predicted ratio of decay rates is
[ —e™Ve)

~5.5.
(= — uvy)

Consider the m~ — ¢V, decay in its rest frame, where the direction of the charged
lepton defines the z-axis, as shown below. In this case, the four-momenta of the 7~
¢~ and v, are respectively,

pJ‘[ = (mJ'E’O’ O’ 0) ’ p[ = p3 = (Efa Oa 0, p) and pV = P4 = (p, 05 0, _P),
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where p is the magnitude of the momentum of both the charged lepton and an-
tineutrino in the centre-of-mass frame. Here it is assumed that the interaction is
mediated by a massive scalar particle X.
Ve
P4
fx X Ve

P4

p3
‘-

The scalar quantity associated with the £~v, vertex, with coupling gz, is

Je = gxu(p3)v(ps) .

Because the pion is a bound qq state, the corresponding hadronic “current” cannot
be expressed in terms of free particle Dirac spinors. For the overall amplitude to be
a Lorentz invariant quantity (i.e. a scalar), the hadronic vertex has to be described
by a scalar quantity (just as was the case of the leptonic vertex). The only scalar
quantity available is the mass of the pion, hence, the most general expression for
the pion current is obtained by replacing vu with fym,, where f; is a constant
associated with the decay. The matrix element for the decay n~ — ¢V, therefore
can be written as

My = [gx framx] X X [gxu(p3)v(ps))

my
= Gy famzu(p3)v(ps) ,

where the propagator has been approximated by a Fermi-like contact interaction

(assuming ¢* = m2 < mi) and Gy is analogous to the Fermi constant.

In the Standard Model, there are only LH neutrinos and RH antineutrinos, and we
will assume this is the case here (this assumption doesn’t affect the final result).
Thus, the antineutrino is produced in a RH chiral (and helicity) state. To conserve
angular momentum, the lepton must also be right-handed. Thus

Myi = Gy fumauil (p3)Y 01(pa)

with

O =

1
0

u(p3) = VEc+me| p and  vy(pa) = Vp| _|
v

E¢t+me

0 0
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Hence

Myi = Gx famatt] (p3)Y°01(ps)

= fonmn \/E[+mg\/§(1 + P )

E(%-I’I’lf
p

2
E[+m[) )

The above expression can be can be simplified using the expressions for E, and p
given in (11.19) of the main text, such that

Mz, = G f2mE(E + me)p (1 +

2
M2 =G I%mi(Eg+mg)p(1+ P )

Eg-l-n”l[
:GX aMzp 2
2my (mz + myg)
_ 222
_GX xMyP -

Since the pion is a spin-0 particle, there is no need to average over the initial-state
spins and matrix element squared is given by
2y = 2 202 2
(IMpil") = IMyil” = Gx fymzp .

Finally, the decay rate can be determined from the expression for the two-body
decay rate given by (3.49), where the integral over solid angle introduces a factor
of 4r as there is no angular dependence in <|Mf,-|2). Hence

Gy fx .
8 '

dr
= ——p(Msl» =
T2 M)
Therefore, to lowest order, the predicted ratio of the 1~ — e™Vve to T~ — v,
decay rates is

I(n"—>eVe) p2_ [(mi -m?)

2
_— = = =549,
[(w= — uvy) pﬁ (m?E - mﬁ)}

11.7  Predict the ratio of the K™ — eV, and K™ — u~v, weak interaction decay rates
and compare your answer to the measured value of
I'K™ —>e™Vve) _s
—— = (2488 £0.012) x 107"
K~ — uwv) ( )
From the result derived in the text for pion decay, the predicted ratio of the two
leptonic decays of the charged kaon is

(K™ —eVe) [me(m%< - m})

2
= =2. 107
[(K- = v ] 55X 1077,

2 2
my(my — my)
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which is in reasonable agreement with the observed ratio; given the calculation
is only to lowest-order, perfect agreement is not expected. Note that the decay to
electrons is even more suppressed relative to &1~ — e~ V.. This is because the final-
state electron is more relativistic and, therefore, the helicity states correspond more
closely to pure chiral states.

11.8 Charged kaons have several weak interaction decay modes, the largest of which
are

K*(us) -» u*v,, K" — ' and K'Y > a'mnta.

a) Draw the Feynman diagrams for these three weak decays.
b) Using the measured branching ratio
Br(K* — u*v,) =63.55+0.11%,

estimate the lifetime of the charged kaon.

Note: charged pions decay almost 100 % of the time by the weak interaction 7" — u*v,
and have a lifetime of (2.6033 + 0.0005) x 1078 s.

a) The lowest-order quark-level Feynman diagrams are:

o =l

_ w b
S u
5 W S 4 —
K* K* K* d
w u _ u

u d _
v _»\\ . ‘>_\\ 5
u u

In the final diagram the dd pair are produced from a gluon in the hadronisation
process.

b) From the derivation in the main text

G2
1/t =T =T(@" - phvy) = 87rnF¢3 f [mf(m - m[)]

TT

and the total K* decay width is related to the partial decay width I'(K* — p™v,)
by

(K" — uv,)

BR(K" — u'vy) =
1—11(+

|

El

|
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Hence

TK+ Fn+

Tr+ B FK+
(" — uvy)
= _F(K+ — M‘+VM)

o, 2o =]

md 2| - mﬁ)]2 .

Making the brave assumption that fx = f; (both are pseudo scalar mesons) and
putting in the numbers

X BR(K* — n*v,)

T+ ~ 0.057+
=13x107s

This is a factor 10 shorter than the measured value of T+ = 1.2x 1078 s because the
K* decay rate is suppressed by a factor of tan> 6 = 0.053 (see Chapter 14) relative
to the " decay rate; in charged kaon decay the weak decay vertex is s — U,
whereas for pion decay it is d — .

11.9  From the prediction of (11.25) and the above measured value of the charged
pion lifetime, obtain a value for f;.

From the derivation in the main text
2

G 2
L@ —pvy) = —F3 12 [mu(mi - mﬁ)] .
8nny

Assuming the ™ decays almost entirely by & — u*v,, the decay rate is given by:

Tt — phvy) 2 Ty = — =254 x 1077 GeV.

Tnt

Putting in the numerical values,
f= = 0.135GeV .
It should be noted that f; ~ my.

11.10  Calculate the partial decay width for the decay t= — =n~v; in the following
steps:

a) Draw the Feynman diagram and show that the corresponding matrix element is
M= \/EGanﬁ(Pv))’”%(I - YS)M(PT)QWP; .

b) Taking the t~ spin to be in the z-direction and the four-momentum of the neutrino to
be

pv=p"(1,sin6,0,cos ),
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show that the leptonic current is

j# = Vzn/l'lip»< (_S’ —C, _iC7 S) s

where s = sin(%) and ¢ = cos (g) Note that for this configuration, the spinor for the ©~
can be taken to be u; for a particle at rest.

¢) Write down the four-momentum of the &~ and show that
IMP* = 4G} f2m’p* sin® (g) .

d) Hence show that

It~ -»av) =

2 2 2 22
GFfJT 3(m'c_mn)

m
160 7" m%

e) Using the value of f;; obtained in the previous problem, find a numerical value for
It~ > avy).

f) Given that the lifetime of the t-lepton is measured to be 7, = 2.906 x 10~ s, find an
approximate value for the T~ — mt™v, branching ratio.

a) The Feynman diagram for the T~ — s”v; decay is Following the arguments for
Vi
Dv
P d

7 decay, the interaction at the pion weak vertex is described by f;p’ and therefore
the matrix element for T~ — ™ v, can be written as
g"
2 _ 2
q° — my

M= = 2T(p) 1y (1 =y u(po)| x| Ssbsers]

S

Making the good approximation that ¢ < m%v this becomes

2
M= % fli(p) 3y (1= Y )u(po) g Pl
= V2Gr fr u(py)3y*(1 = v u(p:) g .Y,
b) For the tau-lepton, with spin in the +z-direction, the appropriate spinor is #; for

a particle at rest and the factor %(1 — 7) projects out the left-handed chiral state
of the neutrino, which is equivalent to the left-handed helicity state. Hence, the



105 The Weak Interaction

leptonic current associated with the above matrix element is

J* = u(p) 3y =y )u(p)

= ul (P Yy ur(po)
1
= \/E(—s, ¢, s, —¢)YOy* \2my 8
0

Using the explicit forms for the y-matrices, it is straightforward to show

J* = \2prmg (=5, —c, —ic, 5),
where s = sin (8/2) and ¢ = cos (6/2).
c¢) The four-momentum of the pion is
Py = (Ex,—p*sin6,0,—p" cosf),

and

M= N2Gr\2mep* f X (j - p)
= 2GE \/mp* fr (—EJr sin g — p*sinfcos g + p* cos@sin g)
= 2Gg \/mp* fr (—EJT sin g — p*sin g)

_ )
= 2GF \/Mmp* famy sin 5,

where the last step follows from conservation of energy m; = E; + Ey = E; + p*,
which gives the desired result:

2 42423 % D¢
IMI= = 4Gg fymzp” sin” 5.

d) The general expression for the decay rate fora — 1 + 2 is

r=_2 fIMIZdQ.

327m2m2

Note there is no need to average over the initial spin states, it is perfectly reasonable
to consider the decay rate from a particular spin configuration. Here The general
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expression for the decay rate fora — 1 + 2 is

p* +1 21
x 4G f2mip* x f f sin® §d(cos 6) d¢
-1 Jg=0

- 3272m2
¥22 (2 1
Gifim +
_ PTG 27rf 1(1 ~ cos 6) d(cos )
87‘[2 -1
¥22 (2 1
Gifim +
i el /M X (1 -x)dx
81 —1
_ PG frme
B 4n '
It is straightforward to show that
. _m—my
p = 2m;

and therefore

2 2 2

Torm ()
7T

_ Gifx 3 (m% —m

- T

167‘( " m%

I't > vy =

an
S~———
N}

e) Taking f;; = my the expression for I'(t”™ — m™v;) gives:

[t > v)=293%x 1073 GeV.

f) From the observed value of 7, = 2.906 x 10713, the total decay width of the tau
lepton is:

i
[, =—=228x10""2GeV.
Ty

Using this and the calculated value of I'(t™ — @™ v;) =2.93 X 1078 GeV,

e o -
BR(T — 1 vy) = w ~119%,
T

which is in fair agreement with the measured value of 10.83 + 0.06 %.
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(® 12.1  Explain why the tau lepton branching ratios are observed to be approximately

107

Br(t™ — e viVe) 1 Br(v" — e vVy) : Br(tt — vy +hadrons) 1 :1: 3.

The Feynman diagrams for the main decay modes are shown below: In the case
Vi Vi Vi

Ve Vu u
of the hadronic decays the du system can form a &~ with J© = 07, a p~ with
JP =17, or system of light mesons produced through an intermediate mesonic state
or through the hadronisation of the du system. Assuming a universal strength for
the weak interaction vertex (i.e. putting aside the discussion of the CKM matrix for
now), the amplitudes for the three decays shown would be expected to be roughly
equal. Thus, remembering that the diagram with quarks is repeated for the three
separate colour combinations 77, bb and gg one would expect

Br(t™ — € ViVe) : Br(t. — € v¢Vy) : Br(t” = vy +hadrons) ~ 1 : 1 : 3.
In reality, the branching ratios are:

Br(t™ — e viVe) : Br(tT — e viVy) @ Br(tT — v, + hadrons)
~17.83% : 1741 % : 62.65%,

with the additional 2 % being due to T~ — e v{Vey and T~ — @ v;V,Y. The BR to
muons is slightly lower than that to electrons, due to mass of the muon reducing
the available phase space. Furthermore, the branching ratio to hadrons is slightly
higher than the naive prediction do to enhancements from QCD corrections (for
example the diagram with an additional gluon in the final state).

12.2  Assuming that the process v.e™ — e~ v, only occurs by the weak charged-
current interaction (i.e. ignoring the Z-exchange neutral-current process), show that

2
e _ 2mE\Gg
Tcc ® o ’
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where E, is neutrino energy in the laboratory frame in which the struck e~ is at rest.
The Feynman diagram for the CC vee™ — e™ v, process is shown below. Ne-

Ve €
pPr D3
M

P2 P4

e” Ve
glecting the ¢> dependence of the propagator, the corresponding matrix element

18

. W _ Gy .gwW — v
—iMy; = [—Z%M(pa)y”%(l -y )M(Pl)} é [—l%u(m)v a-y )M(Pz)}

2
Myi = ;1—W%ng [w(p2)y* 31 = Yo [w(pa)y” 31 = ¥ yu(p2)]

2
= g—wgw [y (p3)y*u (pD)] [uy(pa)y’ uy (p2)] ,

2
2mw

with the spinors,

0 -1 —s —c

1 0 -5
uy(p1) = VE , uy(p2) = VE , uy(p3) = VE ‘ uy(ps) = VE ,

0 1 S c

-1 0 —c K

where ¢ = cos %* and s = sin %. If this were the only Feynman diagram contribut-
ing to the process vee™ — vee~, the following the derivation of Chapter 12.2.1, one
would obtain

_ _ Gl%s
occ(Ve€™ ™ Ve ) = — .
n

It should be noted that this neglects the NC Z-exchange diagram and that M —
Mcc + Mpuc, which has the effect to reduce the vee™ — vee™ cross section through
negative interference. Carrying on regardless, the centre-of-mass energy is

s=(p + pg)2 = (Ey + me)* — E\z, =2m.E, + mg ~ 2meE, ,
and therefore
2meE\G%

T

occ(Ve€™ — Ve€ ) =

@ 12.3 Using the above result, estimate the probability that a 10 MeV Solar v, will
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undergo a charged-current weak interaction with an electron in the Earth if it travels
along a trajectory passing through the centre of the Earth.

Take the Earth to be a sphere of radius 6400 km and uniform density p = 5520 kg m=3.

From the previous question the ”CC cross section” for a 10 MeV electron neutrino
is given by

2meE\G%

Tcc(Ve€™ — Ve ) = =13x10cm?.

A neutrino traversing the Earth passes through 12800 km of rock. Consider a cylin-
der of this length and area 1 cm?. The number of nucleons contained in this cylinder
will be:

_pV 5520-1x107*-12.8x10°
TN 6.67 x 1027 -
Assuming half the nucleons are protons (for which there will be an equal number
of electrons), the number of electrons is therefore

ne =~ 5% 102 ecm™2.

1.1x10%3.

nN

Hence the probability of an interaction is
P =0cc(vee™ — vee_)[cmz] X ne[cm_z] <1071,
12.4 By equating the powers of y in (12.34) with those in the parton model prediction
of (12.20), show that the structure functions can be expressed as
F;p = 2xF¥p =2x[d(x) + u(x)] and )CF;p =2x[d(x) —u(x)] .

Equating (12.34) and (12.20) gives

2 2

G G . , .
sl + (1 = 97700 = 55| =P + 0P FP 4y (1= 5) FY

2xd(x) + 2x(1 = )5 (0) = (1 = YFY + x*F)® + xy (1 - g) FY?
2:x(d(x) + U(x)) — dxyii(x) + 2xy7u(x) = Ff + y(xF3" = F)P) + 4> (xF)")
Equating powers of y° gives:
FP = 2x(d(x) + u(x)).
Equating powers of y! gives:

4xu(x) = FyP — xFy?
= 2x(d(x) + u(x)) — xF3"
=  F=2dx) -u(x).

|
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Finally, equating powers of y° gives:

FP = 1FP + 2u(x)
d(x) — u(x) + 21(x)

=d(x) + u(x),

and therefore

FP =2xF" = 2x[d(x) + u(x)] and xF3’ = 2x[d(x) - u(x)] .

12.5  In the quark-parton model, show that F$N = 1(Q2 + Q)F3N.
Hence show that the measured value of

FSN/FN =0.29 £ 0.02,

is consistent with the up and down quarks having respective charges of +2/3 and —1/3.

From the previous question,
FP =2x[d(x) + u(x)] .

Similarly, assuming isospin symmetry (and remembering that PDFs without super-
scripts refer to the proton):

Fy" = 2x[d"(x) + 0" (x)] = 2x [u(x) + d(x)] .
Hence
F;N _ %(F;P " an) = [u(x) +d(x) + u(x) + E(x)] .

From the discussion of deep inelastic electron-nucleon scattering in Chapter 8, the
corresponding expressions for F, given by (8.27) and (8.28), are

F3P(x) = x(Qhu(x) + Q3d(x) + QFii(x) + Q3d(x)) ,
F§"(x) = x(Q3d(x) + Q3u(x) + Q3d(x) + Q3i(x)) ,
and thus
FN =1 [FP() + F§h ()]
= (0% + ODx [u(x) + d(x) + u(x) + d()]
= 3(05 + QF
For O, = +2/3 and Q4 = —1/3 the parton model predicts:
FNIFN = 508 + 0)) = 5% = 0278,

consistent with the measured value of 0.29 + 0.02.
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@ 12.6 Including the contributions from strange quarks, the neutrino-nucleon scattering

structure functions can be expressed as
F;P =2x[d(x) + s(x) + u(x)] and F3" = 2x[u(x) + d(x) +3(0)],

where s(x) and 5(x) are respectively the strange and anti-strange quark PDFs of the
nucleon. Assuming s(x) = s(x), obtain an expression for xs(x) in terms of the structure
functions for neutrino-nucleon and electron-nucleon scattering

PN =1 (FPx)+ F"x) and F5N = 1 (FP(x) + F5"(x)) .

Including the strange quark contribution
PN = 1 (FP(0) + Fy(x))
= x[u(x) + d(x) + u(x) + d(x)| + x[5(x) + 50)] . (12.1)

Including the strange quark contribution (which is assumed to be the same for the
proton and neutron)

F3P(x) = x(Q3u(x) + Q3d(x) + 0Fs(x) + QF(x) + Q3d(x) + 0I5(x)) ,
F§'(x) = x(Qad(x) + Q§u(x) + Q2 s(x)Q3d(x) + QFii(x) + Q7(x)) ,
and therefore
FN = L (FP(x) + F§"(v))
= 1x(02 + O [u(x) + d(x) + (x) + d(x)] + xQ2(s(x) +3(x))
= o [u(x) + d(x) + u(x) + d(x)| + Fx(s(x) + 5(x)).
Combining with the corresponding result for F ;N given in (12.1), leads to
FFN = PN =[5 - 3] (s + 5(x)

Zx(s(x) + 5(x)) .

Assuming s(x) = s(x),
5 N N_ 6
EF; - F; = ﬁXS(X)

= xs(x)= 2R - 3FN.

12.7 The H1 and ZEUS experiments at HERA measured the cross sections for the
charged-current processes e"p — v.X and e*p — V. X for different degrees of electron
longitudinal polarisation. For example, the ZEUS measurements of the total e*p — v X
cross section at /s = 318 GeV and Q? > 200 GeV? for positron polarisations of P, =
-36 %, 0% and +33 % are:

0(-0.36) =22.9 + 1.1pb, o(0)=34.8+1.34pb and o(+0.33) = 48.0 + 1.8 pb,

see Abramowicz et al. (2010) and references therein. Plot these data and predict the
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corresponding cross section for P. = —1.0, i.e. when the positrons are all left-handed.
What does this tell you about the nature of the weak charged-current interaction?

The data are plotted in the figure below, along with a linear fit (y>-minimization).
The linear fit has y> = 0.48 for one degree of freedom, and therefore the data are
consistent with the hypothesis that he cross section depends linearly on the degree
of positron polarisation. The fit results indicate that the cross section is expected
to be zero for P(e*) = —1 when the positrons are all left-handed. Consequently
the data support the hypothesis that the weak charged current only couples to RH
antiparticles and thus has the form V — A. Add the weak charged current been of
the form V + A a negative slope with intercept at P(e*) = +1 would have been
observed.

D
o
T
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N
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T
|
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T
|

O |
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Positron polarisation
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@ 131 By writing p; = BE; and p, = BE,, and assuming 31 = B, = B, show that

113

equation (13.13) reduces to (13.12), i.e.
2 2 2 2
m; —m miy —m
+ ( 1 2)L ~ 1 27,
p1 +p2 2p

E,q +E2)L

Ag1p = (B, - E») [T - (
P1 +p2

where p = p; = p; and it is assumed that p; > m; and p; > m;.

Assuming the mass eigenstates propagate with equal velocity, 8; = 82 = (5, and
T = L/, the expression for the phase difference of equation (13.13) can be written

- 2 2
E +F m;—m
Abir = (E1 — Ep) T—( ! 2)L]+[ ! Z]L
| P1 tp2 pP1 +p2
. )
L E{+FE m; —m
B \BE| +BE> p1 +p2
)
mi; —m
:( =",
pP1 tp2
)
zml_mZL
2p '

13.2  Show that when L is given in km and Am? is given in eV?, the two-flavour
oscillation probability expressed in natural units becomes

Am?[GeV?]L[GeV ] )

Am?[eV*]L[km]
4E,[GeV]

.2 : 2
sin“(26) sin ( E,[GeV]

—  sin?(20) sin® (1.27
First note that

Am*[GeV?] = 107 8Am?*[eV?] and L[m] = 10°L[km].

To convert from natural units L[GeV~'] to SI units L[m] the expression in brackets
needs to be multiplied by the factor

GeV
fic ’
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Hence

5 (Am*[GeV?]L[GeV ']
4E,[GeV]

sin2(20) sin ) - sin2(20)><

. 2(103 10718 . 1.6 x 1071° Am?[eV?]L[km]

T 06x 103 - 3x 108 4E,[GeV]
Am?[eV?]L[k
— sin%(26) X sin’ (1.27%)

13.3  From equation (13.24) and the unitarity relation of (13.18), show that
P(Ve = Vo) = 1 + 2|Ue1 P|Uea?* Ref[e7 @179 — 1]}
+ 2 Ui P|Uesl* Ref[e %) — 17}
+ 2|UeaP|Uesl Ref[e™ =7 — 17}

The expression for P(ve — V.) can be obtained from equation (13.24) by making
the replacing in the sub-scripts p — e:

P(ve = Ve) =|U Ui + UL Ul + UL Uesl® + 2 Re{UZ, Uet Uan Ugye 4177
+2Re{U Ue) Uz Ul e 179} 1 2 Re(UL Uy Ues Ulye 92793y
Applying the identity
21 + 22 + 231 = [P + 22l + |3 + 2Relz1 25 + 2125 + 2223)
to the unitarity relation of (13.18),
Ut Ul + UoUly + U Uy = 1,
namely |Ue1 U}, + U Uy, + Ues U;f3|2 =12 implies that

U1 U P + UUSLP + U UL = 1= 2Re{Ue U, Uy Ueo)

—2Re(Ue U U Ues) = 2Re(Uer U Uy Ues)

Substituting this into the above expression for P(ve — V) gives
P(ve = Ve) = 1+ 2Re{U% Uet U Ugy [ 479 — 1]} + ..
= 1+ 2|Uei PlUe P2 Ref{[e 9 — 1]} + ...,
as required.

13.4 Derive equation (13.30) in the following three steps:
a) By writing the oscillation probability P(v. — v,) as

P(ve = v) =2 ) Re{ULU U UL [ - 1]},

i<j

|
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and ertlng Aij = (¢; — ¢j)/2, show that

P(ve = v,) = —4Zme UUiUe, U ) sin® Ay +Zz\sm (U5UUe U ) sin 245

i<j i<j
b) Defining —J = Im{U?, U1 Ues Uu3} use the unitarity of the PMNS matrix to show that
INUL U U Uy} = = 3IM{UQ Ui U Uy} = = IM{U;, Upa U Uy} = —J

¢) Hence, using the identity

A B A+ B
sinA+sinB—sin(A+B)=4sin(§)sin(§)sin< hl ),

2

show that

P(ve = V) = =4 > Re{U5UyUeU

i<j

v hsin® Ajj + 87 sin Apy sin Az sin Agz .

d) Hence show that
P(ve = V) = P(Ve = V) = 16 3m{U;, U, UerZ;Z} sin Ajp sin A3 sin Aps .
e) Finally, using the current knowledge of the PMNS matrix determine the maximum

possible value of P(ve — v,) = P(Ve — V).

This is a fairly long and technical derivation, but the result is important as it predicts
the scale of CP violation for neutrinos propagating in the vacuum.
a) First expand the exponential into cosine and sine terms

Plve = V“> - ZZERQ{U;UuiUer:j [ei(¢j_¢i) - l]}

i<j

=2 Z Re {U5UiUe;U;,; [cos(@; = ¢i) = 1+ isin(@; - )]}
i<j

=23 Re{ULUuUe; Uy, [cos(g; - i) — 1]

3 }

i<j

=2 Im{ULUU, U, [sine; - 60}
)

i<j

—4Zme{U; UpiUej Uy, [ 2(¢’ ]

+2 3 3 (ULUUe Uy, [sm(¢l s}

i<j

4 3" Re{ULUUe;Up ) sin® Ayj +2 ) Sm{UgUyiUe ;U

i<j i<j

MJ} sin 2A,‘j .
(13.1)

as required.
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b) The relevant Unitarity relations are:

U U + ULUp + UU =0,
and UelU:1 + UeZUJQ + Ue3U:3 =0.

Using these relations

Sm{U;‘l UuerSU;3} = Sm{U;I Uul(_Uel U:jl] - UeZUSZ)} == Sm{U; UMer2U:2}
Tsm{U:zUute3U;3} =3Im{(-U;, Uy — U:3Uu3)Ue3U;3} = -3Im{U;, U Ue3UJS}
Defining —J = Im{U;, U1 Ues U:‘B}, these relations can be written as

Sm{U:leul Ue3U;3} = —Sm{U;zUute3U;3} = —Sm{U:leul Ue2Ul*12} =-J.

¢) Using J defined above, the second term in (13.1) can be written:
P =2 SMULUUe; Uy ) sin 24
i<j
= 23m{U§1UM1 UZZUMZ} sin2A12 + ZSm{Ué‘l UulUZ3Uu3} sin2A13
+23M{ULUnULUu3} sin2A3
= 2J(sin2A1y — sin2A13 + sin 2A»3) .
But Ai3 = A2 + Ags, thus
P = 2](51]’1 2A1; + sin 2A23 — sin 2(A12 + A23)),

which has the form sin A + sin B — sin(A + B) with A = Ay, and B = A,3. Hence,
using the identity,

sinA + sin B — sin(A + B) = 4 sin (%)sm(?) sin(A i B) ,
this can be rewritten as

P =8JsinAjpsin Az sinArz,
and finally

P(ve — Vu) = _42 ERe{U;iUWUer

i<j

:;j} SiIl2 Aij + 8J sin Aj; sin A3 sin A3 .

d) The corresponding expression for P(ve — WV,) is obtained by interchanging
Ui © U, and therefore:

P(Ve = V) = —4 Z iRe{UeiU*.U;‘jUw} sin’ Ajj+ 8J sin Az sin A3 sin Ags ,

i
i<j
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where —J = Im{U}, Ujq Ue3U}5} and —J = Sm{UeiUf, U3 Uys). Since Imfz) =

— Im{z*}, J = —J. Similarly, since Re{z{= Re{z"},
‘Re{Uel-U;iU:jUw} = ‘Re{U;UW-Uer:j}.
Hence
P(ve = vy) = P(Ve — V) = 16J sin Aj2 sin A3 sin A3

=16 Sm{U; Ulll Uer;Z} sin A12 sin A13 sinA23 .

e) Finally, J can be expressed in terms of the elements of the PMNS matrix using,

_is

Ueit Uer Ugs €12€13 $12€13 si3e”
_ 6 i6

Uu Uz Ups | =| —s12023 — €12523513€"°  €12€23 — S12523513€"  $23C13
i6 i6

Un Up Ug §12523 — €12023513€"°  —C12523 — §12023513€"° €23C13

Since U, and Uy, are real

J Ueerz 3m{UM1U:2}

2 is -6
= C12€13512 Im {[—812023 — C12823513€ ] [C12623 — 512823513€ ]}
_ 2 _ ind — iné
= c12€13512 [—512€23512523513 SIN 6 — €12€23€12523513 SiN 0]

2 .
= —C12€13512€23 523513 SIN O

=—1cos 013 sin 201, sin 2013 sin 26,3 sin 6 .
Hence the difference in the P(ve — v,) — P(Ve — V) oscillation probability is:
AP = 2 cos 63 sin 260}, sin 203 sin 26,3 sin d sin Aj5 sin A3 sin Ay3 .
Using 81> = 35°, 6,3 ~ 45° and 013 = 10°,
AP = 0.63sindsin Ay sin Ajz sin Ayz .
Since A3 = Az, this can be approximated as
AP = 0.63sind sin Ajp sin Ays .
The maximum difference occurs for | sin§| = 1, in which case
AP = 0.63sin Ajp sin Ays .

For a terrestrial experiment the issue is that the sin Aj term results in oscillations
over very large distances. Consider a beam neutrino experiment, similar to MINOS
with a peak beam energy of 3 GeV. The first oscillation maximum from the A3
term will occur at

Ay = g = L=1500km.
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But at this distance

A Am?
2212 L 0.033
Ap3 Am%2

= Ap= 0.033% = 0.05
= sinAjpp 2 0.05.
Consequently, at this baseline, P(ve — vy) — P(Ve — V) = 0.03.

It should be noted that the above treatment uses the vacuum oscillation formula
and neglects “matter effects”.

13.5 The general unitary transformation between mass and weak eigenstates for two
flavours can be written as

(Ve):[ cos @exp (i6) sineexp(i[@—é])](vl) .

Vi —sin @ exp (i [@ + 6]) cos fexp (id2) )

a) Show that the matrix in the above expression is indeed unitary.

b) Show that the three complex phases 6;, 5, and é can be eliminated from the above
expression by the transformation

by — 0,00 | v — v %t and Uy — Ugre®™%

without changing the physical form of the two-flavour weak charged current

IV~ — a1 5. [ Ue Uez)(\’l)
—i— (e, =(1- .
l\/§( wyH5( 7)((]Hl U )\ v
a) A Unitary matrix satisfies UU" = 1. Here

U= cos fexp (i01) sin dexp (i[% - 5])
| —sin6 exp (i [@ + 6]) cos fexp (id2)

UT cos #exp (—idy) —sinfexp (—i [@ + 6])
= = ,

sin 8 exp (—i [@ - 6]) cos fexp (—ioy)
and thus

) iy 0y .

oot cos2 @ + sin” @ (sin@cosf —sinfcosB)e 2 e 2 ¢

= oy Zidy

(sinf@cosf —sinfcosB)e 2 e 2 e cos? @ + sin® 9
=1.

Therefore U, which depends on four independent real parameters, is one possible
representation of a general 2 X 2 unitary matrix.
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b) Under the above redefinition of the phases of the fermion fields:

[01+0y " ’
; g . z( —5+0—0 )
U cos 0e01+0:=0)  ginge'\ "2 ¢ 2
e d C .
[ 6]+6) , ,) .
. i +0+6, -6 Y _g
—sinfe ( 2 w1 cos Gel(ézwl* %)

All complex phases can be eliminated if the following four conditions are satisfied

51+52_
2

+6 and 0;—9& =0. (13.3)

0,-6,=61 and 6,-6, =

0, (13.2)

Choosing 8/ = 0, which is equivalent to writing all the phases relative to the phase

of the electron, then the two equations of (13.2) become

01+ 02
-

The two equations of (13.3) then give a consistent solution for 9;:

0, =061 and 0= J.

b=0-———6=6-—F—-6=———-5§
@ =0 -0,=2"%2 5 5-0 ;52 —6
Therefore, by redefining the phases of the fields using:
0=¢,
9;=¢+&;52—a
6, =¢+61,
0, =¢+ @ -4,

all complex phases can be removed from the 2 X 2 analogue of the PMNS matrix,
where the ¢ fixes the overall phase of (for example) the electron field. Therefore,
for two generations, all complex phases in the analogue of the PMNS matrix can
be absorbed into the definitions of the phases of the fields, without any physical
consequences: the weak interaction vertices Vk%y“(l — y°){, are identical and,
consequently, the two flavour phenomenology for neutrino oscillations is the same.
13.6 The derivations of (13.37) and (13.38) used the trigonometric relations
1 - 1sin?(2613) = cos*(613) + sin*(13) ,
and

4 sin? 63 cos? 015(1 — sin’ 63 cos? 013) = (s.in2 2653 cos* 015 + sin? 20,3 sin? 653).

Convince yourself these relations hold.
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In both cases the double angle formula sin 26 = 2 sin 8 cos 6 is used. The first iden-
tify follows from

1- % sin’ 2013 =1- %4 sin’ 013 cos’ 013
= cos® 013 + sin’ 013 -2 sin’ 013 cos’ 013
= cos’ 013 — sin® 013 cos? 013 + sin® 013 — sin® 013 cos? 013
= cos® 013(1 — sin’ 013) + sin’ 013(1 — cos? 613)

= cos? 013 + sin* 015 .

For the second identify, it is easiest to start from

sin® 2053 cos* 013 + sin® 2013 sin® O3 =4 sin® 03 cos? 63 cos’ 013 +4 sin® 013 cos? 013 sin® 03
= 4 sin® 03 cos? 013 [cos2 03 cos? 013 + sin® 913]
= 4in® 03 cos? 013 [(1 — sin? 623) cos? 013 + sin® 013]

=4 Sin2 923 COS2 013 [1 - SiIl2 023 COS2 913] .

@ 13.7 Use the data of Figure 13.20 to obtain estimates of sin?(26;,) and |Am§1|.

In Figure 13.20 the distance Lo in Lo/ Ey,, is the average distance to many reactors
weighted by expected flux. The variety of actual distances, smears out the calcu-
lated form of the oscillation probability, with the smearing becoming more notable
at small values of E, or equivalently large values of Ly/E5,. The first oscillation
minimum occurs at L/E < 30km but is not clearly resolved. The second oscilla-
tion minimum is clearly defined at

Lo/E5, ~ 50kmMeV~! = 50000 km GeV~'.

In S.I. units, the survival probability is

Am? [eV?] L[km
P@e — Ve) = cos” 613 ll - sin2(2912)sin2(1.27 uleVIH ])l ,

E[GeV]
and the second oscillation minimum occurs at
AmZ [eV*] L[km] 37

1.27 =
E[GeV] 2
3
Am? [eVi]= ———
= AmyleV = 595750000
=7.4x107eV?2.

Determining the angle 6, requires care. The amplitude of the oscillations (esti-
mated from the difference between the amplitudes of the first oscillation maximum
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KamLAND data showing the measured mean survival probability as a function of the mea-
sured neutrino energy divided by the flux-weighted mean distance to the reactors, Ly. The
histogram shows the expected distribution for the oscillation parameters that best describe
the data.

and the well-resolved second oscillation minimum) is about 0.4. Without exper-
imental effects this would be equal to cos* 03 sin® 2601>. However, the sharpness
of the oscillation structure is smeared out due to the reactors being at a variety of
distances from the experiment. The effect of this smearing can be estimated. Ac-
cording to the survival probability formula, the peak at L/E = n should correspond
to a survival probability of cos* 613 ~ 0.95. The measured survival probability is
about 0.75, due to the smearing out of the peak due to the ranges of L to the dif-
ferent reactors. If the range of L values had been very large, then the peak would
have been smeared out to an average value of 0.95/2 = 0.475. Hence the effect of
the smearing has been to reduce the peak from the expected value of 0.95 (which
is 0.475 above the totally smeared case) to 0.75 (which is 0.275 above the totally
smeared case). The net effect of the smearing in L is to reduce the height of the
oscillation maximum by a factor 0.275/0.475 = 0.58, giving the naive estimate of

0.4
4 s 2

0 20010 & —
COS 013 SIn 12 0.58

0.4
0.58 - 0.95

A more accurate estimate could be obtained with a more sophisticated treatment of
the data.

= sin® 201, ~ =0.73.

13.8  Use the data of Figure 13.22 to obtain estimates of sin*(26,3) and |Am3,|.

The interpretation of the MINOS data is relatively straightforward as the distance
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The MINOS far detector energy spectrum compared to the unoscillated prediction and the
oscillation probability as measured from the ratio of the far detector data to the unoscillated
prediction.

from the source of the beam to the far detector is fixed, L = 735 km and the energy
of the neutrino is relatively well measured. From the figure, the first oscillation
minimum occurs at E, ~ 1.4 GeV (the second oscillation minimum at lower ener-
gies is not observed due to the nearly negligible flux).

AmZ,[eV*] Llkm]
E[GeV] 2
= Andlevi=T 1%
2127735
=23x 107 eV2.

The measured the survival probability at the oscillation minimum is P;eqs. = 0.1,
but it without additional knowledge of the experimental resolution, which will con-
tribute to the observed depth of the minimum, all that can be stated for certain is:

P(vy > v) <01 = sin*(2623)>0.9.

13.9 The T2K experiment uses an off-axis v, beam produced from n* — u*v, de-
cays. Consider the case where the pion has velocity g along the z-direction in the
laboratory frame and a neutrino with energy E* is produced at an angle 6* with respect
to the z’-axis in the wt* rest frame.

a) Show that the neutrino energy in the pion rest frame is p* = (m2 — mﬁ)/Zmn .
b) Using a Lorentz transformation, show that the energy E and angle of production 6
of the neutrino in the laboratory frame are

E =yE*(1+Bcosf*) and Ecos =yE*(cosf +p),
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where y = E/my.
¢) Using the expressions for E* and 6% in terms of E and 6, show that

Y*(1 = BcosO)(1 + Bcos @) = 1.

d) In the limit 6 < 1, show that

1

E~043E,———,
"1 + By26?
and therefore on-axis (6 = 0) the neutrino energy spectrum follows that of the pions.

e) Assuming that the pions have a flat energy spectrum in the range 1 — 5 GeV, sketch
the form of the resulting neutrino energy spectrum at the T2K far detector (Super-
Kamiokande), which is off-axis at 8 = 2.5°. Given that the Super-Kamiokande detector
is 295 km from the beam, explain why this angle was chosen.

a) From conservation of energy

*

Ey=mg—Ey=mz—p

= Eﬁ = mﬁ +p'= mi —2map* + (p*)?

2 _ 2
L o ms, —my,
2my

b) In the pion rest frame (X’) the four-momentum of the neutrino is:
py, = (E*,0,p"sin@", p*,cos 8*) = E*(1,0,sin 8", cos §"),

where the neutrino mass has been neglected: E* ~ p*. The laboratory frame four-
momentum is

E vy 00 +y8 1 v + yBcos 6
p<|_ | O 10 O . 0 e 0

py|l | O 01 0O sing* |~ sin 6*

D +y8 00 vy cos 6* VB + y cos 6*

Hence the laboratory from neutrino energy is
E =yE*(1 +Bcos@"),

where y is determined by the boost of the pion, y = E;/m;. In the laboratory frame
(where for the almost massless neutrino p =~ E), the polar angle with respect to the
z-axis is given by

cosg = Pz Pz vE* (B + cos 8%)
p E E

= Ecosf=vyE"(B+7ycosd).
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¢) By flipping the sign of §, the Lorentz transformation from the laboratory frame
to the pion rest frame gives

E* =vyE(l —Bcosf) and E*cost =vyE(cost—p),

where it should be remembered that y = E;;/m. Taken the product of this expres-
sion for E* and the expression for E in part b) for the question,

E*E = yE(1 — BcosO)yE*(1 + Bcos6)
= 1=79*1-pBcosd)(1+Bcosb).

d) The lab. frame energy of the neutrino produced from pions of laboratory frame
energy E, and a decay angle 6" in the pion rest frame is given in by the expression
in part a):

Ey, = yE*(1 + Bcos8")

E
= —ZyE*(1 + Bcos §)
My
2 2
E.ms;—m
2 T B +Bcosh)
my 2my
2 2
m_ —m
= %En¥(l +Bcosf").
mJT

Using the result from part c) this can be expressed in terms of the laboratory frame
angle:

2 _ 2

E, = %En%(l + Bcos 0Y)

x My 1

m:  y*(1-pBcosh)’

(13.4)

In the small angle limit, the denominator can be approximated by

2 --5)
v“(1 —Bcosh) =~y 1—[31—5

y20*B

=y (1-p) + — (13.5)

Assuming the E., > my such that y > 1,

1 1
= 1—— %1——,
g ( 72) 2y?

D=
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and hence (13.5) becomes

202
G
V(1= peost) = P -+ L2F 2
. l ,yZQZﬁ
2 2

= 11 +°0°p).

Inserting this expression in (13.4) leads to

m: 1+ By%0?
1

=043E;———— .
"1+ By26?

Hence, along the beam-axis (6 =~ 0) the neutrino energy distribution follows that of
the pions creating the beam.

e) The neutrino energies for a set of pion beam energies are tabulated below for
6 = 0° and 8 = 2.5°: The effect of going away from the beam axis is to produce

E. E,at0=0° E,at0=25°

1.0GeV  0.43GeV 0.39 GeV
1.5GeV  0.65GeV 0.53 GeV
2.0GeV  0.86 GeV 0.62GeV
25GeV  1.08GeV 0.67 GeV
3.0GeV  1.29GeV 0.68 GeV
35GeV  1.50GeV 0.68 GeV
4.0GeV  1.72GeV 0.67 GeV
45GeV  1.93GeV 0.65 GeV
5.0GeV  2.15GeV 0.62GeV

a “narrow-band” beam, where most the neutrino energy depends only very weakly
on the energy of the decaying pion producing the neutrino. This is in contrast to
an on-axis “wide-band” beam where the neutrino energy is proportional to the the
decaying pion energy. The oscillation probability (corresponding to Ams;) depends
on

Am3,[eV?*]L[km]

P « sin®|1.27
E,[GeV]

For Amz, = 2.3 X 1073 eV?2 and L = 295 km, the first oscillation maximum occurs
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at
AmZ,[eVZLIkm] g

E\[GeV] 2
254
B T

=0.55GeV.

Ey Am3,[eV?]L[km] GeV

Hence the off-axis angle was chosen such that the peak of narrow-band neutrino
beam energy is close to the first oscillation maximum.
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CP Violation and Weak Hadronic

Interactions

(® 141 Draw the lowest-order Feynman diagrams for the decays

Ksan, Koa’7, K ->anx and K’ - ',
and state how the corresponding matrix elements depend on the Cabibbo angle 6..

00

The two lowest-order Feynman diagrams for the K — m*n~ and K® —» 7'n

decays are:

KO T . U
3 a _ Vus u
V::s KO s
u d Vud —
at d u
Vud d d

In the two flavour approximation, the matrix element for both diagrams is propor-
tional to

M oc |Vis| |Vud| = sin@c cos ¢ .

The two corresponding lowest-order Feynman diagrams for the K’ - n*n~ and
K® — 7% n¥ decays are: Again, for both diagrams:

- -
_Od_<_d

K x* Y0
S u s Vus u
Vs KO _ d
- Tt
d

0

. 7T
Vud d

M o< |Vis| [Vadl = sin ¢ cos Oc .

@ 14.2 Draw the lowest-order Feynman diagrams for the decays

127

B 5D xn", B 5a"n and B-J/yK’,

and place them in order of decreasing decay rate.
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The flavour content of the above mesons is B%(db), D~(dc), J/y(cc) and K°(ds) .

The lowest-order Feynman diagrams for the given decays are:

d —»—— d d ——»—— d s
BY D- B° T v Iy
b —= c : CR ¢
Ve Vb B
u u d —»—\Vcs\ _
S
at xt KO
Vud C_l Vud a d

From consideration of the CKM elements alone the matrix elements scale as

MB? 5D ) :MBY - atx7) : MBY - J/yK?)
= IVcb“Vudl : |Vub||vud| : IVcb”Vcsl-

To first order the CKM matrix elements depend on the number of generations
changed at the vertex. Thus the matrix elements for the decays B — D~ a* and
M@BY - J/ v K9), which both have one vertex at which there is no change of gen-
eration and one vertex where there is one change of generation b — c, will be
larger than that for M@B? — 7t 17), which has one vertex at which there are two
changes of generation b — . Being more quantitative, from consideration of the
CKM matrix alone,

Br(B* > D xn*) :Br(B" - n* n7) : Br(B® = J/yK°)
= Vol Vud® + IVabPIVadl* ¢ [Venl* Vs
=1.6x107 :15%x107 : 1.6x 1073,

From consideration of the CKM matrix alone, one would expect the Br(B" —
7t 7t7) to be about 100 times smaller than for the other two decays.

Br'*(B° - D™ ") : BrB° - nt )+ Br B0 - J/yK°)
=27%x107 : 5.1x107° : 8.7x 107,
in reasonable agreement with the dependence from CKM matrix elements alone. A

more sophisticated estimate of the BRs would account for the differences in phase
space for the decays, where

1
I p* o {[sz - (m; + mz)z] [sz - (m - 1112)2]}2 .

Taking account the different phase space factors and scaling to the observed BR for
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(B - D™ x*:
Br(B® > D™ x*) :Br(B® » n* n7) : Br(B® = J/yK?)
= Vol [VudP* & [V IVadPp™ VeIV p*
=27x107 :29%x107 : 2.0x1073.

The remaining differences, compared to the observed values, can be attributed to
other differences in the matrix element, which includes factors accounting for the
formation of the final-state mesons.

14.3 Draw the lowest-order Feynman diagrams for the weak decays
D’(ct) —» K™ (su) + t*(ud) and D°(cu) — K*(us) + n~(du),
and explain the observation that

r° - K*no)

—~ T 4x1073,
[(D° - K-x+)

The lowest-order Feynman diagrams for the given decays are:

u—=—1 U ——1
D K- D° T
C S C d
Ves Vea
d s
+ +
Vud urlj Vus llK

On the basis of the CKM matrix alone, one would expect
(D’ - K*a™) Vel IVusl*  0.225%-0.2257
I(D° > K-t*)  [VaaPIVesl? ~ 0.9742 - 0.9732

explaining most of the difference in the observed decay rates.

=3x1073,

14.4 A hypothetical TO(ta) meson decays by the weak charged-current decay chain,
T > Wn — Xm)x > Yn)nn - (Zn)namx.

Suggest the most likely identification of the W, X, ¥ and Z mesons and state why this
decay chain would be preferred over the direct decay T — Z .

In each case the decay of the quark paired with the u decays according to the largest
CKM matrix element, in this case

t>b—oc—os—u,
and mesons can be identified as

W=B"(bu), X=D%u), Y=K(su) and Z=nr'(un).
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The direct decay to nt” final state would involve a t — d decay with the the CKM
element |Vig|? ~ 107%.

14.5 For the cases of two, three and four generations, state:

a) the number of free parameters in the corresponding n X n unitary matrix relating the
quark flavour and weak states;

b) how many of these parameters are real and how many are complex phases;

c) how many of the complex phases can be absorbed into the definitions of phases of
the fermions without any physical consequences;

d) whether CP violation can be accommodated in quark mixing.

a) An n X n matrix has n> complex elements and therefore has 2n” free parameters.
The condition UTU = 1 gives nxn equations that the elements must satisfy, leaving
n X n free parameters:

Nifee =4, NI*®=9 and N* =16,

b) The real parameters correspond to rotations around different axes. In the case of
a 2 X2 matrix, there is just one rotation angle 6;,, in the case of a 2 X 2 matrix, there
are three rotation angles 61, 613 and 6»3. For a 4 X 4 matrix, there are six rotation
angles 912, 913, 914, 923, 924 and 934. Thus

Nel= 1 B =3, N =3 MM =6 and NE =6 0 NP = 10.

¢) An n X n matrix expresses the copings between 2n fermions. Hence there it is
possible to define 2n phases for the individual fermions, but there is always one
overall phase that can be defined without any physical consequences so all phases
can be defined with respect to one of the fermions. Hence 2n — 1 phases of the nxn
unitary matrix can be absorbed into the definitions of the phases of the fermions,
leaving

Nz NP =g, N =3 MR o and NI =60 NEMC =3,

d) CP violation arises from at least one complex phase in the mixing matrix, and
therefore CP violation can arise in quark mixing for three or more generations, but
not for two generations.
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@ 14.6  Draw the lowest-order Feynman diagrams for the strong interaction processes

pp—» K a*K’ and pp— K'nK°.

The quark content of the particles involved are:

p(uud) p(uud) —» K- (st) " (ud) K°(ds) : uuduud — suudds,
and

p(uud) p(uud) —» K*(us) n~(du) K%sd) : twuduud — suudds.

In both cases the flavour change is uu — ss and the (rather messy) Feynman dia-
grams involve the annihilation of a uu — g — ss and subsequent arrangement of
the final-state quarks into the mesons given.

14.7 In the neutral kaon system, time-reversal violation can be expressed in terms of
the asymmetry
'K’ - K% -I(K° - K%
T = — — -
[(K° - K% + [(K® — K9

Show that this is equivalent to
(K", - ne*ve) ~T(KY) - nte V)

T T(RY, - metve) + (KO, — e ve) |

Ar

and therefore
Ar = 4lg|cos .

To measure the time reversal symmetry it is necessary to tag the decays of the
flavour states K°(ds) and KO(SH) through their weak leptonic decays, s — uf~ vy
and § — ul*v,. For example, the rate of K’ — K is measured from the £* decay
rate from tagged K° production. Consequently,

IK° > K% -k’ > K% TEK’, > neve)-TKL) - ate V)
T = — — = — .
I(K® - K% + (K - K%  T(K), - ne*ve) + (K ) — mte V)

The mass eigenstates expressed in terms of the flavour eigenstates are

1 _
Khy=—|a K% + (1 - )K",
Ks) = s |1+ 2K + (1 - )K"

1 _
Ki) = e |1+ &K% - (1 - )K" ,

V2(1 + |2
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and therefore

0 I+l 1
=4——JK K
K = 5 1o [Ks) + K0T
—, 1+1]e?) 1
K= DL k) - k-
2 1-¢&
Hence the neutral kaon state initially produced as a K° evolves as
[ +]e) 1
)=/ ————[0s(»)K 0L(IK
K (0)) = 3 1+a[5()| s) + 0L(DIKL)]
/(1+|g|2) 1 1
e Al

|65 ()1 + £)IK®) + 85 (1)1 = £)K®) + 0,(1)(1 + &)K) — 6.(0)(1 — £) K]

1-¢ —
=305 +0.0)) K + L —— | (@5(1) - 6.(t) K®).
1+¢
Consequently,
lxKgO—aK%::lwg+ed2

— 1-
K., ->K)=1— |9s — 6.,

1+

Since ¢ is small

l-eff (1-o-¢

l+el  (I+e)(l+e&%)
_1-2Re{g}
T 1+ 2%Reds}
~ 1 —4Re (e}
=1—-4lglcos ¢,

and thus
I(K%, — K% = 1165 + 6,17,
T(K, — K = 1 [1 - 4lelcos ¢] 165 — 6.1

Working through the same algebra for an initial K gives

(K, - K% = 165 + e)L|2
1+¢&f?
1-

170 0 _1
rK,—-Kk=1
=§u+4mamﬂws—@y

l6s — 6,
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Using the rates derived above

I(K° - K% - (K° - K
T = — —
(K" - K% + ['(K? — KO)
_ 8lelcos @165 — 0L
C 2065 — 6P
= 4lg|cos ¢,

and it is worth noting that the time reversal asymmetry is independent of time.

@ 14.8 The Kg—K; mass difference can be expressed as
G2
Bm = m(Kp) = m(Ks) ~ ) =5 femlVaaVesVaVos mame
q.9

where q and q’ are the quark flavours appearing in the box diagram. Using the values
for the CKM matrix elements given in (14.8), obtain expressions for the relative contri-
butions to Am arising from the different combinations of quarks in the box diagrams.

Vud VSS Vud u V:S
d S d ]
K° u { [ u KO K° z E KO
B d B d
Vi Vud d Ves U Vg d
The relative importance of the contributions from the u, ¢ and t quarks in the box

diagram depends on quV[]"qu. Taking my, =~ 0.3GeV, m. = 1.5GeV and m; =
175 GeV the relative contributions are in the ratio:

VudVusta @0 VeaVeste @ VigVismy = 0.07GeV @ 0.33GeV : 0.06GeV,

and, therefore, the largest contribution to the mass difference comes from the box
diagrams with two charm quarks. Taking fx ~ 0.1 GeV, the numerically value for
the contribution from the diagrams involving the charm quarks alone is

G2
Am = m(Kp) — m(Ks) = 3—;2f1§mK|Vm|2|VCS|2 2=23x10""GeV,

which is not too far from the measured value of Am = 3.5 x 10715 GeV.

@ 14.9  Indirect CP violation in the neutral kaon system is expressed in terms of & =
lele™®. Writing

_l—s
T l+e

3

. 1
* LT 2
M12 ZFIZ)

zl—2£=( -
My — 3T
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show that

. 1
1 y ((Sm{Mlz} -3 3m {FIZ}))Z Im{M) — i Im{T12/2)
EX — - =~
2 M12 - %FIZ Am — iAF/Z

Using the knowledge that ¢ ~ 45° and the measurements of Am and AI', deduce that
Im{M,} > Im{l'},} and therefore

1 3Im{Miy)
o] ~ —= 12

V2 Am

The first part of the problem is more obvious if one starts from the required solu-
tion. Recalling that the differences in mass and decay width of the physical kaon
mass eigenstates can be expressed as

1
Am— AT = A, = A = [(My3 - T1)(M}, - 4T, |

then
Im{Mp) —idm{T1p/2)  SmiMp) -4 3m{T)
i - TV T V)
Am —iAL/2 [MIZ - éru] [MIZ - %F12]
My — M, — (T2 —T7,)

1
2 [M12 - %-1_12]1/2 [ME - % Tz "

1 (M= 4T) = (M}, - 5T5)
) 20 . . 112
[M12 - %rlZ] [Mlz - éFIZ]

) 1 . 1
_1 (Mlz_érm)z (Mikz_érTz]z
2 Mfz_% 12 M12_%F12

~ % [(1=26)712 = (1 - 26)"'?]

=%[(1+8)—(1—8)]

=£&.

The second part of the question uses the measured properties of the neutral kaon
system to extract information about the effective Hamiltonian. The measured value
of Am is

Am = (3.483 + 0.006) x 107> GeV .
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From the measured Kg and K, lifetimes:

AT =Ts — T},
hh
IR

L L

8.95x 10-11  5.12x 1078
= (736 x 10715 = 1.29 x 1077 GeV

=734x 107" GeV
= Al/2=367x10"1.

From these experimental measurements it is found that Am ~ AI'/2. The angle ¢,
defined by & = |gle’®, was measured by CPLEAR

¢ =arge = (43.19 +£0.73)°.
From the expression for € derived previously,
_3Im{Myp} —idIm{T2/2}  Sm{Mip} — iImA{T12/2})(Am + iAT'/2)
Am —iAl'/2 Am? + AT? /4 '
But since Am ~ AI'/2,

Cdm{Mp) - idm{T1/2}  (Sm{Mip} —iIm{T12/2})Ame™/*
&= Am —iAT/2 - Am? + AT2/4 :
and given arg & ~ n/4, this implies that Im {M1,} > Im{['|»}, and consequently
- JIm {M12}
©% Am—iAT)2
N Sm{Mi,}
Am(1 — i)
o el = 1 Im{M,} .
V2 Am

as required. Thus the measured value of || ~ 2.3 x 1073 implies that

Im{Mp)l~ 1x1077 GeV.

@ 14.10 Using (14.53) and the explicit form of Wolfenstein parametrisation of the CKM
matrix, show that

le] o< n(1 — p + constant).

Equation (14.53) gives the relation
lef oc Aye I (Vg Vis Via Vis) + Act IM (VeaVes ViaVis) + A Im (Vi VisVia Vis) »
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where the A are real constants. In the Wolfenstein parameterisation of the CKM
matrix:
VaaVisVaVis = (1= 2%/2) - 1- AP (1 = p = i) - (=A2)
= -A22°(1 = 2/2)(1 - p — im)
VeaVesViaVis = (=) - (1 = 22/2) - AP (1 = p — i) - (-AL)
= A22%(1 = 2%/2)(1 - p — in)
* * 3 : NG
ViaVisViaVis = [A830 = p — in) - (-AA2)|
= A = p)? =P = 2in(1 - p)]
Hence

le| oc Aue Im (Vg Vis Via Vi) + Ace IM (Vg Vs ViaVis) + A Im (Vig Vi Via Vis)
=an+bn+cn(l —p)
=an(l-p+b+o0),

where a, b and c are just real constants. Hence a measurement of |¢| gives

lel=an(l1—p+b+c)

= n(1 — p + constant) = constant,
which is the equation of a hyperbola in the (o, 1) plane.

14.11  Show that the B’-B° mass difference is dominated by the exchange of two top
quarks in the box diagram.

From question 8, the mass difference of the By and By mass eigenstates can be
expressed as

2

— ~ GF 2 * *
Am = m(Bp) - mBL) ~ Y 25 T VaaVay VeraVogel migg
.9

where q and q’ are the quark flavours appearing in the box diagram. Taking m, =~
0.3GeV, m. ~ 1.5GeV and m; ~ 175GeV the relative contributions are in the
ratio:

VudVabmy @2 VeaVeome @ ViaVierme = 0.001 GeV : 0.014GeV : 1.57GeV,
and the contributions from the top quarks in the box diagrams clearly dominate.

14.12 Calcylate the velocities of the B-mesons produced in the decay at rest of the
T(4S) — BB,
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The masses of the particles are
m(Y(4S)) = 10.579GeV and m(B®) = m(B®) = 5.279 GeV,
and for the decay at rest, conservation of energy gives
EB%* = EB")" = m(T(4S))/2 = 5.289GeV .
The momenta of the daughter particles are
p* = (E” -m")'"? =0.333GeV,
and thus the velocities are

P _ymp

B =2 =T~ 0.063.
ym

14.13  Given the lifetimes of the neutral B-mesons are v = 1.53 ps, calculate the
mean distance they travel when produced at the KEKB collider in collisions of 8 GeV
electrons and 3.5 GeV positrons.

The electron and positron energies are chosen such that /s = m(T4s) and here the
T(4S) is produced with momentum 4.5 GeVin the laboratory frame, corresponding
to velocity of

45
=P T 039 =y =1.086.

Pr = Ev 115

In the laboratory frame, the energy of the boosted decay B is given by
E' = yyE" + yyByp* cos ",

where 6" is the polar angle of the B relative to the z-axis along the direction of the
boost and p* and E* are the rest frame decay momentum and energy, calculated in
the previous question. Since p* = S*E* = 0.063, the energy of the decay B in the
laboratory frame

E' = vyyE*(1 4+ ByB* cos ) = yyE*(1 + 0.024 cos %),

does not depend strongly on the decay angle. Taking into account time dilation, the
mean distance the B will travel is

’

d =vytBc = p—TC.
m

Taking E’ ~ yyE* = 5.74 GeV, the momentum of the B® is approximately p’ =
2.23, and therefore By = p’/m = 0.43. The mean distance the B travels in the
laboratory frame is:

’

d="1¢=197um.
m
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@ 14.14 From the measured values

|Vial = 0.97425 £ 0.00022 and  [Vyp| = (4.15 £ 0.49) x 1073,
[Veal = 0230 £0.011 and |Vy| = 0.041 +0.001,
calculate the length of the corresponding side of the unitarity triangle in Figure 14.25

and its uncertainty. By sketching this constraint and that from the measured value of g,
obtain approximate constraints on the values of p and 7.

The length of the shortest side of the unitarity triangle shown Figure 14.25 is

e ub [Vadl | _ [Vub| [Vudl

[Veal IVSIT Vel [Ven]

where the fractional uncertainty is given by the sum in quadrature of the fractional

errors on the CKM matrix elements involved. As can be seen from the figure below,

due to the relatively large uncertainty, the length of this side of this unitarity triangle

does not significantly constrain the values of p and . For example, at one standard
the side length is consistent with roughly the range —0.2 < p < 0.4.

=0.43+£0.06,
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@ 15.1 Draw all possible lowest-order Feynman diagrams for the processes:

efe” - puT, eeT - vV, ve —ve and Veel — Vee .

In all cases the Higgs exchange diagrams will give negligible contributions and are
ignored. The two possible lowest-order diagrams for e*e™ — u*u~ are

e~ w e~ u

+ + + +

e W e u

Since neutrinos are neutral, there is no QED diagram for e*e™ — v,V but a the
Z-exchange diagram is still present.

e Vi
gz gz
N _

(&

For v,e™ — vue™ only the neutral current weak interaction contributes at lowest

order.
Vi Vi

¢
¢

139
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Finally, for v.e™ — Vv.e™ there are weak charged-current and weak neutral current
diagrams.

Ve Ve

9z

gw gw

e e € €

@ 15.2 Draw the lowest-order Feynman diagram for the decay n° — ViV, and explain
why this decay is effectively forbidden.

The lowest-order Feynman diagram is show below. The general form of the neu-
tral current vertex, y“(cy — cay’), reduces to a V — A form for the coupling at
Zv,v, vertex, and thus neutrino is produced in a LH chiral state and anti-neutrino
is produced in a RH chiral state. Because neutrinos are almost massless (E > m)
the chiral states effectively correspond to helicity states and thus the decay would
result in a J = 1 final state, violating conservation of angular momentum.

Vi

Vi

@ 15.3  Starting from the matrix element, work through the calculation of the Z — ff par-
tial decay rate, expressing the answer in terms of the vector and axial-vector couplings
of Z. Taking sin’ 6y = 0.2315, show that

R = I'(Z — p*u’) N 1
* 7 T(Z - hadrons) = 20"

The matrix element for the Z — ff decay, shown below is

Myi = gz € (P u(p3)y* 3 (cv = cayu(pa),

f
P4

P1
p3
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or equivalently
_ A\ wl. 1 5 1 5
Myi = gz € (pD APy [er 31 = ¥°) + cr 31 +97)| w(pa).

where ¢y = ¢; + cg and ¢4 = c¢; — cg. Written in this form it should be clear
that only two chiral combinations give non-zero matrix elements, and in the limit
where the final-state fermions are ultra-relativistic, only two helicity combinations
give non-zero matrix elements:

Mg = gzcL € (p) Uy (p3)y*vy(ps) and  Mgr = gz cr €, (p1) Ur(p3)y*vy(pa) -
The leptonic currents are given by (6.17) and (6.16) with E = mz/2,

ij = my(0,—cos 0, —i,sinf) and ng = myz(0,—cos 0, +i,sin0) .
Without loss of generality, we are free to choose the polarisation state of the Z.
Here take the Z to be at rest and to be longitudinally polarised, such that

€ = ef =(0,0,0,1).
In this case, the matrix elements reduce to
3 . 3 .
Mg = =gz cr jig = —9gzcrmzsing and Mgy = —gz cg jg; = —9z crmz Sin 6.

The total decay rate is determined by the summed matrix element squared (no need
to average since we have chosen a particular initial state polarisation)

<|M|2> = IMgl® + IMgel* = ggm5(c] + ) sin* 6.

Substituting this into the decay rate formula of (3.49),

o p* 2 *
Iz - ff) = M=) dQ
(Z — ff) 32n2m;f<' )

*

2mp gz )
2 9777
327r2mZ

+1
(c? +c3) f sin® @ d(cos 6)
-1

P* 2.5 2 ! 2
=P + 1-x)d

e [ -
_ P,
~ 2an7z

where p* is the momentum of the final state fermion in the centre-of-mass frame.
If the masses of the final-state particles are neglected, p* = mz/2, and therefore the
Z — ff decay rate is given by

2 2
(c; +cR),s

2 2
= 97Mz gzmz
I(Z — ff) = 2Z4n (2 +c2) = j&r (ch+c3).

The partial decay widths therefore depend on the sum of the squares of the vector
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and axial-vector couplings of the Z to the fermions. Taking into account the three
colours and that the Z cannot decay to top quarks, the ratio

_ T(Z—-pu)
™ I'(Z - hadrons)
B T
IN(Z — dd) + 6I(Z — ul)

The individual partial decay widths are proportional to:

W:ch+ch=02516, d:ch+ci=03725 and u: ¢ +ch =0.2861,

and therefore

R~ LZ—pw)
"™ T(Z - hadrons)
0.2516 1
= =0496 ~ —.
9-0.3725 + 6 - 0.2861 20

15.4 Consider the purely neutral-current (NC) process v,e™ — v,e™.

a) Show that in the limit where the electron mass can be neglected, the spin-averaged
matrix element for v,e™ — v,e” can be written

1
IMPY = 5 (M + [MEET)

where
W ©975 W ©975
NC V4 NC 7" 1 %
M = ZCLV CLe = and My = ZCLV CRe == 5(1+cosb),
mz WlZ

and ¢* is the angle between the directions of the incoming and scattered neutrino in
the centre-of-mass frame.

b) Hence find an expression for the v,e~ neutral-current cross section in terms of the
laboratory-frame neutrino energy.

a) The lowest-order Feynman diagram for the NC process v,e™ — vue™ is shown

below.
Vi Vu

In this #-channel process, ¢> < m% and the Z propagator can be approximated by
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(a Fermi-like contact interaction),
uv uv

q* —m% m

2
Z

and the matrix element is

. . ig .
—iMy; [—lgzu(p3)y“%(c}', - chS)u(m)] m—’;‘/ [—zgzu(p4)7‘/%(c‘;', - 0375)M(P2)]
7

2
Myi = ,‘%gﬂy [@(psyy (e}, = ey ulpn)| [wpay" S (el = ¢y u(pa)]

Z
2

- Zg#g/” [ﬁ(m)ﬁ’“%(l - VS)M(Pl)] [ﬁ(l?zt)y" {ci%(l )+ Sl + y5)} M(pz)]
7
2
= g ey w0 [EP0y (30 =30 + 530+ up)]
Z

where it should be noted that because c¥,:c;’\=%, only left-handed neutrinos couple
to the Z. Consequently, in the ultra-relativistic limit, there are two non-zero matrix
elements:
g% vV € [ - v
Mo = —5 guerer [y u (po] [E(pa)y u(p2)] .

z
2

9 _ _
Mg = m—zzgﬂVCZc}Z [, (p3)y*uy(p)] [wy (pa)y ur(p2)] -
Z
The matrix elements are most easily evaluated in the centre-of-mass frame. Taking
the initial neutrino direction to define the z-axis and 8" to be the polar angle of the
final-state neutrino, then the spherical polar angles of the four particles, as indicated
in Figure 12.4, are

01,¢61) = (0,0), (02,¢2) = (m,m), (63,¢3) =(6",0) and (04,¢4) = (16", ).

The corresponding LLH spinors are given by (4.65),

0 ) -1 —c
uy(p) = VE (1) . uy(p3) = VE j uy(p2) = VE (1) . uy(ps) = VE _Cs ,
-1 —c 0 s
0 s
up(p2) = VE _01 . up(ps) = VE _Sc ,
-1 -c

o*

where ¢ = cos 5, 5 = sin %* and E is the energy of each of the four particles in the
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centre-of-mass frame. The corresponding currents are:

j5 = uy(pa)y* uy(pr) = 2E(c, s, —is, c),
Jor = uy(pa)y'uy(p2) = 2E(c, —s, —is, —c)
Jr = U (pa)y ur(p2) = 2E(c, s, +is, —c)
and hence
Welv = 4E2(c +5°+s +c2) =8E% =2s
Wilg =AEXE + 8 — 5"+ 57) = BE*¢? = 254(1 + cos 6.

Finally, putting all the pieces together:
2
975 g
MES =2c)c§ 22 and MLR =2cjc % Z 1(1 + cos 6,
my my,
where 6* is the angle between the directions of the incoming and scattered neutrino
in the centre-of-mass frame.

b) The spin-averaged matrix element squared (averaging over the two spin states
of the electron since the neutrino is left-handed) for the NC scattering process is

1955

12y =
IMyil") = 3 A

|45 + 4 () 11 + cos )7
Z

1 g%_gl 2 21 2
= =——|(c])” + (cp) 7(1 + cos 6")7| .

2 m [ L R 4 ]

The differential cross section can be obtained from the expression

do 1

— = ——(MuP) =
dQr 64n2s<| il

g >k
12872 mZZ [( c)? + (cR)*5(1 +cos 6 )2] .

Using Gr = V243 29/ SmW V242 295/ SmZ, this can be written as
do
dQ*

Finally, writing s = 2m,E, and integrating

meE G

= 4—2G2 (5 + (c§)* 51 + cos ") .

f () + (5?31 +2x + x| dx

2
- Zm—G 7+ 4]
M[( 0,277 + 1(0.23]

2G| 600
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@ 15.,5 The two lowest-order Feynman diagrams for vee~ — v.e™ are shown in Fig-

ure 13.5. Because both diagrams produce the same final state, the amplitudes have to
be added before the matrix element is squared. The matrix element for the charged-
current (CC) process is

2
IwS

-
My

CC _
M =

a) In the limit where the lepton masses and the ¢* term in the W-boson propagator
can be neglected, write down expressions for spin-averaged matrix elements for the
processes

V€ = Ve, VveeT —veem and vem — veu.
b) Using the relation gz/mz = gw/mw, show that
o(vye” = ve ) :o(vee” > vee ) o(vpe” > v, ’)—02+1c2'(1+c )2+lc2 01
0 0 . e e . 0 el ) =¢Cp + 3Ck: L 3“R - >

where ¢, and cg refer to the couplings of the left- and right-handed charged leptons to
the Z.

¢) Find numerical values for these ratios of NC+CC : NC : CC cross sections and
comment on the sign of the interference between the NC and CC diagrams.

a) From the previous question, the spin-averaged matrix element for vye™ — v,e”

1
IMRe) = 5 [R5 + M)
_1gwS

4
2mw

[ci + clzei(l + cos 9*)2] )

where the relation gz/mz = gw/mw has been used. The spin-averaged matrix
element for the pure CC weak interaction v,e™ — Ve~ i

1
(IMPEC) = 5<M§§)2
_ 1ows

- 4
2mw

In the process o(vee™ — Vve€™), both charged-current and neutral-current diagrams
contribute and can interfere.

Ve Ve Ve e

gz gw

gz gw
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Consequently the spin-averaged matrix element for this mixed NC and CC weak
interaction is

1
IMRerco) = 5 [OMEF + M + M|

_lgys
T 4
2mw

|1+ c0)? + Jeg(1 + cos6%)?]
where the relation gz/mz = gw/mw has been used again.

b) When the spin-averaged matrix elements are integrate over solid angle, the inte-
grals over the angular distributions of the LL and RR contributions give respectively

+1 +1
f dcos#* =2 and f 1(1+cosO)dcost* = 2,
-1 -1

and from part a) it immediately follows that

o(vpem = Ve ) 1 o (VeeT — Ve ) 1 o(VeT = Vel ) = c%+_%clze : (1+cL)2+%c12e . 1.

c) Putting in the couplings of the left- and right-handed leptons to the Z, c;, = —0.27
and cg = 0.23 gives

o(vue™ D Ve ) 1 T (V€ — Ve€ ) 1 (V€ — Vell ) = c% + %c,ze (1 + cL)2 + %c,% 01

=0.09 : 055 :1.

The pure neutral-current scattering process has a cross section that is about an
order of magnitude smaller than the pure charged-current process. The effect of the
NC diagram in the process vee~ — Vvee™ is to reduce the cross section compared
to having just the CC diagram; because c¢; = —0.27, the neutral current diagram
interferes negatively with the charged current diagram.
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@ 16.1 After correcting for QED effects, including initial-state radiation, the measured
efe” — u*u~ and ete” — hadrons cross sections at the peak of the Z resonance give

dete” 5 Z - p ) =1.9993nb and o%e*e” — Z — hadrons) = 41.476nb.

a) Assuming lepton universality, determine I'y; and I'hagrons-

b) Hence, using the measured value of I'; = 2.4952 + 0.0023 GeV and the theoretical
value of Ty, given by equation (15.41), obtain an estimate of the number of light neutrino
flavours.

a) The cross section at /s = my is given by (16.17):

O_?f _ 127 Tee g
2 2
my 17
which can be inverted to give
012,,2
_oglymy
Feelir = =

Assuming lepton universality, whereby I'y, = I,

0 12,2
ol 7zmyz

Iee = 127

Converting the measured peak cross section of 0’(ete™ — Z — u*p~) = 1.9993 nb
into natural units gives

oete” » Z - ptu7) = 1.9993 x 10737 m? - (fic) 2

1
(0.197 GeV x 10~15 m)?
=5.152%x107%GeV 2.

=1.9993 x 103" m?
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Using mz = 91.1875 GeV

oV T2m2

W Z7Z
le= "o
_5.152x 1076 -91.18752F2
127 z

= 1.136 x 107°T%
= Tee = 0.0337117.

Similarly,
0 12,2
_ Thaal 2M7
1—‘eerhadrons = T
_ 106.88x 107 -91.18752rz
127 z

=2357x 10T},
= 0.03371T 2 hagrons = 2.357 x 107715
= Iﬂhadr()ns = 0.6992 FZ

b) The total width of the Z is given by:

l—‘Z = 3F€[ + 1—‘hadrons + ervv .

From the results of part a):

erw = I_‘Z - 3rt’[ - 1—‘hadrons
=0.199717,
=498 MeV .

In Chapter 15, the partial decay width for Z — v.V, was calculated to be 167 MeV,
and the above measurements therefore imply

498
=— =2,
V167 %8,

consistent with the claim that there are three light neutrino generations.

@ 16.2 Show that the ee™ — Z — p*u~ differential cross section can be written as

d
d—g o (1+ cos? 0) + %AFB cosd.

From equation (16.25) theete™ —» Z — ff differential cross section can be written

as

do 2
) = K[a(l + cos 6’)+2bcos€] ,
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where a and b are constants related to the couplings to the Z, and « is a normali-
sation factor. Writing cos 6 = x, then dQ = 27 d(cos ) = 2ndx and the number of
events produced in the forward and backwards hemispheres can be written:

1
Np = 27r/<f a(l + x%) + 2bx dx
0
= 2n[%a+b] ,

0
NBZZHKf a(1+x2)+2bxdx
-1

=2 [%a - b] .
Therefore the toward-backward asymmetry is
Np — Np 3b 4aAgg
App= ———=—=>b=——.
FB Np + Np 4a 3

Substituting this back into the original equation gives:
d
% =k [a(l + cos? o) + %aAFB cos 0]
oc (1 + cos’ o) + %AFB cosf.

@ 16.3 From the measurement of the muon asymmetry parameter,

A, = 0.1456 = 0.0091,

determine the corresponding value of sin® 6yy.

The muon asymmetry parameter is related to the couplings of the Z to muons by

(€)= (R 2,
TER R T (R
ZCi/ci
)+
2x
T

where x = c“l, / cf‘. Hence the measured value gives the quadratic equation

2x
x2+1
= x*—(13.74+£085x+1=0,
= x=00732+£0.0046 or x=137+08.

(0.1456 + 0.0091) =
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In the Standard Model

X = :1—4sin29W,

[ o)
S S

and therefore the measurement can be interpreted as

1 — 4sin? 6y = 0.0732 + 0.0046
4sin® By = 0.9268 + 0.0046
sin® @y = 0.2317 + 0.0012.

16.4 The e*e” Stanford Linear Collider (SLC), operated at /s = myz with left- and

right-handed longitudinally polarised beams. This enabled the e*e™ — Z — ff cross
section to be measured separately for left-handed and right-handed electrons.

Assuming that the electron beam is 100 % polarised and that the positron beam is
unpolarised, show that the left-right asymmetry A, is given by

oL—Or _ (c8)? = (c5)? :
oL+or () +(cy)?

€

where o, and o are respectively the measured cross sections at the Z resonance for
LH and RH electron beams.

This is a relatively straight forward question. The matrix-elements for the differ-
ent helicity combinations in the process efe™ — Z — u*u~ are given by equa-
tions (16.9)- (16.12)

IMgroril? = P29 975> () (cp)*(1 + cos 6)%,
IMrroirl? = 1PZ(S) 975> (cp)* ()X (1 = cos 6)%,
IMigorel? = P2 9757 (1) (cp)*(1 = cos 6)%,
IMigosirl? = 1PZ(9) 975> (cp)* () (1 + cos 0),
where [Pz(s)]* = 1/[(s—m3)? +mZI'2] and RL — LR refers to a ege; — pjuh. For
the case where the electrons are 100 % left-handed, P(e™) = —1, the spin-averaged
matrix element (averaging over the positron helicity states) is
1
IMP) = 5 [IMiporeP + IMirorP]
1
= 5IPZ)P g75°(c5)’ |(cp)*(1 = cos 6)” + (c})*(1 + cos )] .
Similarly
1
RI7) =3 RL—RL RL—LR
MRl = 3 |IMreorel + IMer e

= %|Pz(s)|2 g5 5% (ci)? X [(cR)?(1 + cos 6)* + (c})2(1 — cos 0)°] .



151 Tests of the Standard Model

The left-right asymmetry is then given by

or—on _ L3 IMLP) dieos ) - [ M) dicos )
TLHOR LMY d(cos0) + [N IMR) d(cos6)

Arr =

Since the integral over cos € is the same for four terms,

+1

W] oo

+1 +1 x3
f (1 + cos )% d(cos 6) =f (1+x)*dx = [xix2+ 5
-1 -1

-1
the left-right asymmetry becomes
()2 [ + (@92] = ()2 [ + (2]
R =
()2 [ + (@)2] + ()2 [(c)? + (2]
_ ()’ — ()
(c9)? + (c%)?

=A..

Hence the polarised left-right asymmetry provides a direct measurement of A..

@ 16.5 From the expressions for the matrix elements given in (16.8), show that:

a) the average polarisation of the tau leptons produced in the process efe™ —» Z —
tht s
Pry= N - _a
YYTN+N T

where N; and N are the respective numbers of t~ produced in RH and LH helicity
states;

b) the tau polarisation where the 1~ is produced at an angle 6 with respect to the initial-
state e is

Np(cos6) — Ny(cos) Al + cos? ) + 2A. cos 6
Ny(cos 8) + N(cos ) (1 +cos26) + %AFB cosf

P.-(cosb) =

a) In the limit +/s > m,, the matrix-elements for the different helicity combinations
in the process e*e™ — Z — t*1~ are given by equations (16.9)- (16.12)
IMgrorel? = IPZ(S)F 75> (cp)*(cR)*(1 + cos 6)%,
IMrroirl? = P29 975> (cp)*(€))(1 ~ cos 6)%,
IMigorel? = 1PZ(S) g75*(c))*(cR)*(1 = cos 6)%,

IMiro gl = [P2(5)P g3 5*(c$)*(c))*(1 + cos §)?,

where [Pz(s)]* = 1/[(s— m%)2 + m%l%] and RL — LR refersto a elgez - 'cl“r;. The
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number of events where the Tt~ is produced in a left-handed/right-handed helicity
state at an angle cos 8 will be proportional to

dN;(cos 6) o< IMrrril* + IMiroril®
o (¢5)2(cR)*(1 + c0s B)* + (¢5)*(cR)*(1 — cos 6)
o< (c})” [(c)P(1 + cos 0) + (c§)*(1 = cos 6)°]
dN|(cos ) o [IMpr—rrl* + IMgrirl®
oc (¢2)4(c)*(1 = cos 0)% + (c5)*(cH)*(1 + cos B)?
o (c})? [(c§)*(1 = cos 0)? + (c§)*(1 + cos 6)%] .

As in the previous, integrating over cos 6 leads to the same factor in all terms and
thus

Ny o (c})? [(ci) + (c5)?] .
Ny o () [(cR) + ()] -
Hence the mean tau polarisation is given by:
o=
(=)’
(cp)* + (c)?

=-A.

b) In part a) the mean tau polarisation averaged over all solid angle was determined.
However, the degree of tau polarisation is a function of cos 6. This can be measured
by determining the numbers of LH and RH tau leptons for the case where the T~ is
detected in a (small) range of cos 8. In this case

dN1(cos 8) — dN|(cos 6)

P 0) = .
(cos 6) dNq(cos ) + dN(cos 6)

Using the expressions derived in part a) and writing cos 8 = x,

dN7(cos ) — dN,(cos )
dNz(cos 6) + dN(cos )

(P + 07+ ()21 = 7] = (€ [()P(1 = 27 + (c5)*(1 + 7]

P.-(cos @) =

(P[0 + 002 + (€21 = 02| + (€2 [(€2(1 = 2% + ()21 + )]
|(€3)? = ()] [(5)? + (?| (1 + ) + 2x [ () = (2] [ () + (¢} ]
()2 + (€D)2][(c5)? + (02| (1 +22) + 2x ()2 = (2] [(c})? = (2]
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Dividing each term by [(c}e)2 + (CZ)Z] [(c?e)2 + (c;)Z] and remembering that

C2—C2
A= LR
T2t

LT Cr

gives
~A(1 + x%) - 2xAe
1+ 22 + 2xA A
This expression can be simplified using
3

Ay = A,

P.-(cosf) =

thus
A1 + cos? 0) + 2A, cos 0

(1 + cos?0) + %A}QB cosf

P.-(cosf) = —

as required.

16.6 The average tau polarisation in the process e*e™ — Z — t"1~ can be deter-
mined from the energy distribution of n™ in the decay T — @ v;. In the t~ rest frame,
the m~ four-momentum can be written p = (E*,p*sin6*,0, p* cos ") where 6* is the
angle with respect to the 1~ spin, and the differential partial decay width is

dr (p*)? ;
— o ——(1 0.
d cos 6% = mey (I +cos6")

a) Without explicit calculation, explain this angular dependence.

b) For the case where the t~ is right-handed, show that the observed energy distribu-
tion of the nt™ in the laboratory frame is

dl"T%
dE,-

o X,

where x = E,/E;.
¢) What is the corresponding m~ energy distribution for the decay of a LH helicity t~.
d) If the observed pion energy distribution is consistent with

dr
;= 114-028x= 0.86x + L14(1 - x).
X

determine A, and the corresponding value of sin’ 6.
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a) Consider the decay in the tau rest frame with the angle 6* defined with respect
to the spin of the t~, as shown in the left-hand plot above. Since the neutrino will
be left-handed, conservation of angular moment (just spin-half here) implies

dN o*
W oC COSZ(T) o1+ cos6”.

b) Consider decay of a RH-helicity T~ as shown in the left-hand plot above. With
ar @’

oC

_— 1+ 6.
dcos 6* my (I+cos8)

In the laboratory frame the system will be boosted along the direction of the 1t~
momentum and the laboratory-frame energy of the ;™ will be

E,= VIE* + 'Y'rﬁrp:
=y E* + yB:p* cos G .

The energy distribution of the pion in the laboratory frame is related to the angular
distribution in the tau rest frame by

dir  dI' dcos#"
dE, dcos¢* dE,
® )2(1 +cosf") -
my YBp*
p*
BrEx

This can be expressed in terms of the pion energy using

oC

oC

(1 + cos8").

Ex = viE* + yB:p* cos 0",

E,—-v.E*
= cosf = %
Yif<P
thus
dr " .
(Ex +yBep” — ¥:EY). (16.1)

— K —
dEx ﬁ‘%yIEt
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In the laboratory frame the energy of the t~ is just mz/2 and therefore y, =
mz/[2my = 25.7 and B; = 0.9992. The momentum of the pion in the tau rest frame
is easily shown to be

o om?—m?
p'= % =0.88GeV ~ my/2
My

= E"=0.89GeV ~m,/2.

Consequently B.p* — E* < 0.02GeV and to a good approximation (16.1) can be
approximated as

dr
E; + *— Y E*
dE, OCB%’YT (Ex + Yfip vEY)
1 E
Br?’r

¢) The case of the decay of a LH-helicity T (as shown on the right in the above
plot), the decay distribution in the tau rest frame can be obtained by replacing 6* in
the original decay distribution by 7 — 8"

ar (")’
m . (1 + cos[mr — o* ])
*\2
= ®) (1 —cos8%).

T
Following the previous calculation the energy distribution of the decay pion will
be
dir  dI' dcos#”
dE, dcos¢* dE,

*

P
,Brr

(1-cos@").

where, as before, cos 6* is given by

Ex = viE* + yB:p* cos 0",

E,—v.E*
= cosf= """ %*
Y<Bp’
and this
dr ( ol +v.E* — Ey)
dE,, ,Bx v.Es Y rp Yz 7
1
71(m7/2+mr/)2 Ex
,31 Y<Ex

1 E;
“ml-E)
ﬁr')/‘t ET
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where the following relations were used By p* ~ E* ~ my/2 and y.m, = E;.

d) From parts b) and c) the T~ — m~v; decays of RH and LH tau leptons give very
different pion energy distributions, reflecting the different angular distributions of
the decay relative to the tau line of flight:

dl'g dl'g

&R d
aE, - MY g,

o (1-1x).

where x = E;/E; = 2E;/myz. If the average 1~ polarisation is

3 Ny =N
B NT"'Nl’

T

and there are a total of N = N; + N decays, then
Ny =(1+Py)N/2 and Ny =(1-Py)N/2.

The corresponding pion energy distribution, which is correctly normalised, will be

dN
a = ZNTX+ 2Nl(1 —-X)

= N1+ Py)x+ N(1 - P)(1 -x)
=N[(1 = P;) +2P:x]

dN
dx

X = Eﬁ/E'T

The observed distribution (shown schematically above) of

dr
o oc 1.14 - 0.28x = 0.86x + 1.14(1 — x),
X

has contributions from LH and RH t~ — s”v; decays and implies that P, = —0.14
and therefore (from the previous question)

A =-P;,=0.14.
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The tau asymmetry parameter is related to the couplings of the Z to tau leptons by
P 2
(€2 + (R (€))* +(c})?
B 2cy,/c)
(ch,/cl)? + 1
o 2x
I
where x = cj,/c},. Hence the measured value gives the quadratic equation

T

0.14 = -2
x2+1

= x*-1428x+1=0,
= x=0.067.

In the Standard Model

X =

:1—4sin29w,

;:7—! | <('§H

and therefore the measurement can be interpreted as

1 — 4sin® By = 0.067
4sin® Oy = 0..933
sin® Oy = 0.233.
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@ 16.7 _There are ten possible lowest-order Feynman diagrams for the process e*e™ —
w~v,ud, of which only three involve a W*W~ intermediate state. Draw the other seven

diagrams (they are all s-channel processes involving a single virtual W).

The first three diagrams (CCO03) involve the production of two W bosons, either
through the s-channel production of a Z or v, or through the t-channel exchange of

a neutrino. 3
Vi
et wW- )
w
Z/y d
e w*
u

Vi

al =

u

The remaining seven diagrams, all arise from pair production of quarks or leptons
through Z or y exchange with a W radiated from one of the final state particles.

u
\W%
et d Vu
u
Z/y
e d
u
W
et u d
Vu
Z/y
e [

Z/y

n

Vi

al
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@ 16.8 Draw the two lowest-order Feynman diagrams for ete™ — ZZ.

Because there are two identical particles in the final state, there are two (NC02)

diagrams.
e’ Z e’ Z
€ €
e zZ e zZ

@ 16.9 In the OPAL experiment at LEP, the efficiencies for selecting W*W~ — {vq;q,
and W*W~ — q;q,q3q, events were 83.8 % and 85.9 % respectively. After correcting for
background, the observed numbers of £vq;q, and q:q,q3q, events were respectively
4192 and 4592. Determine the measured value of the W-boson hadronic branching
ratio BROW — qq’) and its statistical uncertainty.

If N events are observed, the best estimate of the statistical uncertainty is VN (from
Poisson statistics). Assuming the backgrounds are relatively small, the observed
numbers of events are

N(vqiG,) = 4192+ 64.7 and N(q19,q3q,) = 4592 + 67.8.

Accounting for the efficiencies, ¢;, the numbers of produced events in the two cat-
egories are estimated by n; = N;/€ and the uncertainties are scaled in the same
way:

n(tvqiq,) = 5002.4 £77.2 and n(q1q,q3q,) = 5345.8 £ 78.9.
Since the expected numbers of events are
x(£vq1q,) o 2BR(W — Ov)XBR(W — qq’) and  x(q19,q3Q,) © BR(W — qq)*.
The ratio of the two event categories gives

n(tvqid,)  2BR(W — ¢v) _ 2[1 - BR(W — qq)])

r

n@i%q3q)  BRW —>q@)  BRW - qq)
Writing the hadronic branching ratio as b and rearranging the above expression
gives
2
b= .
r+2

Here r = 5002.4/5345.8 = 0.9357 and thus
b =0.6812.
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The uncertainty on b is related to the uncertainty on r by

2 2
2 (ab) 0_2 05

o =|—
b or

and the uncertainty on r = n;/ny is given by

2 g2 g2
=TT
I nl n2
=456x107*
= o, =0.01998
gy

= o= =0.0117.

Vr+2

Hence the observed numbers of events give
BR(WW - qq') =68.1+1.2%
consistent with the expected value.

16.10  Suppose the four jets in an identified ete™ — W*W~ event at LEP are mea-
sured to have momenta,

p1 =824+5GeV, p,=598+5GeV, p3 =23.7+5GeV and ps =42.6+5GeV,
and directions given by the Cartesian unit vectors,

i, = (0.72,0.33,0.61), fi = (-0.61,0.58,-0.53),
fi; = (-0.63,-0.72,-0.25), fy = (=0.14, -0.96,-0.25).

Assuming that the jets can be treated as massless particles, find the most likely asso-
ciation of the four jets to the two W bosons and obtain values for the invariant masses
of the (off-shell) W bosons in this event. Optionally, calculate the uncertainties on the
reconstructed masses assuming that the jet directions are perfectly measured.

The invariant mass of a system of two particles is

mi; = (pi+pj) = (Ej+ Ep? = (p; +p))
= E} +2EEy+ E; —p; —p; —2p;-p; = 2E;E;—2pip;cos ;.

Here, where the jets are treated as massless (p = E) and therefore
m?j = 2(E,'Ej — Pip, €Os 9,'./‘)
= 2EE;(1-f;-#;) .

For four jets, there are three possible associations to the two W bosons: (12)(34),
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(13)(24) or (14)(23). Using the values given the masses under these three different
hypotheses are:

(12)(34) : m» =65.1GeV  and m34 = 17.8GeV,
(13)(24) : my3=84.8GeV and mys = 82.6GeV,
(14)(23) : my4 =105.1GeV and my3 = 50.5GeV,

and the most likely jet pairing is (13)(24).

The uncertainties on the measured masses are given by
om \* om \*
2 _ 2 2
O-m_(a_E]) 0'E|+(E) O'El
1/2 1/2
1E, ) 2 (1 E, 2
=l=-—=|[1-1;-0;|| o ———= |l —-f;-0;|| o
1/2 [ ! J] E 1/2 [ ! J] Ep
(2 E, 2E
2 2
119,  Y9E 2
=—|—=+—=|m".
4 E2 E2
1 1
For the jet pairing most consistent with being from the process efe™ — W W~
this gives:
13)24) : m;3=(84.8+9.3)GeV and mys = (82.6+59)GeV,
consistent with the expected value of 80.3 GeV.

16.11 Show that the momenta of the final-state particles in the decay t — W*b are

2 2
p* _ mt mW
2my

and show that the decay rate of (16.31) leads to the expression for I'; given in (16.32).
In the rest frame of the top, the momenta of the two daughter particles are equal

and conservation of energy implies m; = Ep + Ew. Writing this as m; — E, = Ew
and squaring gives
mi —2mEy, + EX = Ey,
m? — 2mEy + mﬁ +p?= m%,\, +p*?

= mt2 + (mlz) - m%v) =2mEy .
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Squaring again to eliminate Ey, leads to
m¢ + 2mi(mE — myy) + (my — my)* = 4m(m, + p*?)
mf - thz(mtz) + m%v) + (mw — mp)>(mw + mp)* = 4mtp*2
m{ —2m; [(mw + mp)* + (mw — mb)z] + (mw — mp)*(my + mp)* = 4mp*>
[m[Z — (mw + mb)z] [mtz — (mw — mb)z] = 4mp*,

thus showing that

1
* _ 2 _ 21,2 — — )2
P = g 2 Cm 2] [ = m = 2],
Since mp < my the term inside the square root can be approximated to
Ny 2 ny 2
[mt2 — (mw + mb)z] [mt2 — (mw — mb)z] = lmtz - m%v(l + —) l {mf - m3, (1 - —) l
myy nyy
= [mt2 - m%v — 2mwmb] [mt2 — m%v + 2mwmb]
2
= [mt2 —m3 ] - 4m%,vmb
2 2 ]?
~ [mt - mw] .
Hence to a good approximation

2_ 2
p* ~ my — My
2mt '

The same result could have been obtained much more quickly by simply neglecting
the b-quark mass.

Substituting this expression into (16.31)

2 %2 2
I(t - bW*) = M(u ﬂ]

167tm;, m%v
2 2
Iw 2 2\2 m;
=—Y (mi—-m 24+ —
647rm§ (i w) m%v

2
gwm (. my ) [, my
= 1—-—1 12— +1
647rm%v m? m?




The Higgs Boson

® 17.1 By considering the form of the polarisation four-vector for a longitudinally po-
larised massive gauge bosons, explain why the r-channel neutrino-exchange diagram
for ete™ — W*W~, when taken in isolation, is badly behaved at high centre-of-mass
energies.

The longitudinally polarised W travelling in the z-direction has polarisation four-
vector

1
€Ilj = a(pz,o, 0, E) .

Consequently, at high energy (E > my) the matrix element for the t-channel pro-
cesse*e” — W;W; alone, will scale as

4
M2 (E_W) ,
mwy
and increases without limit. This is not the case for the transverse polarisation states
1 1
e’ =—(0,1,-i,0) and €' =-—(0,1,i,0).
V2 V2

@ 17.2 The Lagrangian for the Dirac equation is
L= iy, 0"y — mpys,

Treating the eight fields y; and y, as independent, show that the Euler-Lagrange equa-
tion for the component y; leads to

iﬁ,ﬂy” +my=0.

The Lagrangian (density) for the Dirac equation is
Lp = iy Oy — mynj.
The partial derivatives with respect to each of the four components of the spinor i;
are
0Lp

_ oL
T M [
GGy WYl gy =

163



164

The Higgs Boson

and the Euler-Lagrange equation gives:
0L ) 0L
Ol =——|-—=0
g (a(ay¢i) 0;
Aipy" + my = 0
iOu)y" +my =0.

17.3  Verify that the Lagrangian for the free electromagnetic field,
L=—-1F"F,,

is invariant under the gauge transformation A, — A), = A, — d.x.

The field strength tensor
FF = gHAY — 9"AH
transforms to
F = 0 (AY = 3"y) — 0"(AF — d*y)

=0HAY — 3+ — O"AF + 8"0y

= 9gHA” — 9" AH

= pW,
and consequently F*VF,, is invariant under the gauge transformation.

17.4 The Lagrangian for the electromagnetic field in the presence of a current j* is
L=-1F"F, - j*A,.
By writing this as
L=-10"A" - PA",A, - 0,A,) — jHA,
= —3(0*A")GA)) + 30" A)G,A) = jHA,,
show that the Euler-Lagrange equation gives the covariant form of Maxwell’s equations,

8 F" = j.

The Lagrangian density
= —1(0"A” - 9"AM)D,A, - 0,A,) — A,
= (@ A @uAy) = @A, AL) + §(9FAD,A) + 10" ANBAY) — jHA,
= ~3(0"A)BuAy) + JOANuA)) ~ JHA,
= —3(@A@yA) + F@ AN uAy) — 1A,
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Taking the partial derivatives with respect to the field A, and its derivatives 0,4,
gives

0L = —0"A* + O*A” and % =
dA,

= = _J'# ,
9[0(9,A)]

and the Euler-Lagrange equation gives:

o) 55 -
"\o©,A))] oA,
Ay [OHAY —"AF] + j* =0
A, [0 AF — JHAY] = jH
o, F"™" = jH,

or equivalently

BuF" = .

@ 17.5 Explain why the Higgs potential can only contain terms with even powers of the
field ¢.

Introducing odd powers of the field ¢ into the Higgs potential would break the
underlying gauge invariance of the Lagrangian, which is the whole point of intro-
ducing the Higgs mechanism in the first place.

@ 17.6  Verify that substituting (17.30) into (17.29) leads to

L= 50"n)@,m) — W + 1(01€)(0,8) s 1 Fu F* + 1g*0* BBy, — Vi + guB(07) .

Substituting
$(x) = <50 +(x) + i€(x))
into

L=-1F"F,, +(0,0)"0"¢) - 1> — 2¢*
— igB,¢*(0"9) + ig(0,¢")B* ¢ + g*B,B ¢ ¢ .
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and using p> = —v’gives
L=-1F"F,, + 3(0,m - i0,£)(0"n + i0")
+ 1@+ p)? + 3 - A+t - LA+ p)PE - fag!
— i3gB,(v + 1 — i£)(0"n + i0E) + i59(8,um — 10,E)B* (v + n + i&)
+14°B,B (v +n)* + 14’ B, BV
== gF"Fuy + 5@0m)@"1) + 5(0,€)("€)
+ %/104 — /11)2172 — /lur]3 — }L/lrf‘ — }l/lf4 — /lwyf2 — %nzfz
+¢gB,(0")(v + 1) — B0 ) B
+ 39°0°B,B* + g°vB,B*n + 1B,B"1’ + 14°B,B"& .
Interpreting the terms with three or four fields (B, i or &) as three- and four-point
interaction terms, leaves

L=—1F"F, + 300" + 3(0,£€)(0"&)
— Wn* + guB,(0"€) + g°v* B,B" — Viu(B, 1. &) .

which, when the terms are grouped together gives the required expression

L = 50,m©0"n) - n* + 1(0,6)(0"¢) - L F . F* + 1g*0* By B ~ Vi +guB(07€) .

massive 7 massless & massive gauge field

@ 17.7 Show that the Lagrangian for a complex scalar field ¢,
L= (D) (D"¢),

with the covariant derivative D, = 8, + igB,,, is invariant under local U(1) gauge trans-
formations,

$(x) = ¢ (x) = €9 Og(x),
provided the gauge field transforms as

B, — B;’z =B, —dx(x).

This proof just requires care. The original Lagrangian is
L = (Dug)" (D) = (0upigBu¢)" (0" $igB*$)
= (Bu¢")(0"$) + ig(3,0")B ' — ig(0" $)Bu¢™ + g* BB 9" .
Under the transformation

$(x) = ¢'(x) = €¥Vp(x) and B, — B), = B, — 9y (x),



167 The Higgs Boson

this Lagrangian becomes
L =0,0" - ig@ux)¢"|[0"9 + ig(0"x)¢]

+ig[0u0" - ig@)¢° | [B* = (0*x)] 6
— ig[0"¢ + ig(@"x)] | By — Omux)| 6"
+ g*B,B"$¢" — g*[Bu(0"x) + B*(0,)109" + (0,0 (0*x )"

=(0u$")(0" ) — gD (D" $)¢* + ig(Dud ) D" )P + 97 (D)D" X )"
+ig(0up")B ¢ + g7 (0,x) B ¢" ¢ — ig(8,8")(0*x)p — §*(Oux)(O"x)¢" b
— ig(0"$)Bug" + g* (0" x)Bugd” + ig(0" $)(0x)$" — (0" x)(Dyux) 0"
+g*BuB"¢¢" — g*Bu(0"x)p¢" — g" B (0,0)¢0" + g7 (0" ) (0,x)$¢"
= (,9")(0" ) + ig(D,0") B¢ — ig(0"$)Buo* + g° B,B" ¢’
=/L.

@ 17.8 From the mass matrix of (17.40) and its eigenvalues (17.41), show that the
eigenstates in the diagonal basis are
B g’Wff) +gwBy _ QWWS) -g'B,

\ow + 97 Vo + 97

where A, and Z, correspond to the physical fields for the photon and Z.

Ay and Z,

The eigenvalues of the mass matrix of (17.40) are 4; = 0 and 4, = g%v + ¢’ The
corresponding eigenvectors can be found by solving the equations

2 _ ’

MX:( Jw TIWI )X:/lX,
-9gwg 9

where M is the mass matrix giving mass terms of the form

wOmu )

(W,(f) B/J)M( BH

For A = A; = 0 the eigenvalue equation gives
2 _ ’
(o))
—gwyg g X2 X2
= gyt =g gwxa,

and thus the corresponding eigenvalue is:
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For the second eigenvalue,

2 ’
Iw  TIVT N[ 2 ) 2 (2 4 o2 (xl)
(5, )2
= g%vxl —gwg' x2 = g%,vxl + g'2x1
=  —gwx2=4gx1,

and thus the corresponding eigenvalue is:

X2 = 21 72 (g‘y ) :
gwtg g
The mass eigenstates in the diagonal basis are therefore
(2)=(2 %)(5)
z gw —9' )]\ B
(3 3 ’
_QW;S)‘Fngy _gWWL)—gBy

u = and Z, =
\o + 97> 9w + 97>

17.9 By considering the interaction terms in (17.38), show that the HZZ coupling is
given by

= A

JgHzZZ = mz
cos Gy

The interaction terms in the Lagrangian arise from
(D) (D ) =10, 1) + £ g% (W + iWYW D — iw D)o + hy?
+ 5w WS = g B)gwW ¥ — g B) o + hy’
=100 1) + LB WD +iw YWD — iw @) + h)?
+ 2(gy + 9DZFZ, 0 + h)* .
Considering the part of the expression involving the Z fields and using the relation
g’ = gw tan by,

L7 = Xgy + 92" Z, (v + by

2
_ %W (1 + tan®) Z#Z,(0 + hY?

g2
= — Y __ZMZ,(v+h)
8 cos? By
2
_ Iw 27u H 27u
= Sootoe (1242, + 200212, + WZ"Z,) . (17.1)
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The first term in the brackets gives the Z mass:

2
g
I3z 7, = —%—*7"7,
8 cos” By
nw
_1_9w _
= M= Tt T cos Oy

The second term in the brackets of (17.1) gives the trilinear coupling between a
physical Higgs field and two Z fields:
2

Iw
= ———vhZ"Z
Loz 4 cos? Oy H

19w
2 cos Oy
= %meZhZ“Z# .

mth H Zy

Hence the HZZ coupling is

gw
cos

_ 1
9gHzz = 3 mz, .

17.10  For a Higgs boson with my > 2my, the dominant decay mode is into two
on-shell W bosons, H — W*W~. The matrix element for this decay can be written

M = —gwmwg, &' (p2) € (p3)",

where p, and p; are respectively the four-momenta of the W* and W~.

a) Taking p, to lie in the positive z-direction, consider the nine possible polarisation
states of the W*W~ and show that the matrix element is only non-zero when both W
bosons are left-handed (M), both W bosons are right-handed (M;;), or both are
longitudinally polarised (M.).

b) Show that

gw
MTT = Mu = —gwnwy and MLL = m_(%mlz-l —m%,,)
w

¢) Hence show that

G
T(H - W'W") = F—\/g VIZ 42 (1 - 422 + 122%,
8

where 1 = my /my.
a) and b) Consider the decay H - W*W~

H
p3 = (E,—p) ® p2=(ED |

W7 « W~

........... >Z

Denoting the respective four-momenta of the W~ and W* as p, = (E, 0,0, p) and
p3 = (E,0,0, —p), the corresponding is
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W+

P2
W-
The relevant Feynman rules are a factor igwmwg,, at the HWW vertex and factors

of é*(py)* and €”(p3)* for the final-state W bosons: The matrix element for the
decay is

—iMyi = igwmwgyy €"(p2)* €' (p3)*
= My = —gwmwgu € (p2)" € (p3)”.

Thus the matrix element depends on the four-vector scalar product of the W boson
polarisation four-vectors. The possible polarisation states are:

()" = 50.-1.5,0), e(p2)" = 5(0.1,i,0) and €f(p2)" = 7-(p. 0,0, E),

mw

5(0.1,1,0) and €/ (p3)* = ;-(=p. 0,0, E),

€(p3)’ = 50.-1,5,0), €(p3)’

where the =+ refer to the gauge boson spin pointing in either the +=+ z-direction. Of
the nine possible combinations, only three give non-zero four-vector scalar prod-
ucts:

er(p)-e-(p3)' =+1,

e(p) e (p3)' =+1,

eL(p2) - eL(p3)’ = (> + E?).
W

The spin orientations for these three cases all correspond to spin-0 states as shown
below.

€:(p3) H €-(p2) €-(p3) H €+(p2)
We—— @—w W—— @— ,w
»»»»»»»» >z > 2
eL(p3) H eL(p2)
W e ©® o—° ., w
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The energy of each W is E = my/2:

2
m
E2=—H=p2+m%v,
4
2_ 1,2 2
= P =gy My,
= E2+p2:%m%1—m%v,

Therefore the three non-zero matrix elements are:
My, = —gwmw,
My = —gwmw ,
1 1
M = +gw— (p* + E?) = +gw— (Lm% — m3,) ,
LL gw mw (p ) gw M (2 H W)
where the arrows indicate the helicity states of the W bosons.

¢) Since the Higgs boson is a spin-0 scaler, the spin-averaged matrix element
squared is just:

UMy = My + My + My
2

2 2 9w 12 22
= 2gywmy + oy (imH - mw)
w
2 2
) My
=gymy |2+|—--1]].
I (zm%v ”
The total decay rate is therefore
T(H - W'W7) = —— (M)
H
2 2 2
ngW(l 2 2 1/2{ H
= o (g —miy) (24| -5 -
8y, 2my,
2 2 2\21 4 2
_ 9wy 1_4mw myy _@4_3
16mmy mzH 4m§‘,v m%v
3 2 2 \1/2 2 2
- Mnd%w (1 4 W] [1—4—W+12—W}
- 2 2 2 2
64mmy, my my my
Gpm?
= TTHG 120 _ 422 4 1224,
87V2

where A = mw /my.

@ 17.11 Assuming a total Higgs production cross section of 20 pb and an integrated
luminosity of 10fb~!, how many H — yy and H — p*u p*u~ events are expected in
each of the ATLAS and CMS experiments.
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The number of Higgs bosons produced in both the ATLAS and CMS experiments
is:

Ng=Lxopp—>H+X,

where L is the integrated luminosity:

L:fj:dt,

Ny =20x 10° fb x 10fb~" = 200000 .

giving

The relevant Standard Model branching fractions are BR(H — vyy) =~ 0.002,
BR(H — ZZ*) = 0.027 and BR(Z — p*"u™) = 0.035, and thus
N(H — yy) =2 x 10° x 0.002 = 400,
NH — ZZ" — pfu7) = 2% 10° x 0.027 x 0.0352 = 7.

Despite the fact that very few H — ZZ* — p*u~ are produced, such events leave a
very clear signature in the detectors are relatively easily identified.

17.12 Draw the lowest-order Feynman diagrams for the processes e*e~ — HZ and
e*e” — Hv.V,, which are the main Higgs production mechanism at a future high-energy
linear collider.

17.13  Inthe future, it might be possible to construct a muon collider where the Higgs

boson can be produced directly through p"u~ — H._Compare the cross sections for
etfe” > H — bb, utu™ > H— bband ptu~ — vy — bb at /s = my.

The Feynman diagrams for the three process are all s-channel processes.

et b u b et b
p2 P3
H H Y
P1 P4
e” b u” b e b
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The matrix element for the process ete™ — H - bb can be obtained from the
Feynman rules where the couplings at the two Hff vertices are given by

mg L

——

v - _lzmw gw ,
and the propagator for the Higgs boson with total decay width I'y is

1
q2—mé+imHFH"

Hence the matrix element is given by

M= 50w | o o my
M U(Pz)[ i ]u(pl) g% — mZ + imyl'y u(p3)[ g ]v(p4)
M= ;nemb [W(p2)u(pi)] - [u(p3)v(pa)l for g* = mi; .
ve-myl'y

Since we are in the limit where the masses of the particles can be neglected and
can be written

p1 = (E,0,0,E),

p2 = (E,0,0,-E),

p3 = (E,Esinf,0, Ecosf),

ps = (E,—Esin0,0,—FE cos0).

The corresponding spinors for the two possible helicity states of each particle are:

1 0 1 0

0 1 0 -1
ur(pr) = VE| || wp) = VE| o | v(p2) = VE| - | vu(p2) = VE|

0 -1 0 -1
and

c ) c N

N c s —C
up(ps) = VE| |, uy(ps) = VE| | vp(pa) = VE| " |. vy(pa) = VE

N —C —S —C

There are two possible combinations of intiial-state spinors that will give non-zero
values for o(p2)u(p) = v* (p2)y u(p1):

vr(p2)ur(pr) = vy (p2uy(pr) = 2E.

Similarly, there are two possible combinations of intiial-state spinors that will give
non-zero values for u(p3)v(p4):

ur(p3)vr(pa) = —uy(p3)vy(ps) = 2E.
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Thus, for each of the four helicity combinations giving a non-zero matrix element
atg’> = s =4E = m}

MMy

M 4E

Il
-+

UzerH
MeNMp Iy

UZFH

The spin-averaged matrix element squared is just

Il
H+

MeMpMy 2
Uer
Note the isotropic distribution of the final state particles, which is characteristic of

a scalar interaction. The differential cross section (at the peak of the Higgs reso-
nance) is given by:

<|M|2>=;{x4xM=(

do? 1

- = M2
dQ 647r2s<| "
2
B 1 MeMpMy
B 64712m%1( Iy ) ’
2.2
o _ Mty

o= —2—.
2
167rv4FH

The corresponding expression for w*u~ — H — bb is obtained by replacing m, by
my.. The cross section for the QED process e*e™ — v — bb at /s = my is the now
familiar
dra® ,  l6ma?

3s b %

Taking my = 126 GeV, v = 246 GeV, I'y = 0.004 GeV, a = 1/128, mp = 5 GeV:

OQED =

2.2 2.2
P memy - mmy 16ma’
e - - ED = : :
e T TP T a2 Temt T2 27

=22x107"2GeV™? :95%x108Gev?:7.1x 1077 GeV~2.

Therefore, the cross section for e*te™ — H — bb is there orders of magnitude
smaller than the QED process and it would be almost impossible to detect Higgs
production in s-channel e*e™ annihilation. On the contrary, due to the larger muon
mass, the cross section ete™ — H — bb is an order of magnitude greater than
the pure QED process, motivating the idea of muon collider (whether it is actually
possible to construct such a machine is a different question).
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p 56: Question 2.8: The reaction should (of course) read:

P+p—=p+p+p+p.
p 56: Question 2.9: The question should ask for the minimum opening angle; the
maximum opening angle is (rather trivially) .

p 57: the factor of % in the last line of Question 2.16 should be removed, i.e. Find

the eigenvalue(s) of the operator Sz = (S‘%+S‘ ; +S 5), and deduce that the eigenstates
of 8 are a suitable representation of a spin-half particle.

p 78: the mass of the pion in Question 3.1 should be 140 MeV, not 140 Ge V.
p146: In the matrix in the footnote By, — Bs;.

p177: Question 7.2 should be ignored. There was an error in my original solution,
whereby finding a closed form was relatively straightforward - it isn’t!

p231: there is a typo in the equation at the bottom of the page:

L[S* -8 -8%] - 3 [s* -8 -8
p312: In Figure 12.5, the arrows on the d and v, are the wrong-way around, only
left-handed chiral states participate in the weak charged-current.
p315: Line four contains a typo, the third reaction should read v,u — p*d
p337: In Figure 13.16, the bottom two diagrams should (of course) show a wt*.
p341: There is a typo (p; — p2) in Equation (13.13), which should read

2 2
E,+FE ms —m
A<I512=(1-‘?1—152)[T—( ¥ 2)L]+(—1 2)L
pP1 +p2 p1 +p2

This typo is repeated in question 13.1.

p362: In question 13.2, there is a spurious 4 in the denominator of the argument of
the sin(...) in the second equation, it should read
Am*[GeV?]L[GeV ']
4E,[GeV]

sin?(26) sin” (

sin%(26) sin’ (1.27A"12L2]L[km]) .

E,[GeV]
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Errata

The expression in the main text is correct.

p363: Part d) of question 13.9 should be ignored - it is poorly worded. The intention
was to get the student to consider the case where the decay products of the pion
were close to being perpendicular to the direction of the boost. Close to 6% ~ /2
the transverse momentum is approximately p* and the longitudinal momentum is
primarily due to the Lorentz boost.

. : 2 2
p427: The last matrix element should read M, not Mz,
p458: Question 16.7 should read M_Vuua.
p498: Question 17.8 the expression for the fields should read:

173 3 ’
gwW. +gwB, _gwW. - g'B,

A'u =—————— and ZIJ = )
9w + 97 9w + 97



