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1. The Lagrangian of the given two-dimensional potential is
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(ii) The Euler-Lagrange equations are
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(iii) The Hamiltonian is
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(iv) In polar coordintes we derive:
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(v) There are two constants of the motion.
Since the Hamiltonian does not depend explicitly on time, the energy is a constant
of the motion with £ = H(qo, po). Since it does not depend explicitly on ¢, also py
is a constant of the motion, corresponding to conservation of the angular momentum
w.r.t. the symmetry axis.



2. Considering the Lagrangian

L(q(t),q(t),t)
and the variation
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Variation of the action gives rise to the Euler-Lagrange equation of motion
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since L is invariant under the variation
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where we have used the Euler—Lagrange equation to go from the second to third equality.
Therefore, we have that
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is conserved.
3. With p = |¢|? = ¢*1), we have
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Now from the Schrodinger equation,
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and so, taking the complex conjugate
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(assuming that V'(x) is real.) Multiplying (1) by * and (2) by ¥ and subtracting, we
have

oy o n’? h?
in (075 4 G0 ) = =g (07 VP - UV) =~ [T = 0]

ot o
e % _ I g vy — vy
ot 2m ’
- 9 | =0
ot ’

h
where j =~ 2= [ Ve — ¥Vy']

. Inserting the given solution
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into the five-dimensional Klein-Gordon equation and carrying out 9/9y?, one obtains
a four-dimensional Klein-Gordon equation for each of the Fourier coefficients ¢, (x):

(63 — V24 m? (%)2) dn(z) =0.

Therefore the given ¢(x, y) is a solution of the five-dimensional Klein-Gordon equation
if the ¢, (x) are solutions of the four-dimensional equations. The masses m,, of the

fields ¢,, are given by
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If the five-dimensional mass m is zero, we get the equally spaced mass spectrum

nm
My = — .

R

The infinite set of particles are called Kaluza-Klein tower.



