MATH 431 — Exam Summer 2011: Solutions

All problems are similar to homework problems or material covered in the lectures.
Marking as indicated on the question sheet.

1. Poincaré group in 1+2 dimensions; Pauli-Lubanski vector

ds? = dt? — dz? — dy? (1)
(a)
1 0 0 1 0 0
o = (0 -1 0 ], g“=10 -1 0
0 0 1 0 0 -1

The line element is invariant under 3 translations (dt¢, dz and dy), 2 boosts (dtdz,
dtdy) and 1 rotation (dxdy). The generators associated with the transformations of
the three translations are: Py = i0;, P| = —id, and P, = —id,. (The generators
of the boosts, K7 and Ko, and the generator of rotations in the (z,y) plane, Js, are
the 142 dimensional versions of the usual 143 dimensional generators which were
discussed in the lectures.) Bookwork

(b)

Wh = LT, P,
0 L oijk 1 1
W5 = =5yl = Seoindiile = gerijJighe = Jeb,
— 9 (RN 26 7oLk 26 jk40 —

1 . 1 . 1 ..
- §€Zoij0ij; - §€ZOJkJOij + §€Oljkjjkpo =
1 4 1 ... 1 ...
+ §€OZJkJ0ij + §€OZJkJOij + 560’JijkPO =
1
— €0ijkJoj Pr — §€0iijjkP0 = €k Py — Ji Py .

In the case of the 142 dimensional line element Eq. (1), embedded in our usual 143

dimensions, . .
K = (K;,K5,0) and J = (0,0,J3).

For m = 0 we can choose, without loss of generality, P* = (p,0,p,0), and hence
P, = (p,0,—p,0). Then
wo = o,
W' = ek K;jPy = €123K2P5 + €132 K3P = 0,
wW? = €2jkKjPp = €213K1 P35+ €231 K3P; = 0,
W3 = —J3Py+e3js K;P = —J3Py+ €312K1 Py + €301 Ko Py =
= —J3Ph—K1Py = —(J3+K1)P,.
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For m > 0 we can evaluate the Pauli-Lubanski vector most conveniently in the rest
frame, hence P* = (m,0,0,0). Then

wo = o0,
wl = o,
wW? =0,
W3 = —Jym.

2. (a) The Hamiltonian H, for a free real scalar field is
Hy = %/@2 +(Vo)? +m?e?) d'a.

From the Heisenberg equation of motion for the generalised momentum operator 7
and the canonical commutation relations we calculate:

ihir(x) = [r(x,t), H]
= [ @ (O + HTO + P ?) w0
= =3 [ BT [V, 1)) + [0, 7)) (V'6()
~ [ @ (@(9x), m(x)] + 6, T ()
= it [ A ((T6)). (78— X)) + ()5~ X))

= ih/d3x’ (((V)?o(x) 6(x — x') —m*p(x')6(x — X))
=1h (V2¢(x) — m2¢>(x)) .

We now use (as derived in the lecture) that the generalised momentum 7 = g—g for
the free Klein-Gordon field is 7 = ¢, and hence immediately get the Klein-Gordon

equation )
d(x) = VZ¢(x) —m?e(x),
or, written with the usual d’Alembert operator (O = 0*0,, ):

(D+m2)<;5 = 0.

(b) Inserting the given solution

oag) = 3 oulo)es (M)

2



into the five-dimensional Klein-Gordon equation and carrying out 92 /0y, one obtains
a four-dimensional Klein-Gordon equation for each of the Fourier coefficients ¢, (x):

(ag ~ V24 m?+ (%)2) bn(z) = 0.

Therefore the given ¢(x, y) is a solution of the five-dimensional Klein-Gordon equation
if the ¢, (x) are solutions of the four-dimensional equations. The masses m,, of the

fields ¢,, are given by
9 9 nm 2
m, =m” + <§> .
If the five-dimensional mass m is zero, we get the equally spaced mass spectrum

nm

R

My, =

The infinite set of particles are called Kaluza-Klein tower.
Bookwork

3. (&) (i)

Vot = 200y = v F Y = 2901,

where 1 is the 4-dimensional identity matrix. Taking the trace, and using tr(AB) =
tr(BA), trlly = 4, we get
] = 4

(i)
VYoV Yo = — WY¥uVpYo + 20w VYo
= NV VuYo — 2nup7u70 + 277u1/7p'70
= =N VoVt 27hm'71/7p - 27]up’7u'7cr + 27hw'7p'70

(iii) From (ii) we have
VYo Vo Yo + VoV Vo Vu = 2MuaVvVp = 2Mup Vo Vo + 20 Yp Vo -
Taking the trace and using
VYo Yevn) = el

together with tr[y,7,| = 4n,, from part (i), we find

tthLIVVVPVU] = 4[7hw77p0 = NupMvo + 77ucr77up] .

(b) The Dirac equation reads (iy*9,, —m)y = 0, hence

Yo +imyp =0 = (8M¢T)7“T — im@DT =0.



In addition we need to remember that v := ¢77? (and y#T = 4%4#~0 as given in the
question). Then

(0" 7y —imyT = 0

and, multiplying with 4° from the right,
(%@7“ - Zm@ =
Using this we get

Ou(py"e) = (Ou)y" ¢ + " (Ou¥) = (imah)yh + (—imy)) =

(c) (i) It is best to work out the anti-commutator for each specific p. For p =0 we have:

7570 :Z7071727370 — Z7071727073 _ 27071707273
= — i7" = % = (P40 =
7571 :7',7071727371 — 7/70’71’72’71’73 — 270’71’71’72’73
= —iv'%19% = 1 = (A1) =

The other two cases, with 42 and 3, follow the same steps, with the same number of
sign changes when commuting 2 or 42 from right to left.

(ii) With (i) we can write
'3 (1=7")w, = teg (1+7°) 7wy,

which contains the left-handed electron field @Z, as

4. (i) The decay p — ey is allowed by kinematics and w.r.t. charge conservation, but is
forbidden in the Standard Model as it would violate the separate conservation of the
lepton numbers N, and N.. Empirically, N, , r are conserved and the decay p — ey
is not observed. Bookwork



(i)

(iii)

Feynman diagram for 4~ — v, e~ 7. in the Standard Model to lowest order:

The solid ‘external’ lines stand for the incoming and outgoing spin-1/2 particles, the
muon, electron, muon-neutrino and electron anti-neutrino. The wavy internal line is
the propagator of the W~ boson, the carrier of the weak interaction. It mediates the
transition from the initial state ;1= to the final state v, and creates the e~ and 7, in
the final state. The solid dots denote the vertices of this weak interaction.

The algebraic expressions for the different elements are:

— Incoming p~: spinor u
— outgoing v,: spinor u
— outgoing e~ : spinor u
— outgoing ,.: spinor v

ol

— vertices: —i%’y 5(1— +?) and —i%'yﬁé(l —~®), with weak coupling constant g

— propagator: in.s/(¢* — m¥,), where ¢ is the four-momentum transfer and myy is
the mass of the W boson Bookwork
The momentum transfer squared, ¢2, is of the order of (but limited by) mi, which
is very small compared to m%,. Thefore the propagator is well approximated by
—iNag/ m%v. This is a very strong suppression factor, which would not be present if
the W would be massless. Bookwork

The 7 lepton is much heavier than the p or the e, therefore it can decay into both:
T —UVUr€ Ve, T —VUrlh V.

The decays are very similar, with only small differences due to the different masses
of the final state particles. In addition, as the 7 is also heavier than light hadrons, it
can decay in many hadronic final states like pions (the v, must always be there due
to N, conservation). In these cases the W intially couples to a quark pair which then
hadronises. One example is the decay

T —>1/T7r_7r0.

Bookwork



5. (i)

First step:

(0 1y (0 1[0 -1} _ (10
2=\ _1 o) 1 0/\1 o) = \o 1)

SO 109 1S unitary.

Second step: Prove by explicit matrix multiplication that o9 0} 09 = —0, (i = 1,2, 3).
For i =1 we have e.g.

cooron — (0 =) (0 LY (O0 =i _ (0 -1} _
S A 10 i o)  \=1 o) v

Third step: Choose W = 102, and with 0505 = Il = 0902 and the result of step two
we write:

wivw = —iagU*iag = ogexp (—%9(10;) o9
1 , 11 11 N
= 02 <I[— 590«0-11 — Zigaea - ggeagaebO'b - ) g2
1 11 11
= | I+ 50404 — — 70400 + 5 570404 — ... = .
( +290' 42!99 +83!999b0'b ) U

Taking the complex conjugate of
WiTrw = U

we now also have

whuw* = U*

and as W = 1090 = W* we arrive at the desired relation
U = wiuow.
Bookwork

In the Standard Model, fermion and gauge boson masses are obtained in a gauge
invariant way through electroweak symmetry breaking which is mediated by a Higgs
potential. Because of the unitary equivalence between the fundamental and the com-
plex conjugate representations of SU(2), gauge invariant mass terms for both up- and
down quarks (which are grouped together in SU(2) doublets) can be constructed from
only one complex Higgs doublet. In other words, it is due to this special property of
SU(2) that the Higgs sector in the Standard Model is the minimal one resulting in
only one physical Higgs boson.

Bookwork



1 1 1
L = 5(3u¢i>2 - §M2¢? - Z)\(%Z)Q

with 2 < 0 and A > 0. The first term in the Lagrangian contains the kinetic terms of
the three fields which lead to the propagators in the Feynman rules. The second and
third term are the quadratic and quartic terms of the scalar potential. The coefficient
A is chosen positive as otherwise there would be no stable vacuum. Only with p? < 0
we get a non-trivial vacuum which allows for spontaneous symmetry breaking. This
leads to mass terms (quadratic in the field) and interaction terms which lead to cubic
and quartic vertices in the Feynman rules. Bookwork

1 1 1
L= 5 ((9u60) + (9u62)? + (9uds)?) — 5263 + 6 + 63) — M0 + 63 + 6)°.
The potential is
1 1
Vo= Sp(@1+ ¢3+ 65) + Me1 + 65+ 65)°.
For spontaneous symmetry breaking we need a non-trivial minimum of the potential:

ov
I

= (1 + Mo+ 3 +¢3)) ¢ = 0,
SO we require
1AMoL+ 05+ ¢3) = 0.

We choose the non-vanishing vacuum expectation value to be

($1) = \/—~ = v,

so the vacuum (after spontaneous symmetry breaking) is ®, = (v,0,0). We now
expand ¢; around the new vacuum (keeping ¢o and ¢3):

d1(®) = v+ h(a).

Inserting this into the Lagrangian we get

5 (061 + (0u62)? + (Bu05)?)— 2 (v-+h()+63+63) — A (v-+h(2))+ 63 +3)°
and with —p2 = v2) we arrive at
L = 30 + @u2)* + (Bt
i—)‘(h%x) + 02 + 20h(x) + @3 + ¢3) — 2(602h2(33) +..) =
((0uh)? + (0u2)® + (8u93)?) — Mo?h*(z)+

cubic and quartic interaction terms -+ constant .

N | —
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(iii)

Note that the terms quadratic in ¢ and ¢3 have cancelled, so there are no mass terms
for these fields. Hence the Lagrangian, after SSB, describes two massless ‘Goldstone
bosons’ and one massive scalar Higgs field A with mass \/—2u2.

Setting u = 1/a; the differential equation becomes

du B +b_1
dinkE ~ ° "y

Truncating at lowest order, the solution is given by u(E) = u(u) + bo In(E/p), with a
free integration constant u(u). After sustituting back u — 1/ay this is the proposed
solution, with the ‘initial condition’ o (u).

The proposed definition is equivalent to the substitution
)
1= Aqcp exp | ——
° bocrs (1)
with which we obtain the form

1
- bo IH(E/AQCD) '

as(F)

At energies ' — Aqcp the coupling develops a pole, the so-called Landau-pole. For
large values of the coupling the perturbative series breaks down, and the Landau
pole indicates the non-perturbative region of QCD. This is the region where quarks
and gluons are confined into colourless hadrons (baryons and mesons), which are the
observed degrees of freedom at low energy scales.

At large energies, the coupling becomes small. This so-called ‘asymptotic freedom’ of
QCD as an SU(3) gauge field theory allows us to perform perturbative calculations
on the parton level which in turn reliably describe QCD processes at large momentum
transfer, like e.g. jet-production.

The sketch should show a monotonically decreasing positive function, indicating the
Landau pole at E = Agcp and a small value of o5 at large energies.

The solution valid at the next order of perturbation theory is obtained by inserting
our lowest-order solution into the differential equation including the next order term

~ by, leading to
du bl

dmE  ° " byIn(E/Agon)

The solution of this differential equation is given by

u(E) = QSEE) — boIn(E/Aqen) + (b1 /bo) Intn(E/Aqen)

with a suitable redefinition of Aqgcp to next order so that the integration constant
vanishes (formula not requested).



