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la The vacuum expectation value of the electroweak Higgs field ¢:
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The Standard Model SU(2) x U(1)y quantum numbers of the component of the Higgs
field with non—trivial VEV are:
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Hence, the electromagnetic symmetry remains unbroken by the VEV of the Higgs
field.
The Lagrangian density of the Higgs field is given by:
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The relevant term for the gauge boson masses:
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reading off from the last two lines we have
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hence
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1b We will derive the general case for Higgs representations and then substitute. The
general term for the gauge bosons masses has the form
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where in the last line we used
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and where in the last line correspond to the quantum eigenvalues of the electrically
neutral component of the Higgs representations. We require that Q(¢;o) = 0, which
ensures that electric charge remains unbroken by the vacuum expectation values of

the Higgs fields.
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For T; = 3 and Y = 4 we have




For a triplet T; = 1Y =2

Experimentally, p ~ 1.0000.... is highly constrained.
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which contains the left-handed electron field @2, as
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The decay p — evy is allowed by kinematics and w.r.t. charge conservation, but is
forbidden in the Standard Model as it would violate the separate conservation of the
lepton numbers N, and N,.. Empirically, N, , r are conserved and the decay p — ey
is not observed.

Feynman diagram for 4~ — v, e~ 7. in the Standard Model to lowest order:

The solid ‘external’ lines stand for the incoming and outgoing spin-1/2 particles, the
muon, electron, muon-neutrino and electron anti-neutrino. The wavy internal line is
the propagator of the W~ boson, the carrier of the weak interaction. It mediates the
transition from the initial state 1~ to the final state v, and creates the e~ and 7, in
the final state. The solid dots denote the vertices of this weak interaction.

The algebraic expressions for the different elements are:

— incoming g~ : spinor u

— outgoing v,: spinor %

— outgoing e~ : spinor u

— outgoing v,: spinor v

— vertices: —i%vo‘%(l —~°) and —i%vﬁé(l —~°), with weak coupling constant g

— propagator: in.3/(¢> — m3,), where ¢ is the four-momentum transfer and my, is

the mass of the W boson
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The momentum transfer squared, ¢2, is of the order of (but limited by) mi, which
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is very small compared to mi;,. Thefore the propagator is well approximated by
—inap/m%;. This is a very strong suppression factor, which would not be present if

the W would be massless.

The 7 lepton is much heavier than the p or the e, therefore it can decay into both:
T —VUr€ Ve, T —Urlh V.

The decays are very similar, with only small differences due to the different masses
of the final state particles. In addition, as the 7 is also heavier than light hadrons, it
can decay in many hadronic final states like pions (the v, must always be there due
to N, conservation). In these cases the W intially couples to a quark pair which then
hadronises. One example is the decay

T —>I/7—7T_7TO.

First step:
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SO 109 1s unitary.

Second step: Prove by explicit matrix multiplication that o9 0} 090 = —0, (i = 1,2, 3).
For i =1 we have e.g.
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Third step: Choose W = 109, and with 0505 = Il = 0202 and the result of step two
we write:
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Taking the complex conjugate of
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we now also have

whow* = U*

and as W = 1095 = W* we arrive at the desired relation

U = wtow.

In the Standard Model, fermion and gauge boson masses are obtained in a gauge
invariant way through electroweak symmetry breaking which is mediated by a Higgs
potential. Because of the unitary equivalence between the fundamental and the com-
plex conjugate representations of SU(2), gauge invariant mass terms for both up- and
down quarks (which are grouped together in SU(2) doublets) can be constructed from
only one complex Higgs doublet. In other words, it is due to this special property of
SU(2) that the Higgs sector in the Standard Model is the minimal one resulting in
only one physical Higgs boson.



