Quantisation of the KG field (real scalar field).

The Lagrangian density : £ = 3 0" —

I 50 1 2 1 5
- — Z(Ho)? — =
SR = (00 — s
: oL .
the conjugate momentum 7= — = ¢
d¢
equal-time commutation relations

[6(%, 1), (X', t)] = ihd(X — %)
[¢()?7 t)a ¢()—(»/’ t)]

[7(%,t),7(X',t)] =0

m]

=

Q>



In the Heisenberg picture the equations of motion are given by
ihé = [, H],  where o — operator, H—Hamiltonian o # a(t)

= [¢(X,t), H] = ihd(R, t)

we obtained the correct equations of motion.
The connection between the quatised field and its particle interpretation is seen

by looking at the Fourier transformed field

B35, . ,
(b()‘(” t) — L/ 2_pp (e—[p~Xf'+(l—)*) + elp'Xf'_(ﬁ))
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So far the Fourier decomposition that we discussed is classical,
i.e. we didn't yet impose the commutation relations.

If we impose the commutation relations
[r, 6] = (X = X) ,
[¢,¢] = [m, 7] =0
amplitudes of the Fourier modes become annihilation and creation operators,
f(F) = (£(F) =a'(p)
fi(p) = = a(p)
It can then be shown that a(5) and af(j) satisfy the commutation relations
[a(B), ' (5))] = 2p°6%(p — B)(2n)’
[a(p). a(5)] = 0 = [a(B), (5]
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i.e. the quantum field ¢(x) creates and annihilates particle states with

momentum p. The vacuum is defined by

a(p)lo)=0 vp  (0j0)=1

1 — particle state ) = a'(5)|0)
2 — particle state  |By, B2) = al(B1)a’(B2)|0)

and so forth.
So far we discussed the free KG equation.

How do we incorporate interactions?
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In Newtonian mechanics we describe interactions by adding a potential.

if we have more than one particle
DI S
J i ij

typically we consider the interactions to be 2—-body interactions and we sum

over all the interacting particles
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For the harmonic oscillator in one dimension

V(ix) = %kx2

OV(x)
-~ =

mx =

In the case of the KGE
1 " 1 55
£ = 5(0u0)(0"0) — 5o

The second term looks like V(¢) ~ 1k¢?.

—kx



Classically the particle is in a potential well. If it has initial energy E, it will
oscillate about the vacuum V/(¢) = 0. The lowest point that the field can be
in is the vacuum. So far we are describing a free field. Suppose that we want

to describe a field which is not free in a potential

V(®)
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V(¢) = Ap* + B¢? ,with A> 0, and B < 0.

In Newtonian mechanics this will correspond to a double well. The point
V(¢) = 0 is no longer the vacuum

aV(¢) 3 _
el 4AG* +2B¢ =0

or (2A4* + B)p =0
=

6=0, 6=+ 2

2A

A




We can now see how we can use this formalism to describe particles and their
interactions.

We developed a diagramatic representation of interactions.
— Feynman diagrams



The interactions that we described so far are by using a single scalar field

In nature we are familiar so far with gravity, E&M, weak, and strong

interactions.

Force Gravity E&M Weak Strong
Mediator Graviton Photon | W=, Z-bosons | Gluons
Spin +2 +1 +1 +1
mass 0 0 ~ 80, ~ 90GeV 0
gauge symmetry | spacetime diff. | U(1) SU(2) SU(3)
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How can we describe these interactions?
Standard Model —  SU(3)¢ x SU(2). x U(1)y  local gauge interactions.

In the modern language of elementary particles, interactions correspond to
invariances of the Lagrangian under some local symmetry.

Interaction <— invariance under a local gauge symmetry
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