
MATH 431 — Aug 2019: Solutions

All problems are similar to homework problems or material covered in the lectures.

1.

a0 = a0, a1 = −a1, a2 = −a2, a3 = −a3

a′0 = a′0 = γ(a0 − βa1) = γ(a0 + βa1)

a′1 = −a′1 = −γ(−βa0 + a1) = γ(βa0 + a1)

and a′2 = a2, a
′
3 = a3

(1)

b.
Suppose we have a function f(x0, x1, x2, x3) which we express as a function of

x′0, x′1, x′2, x′3 by expressing xµ as a function of x′µ. The standard chain rule for
partial differentiation says that

∂f(xν(x′µ))

∂x′µ
=

3
∑

ν=0

∂f

∂xν

∂xν

∂x′µ
for µ = 0, 1, 2, 3

Using the summation convention and writing as an operator equation we get

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν

We need x as a function of x′, the inverse of the Lorentz transformation that gives x′ as a
function of x. For a boost along the x′ axis, the inverse is a boost with the opposite speed,
so

x0 = γ(x′0 + βx′1), x1 = γ(βx′0 + x′1), x2 = x′2x3 = x′3

Hence
∂x0

∂x′0
= γ,

∂x0

∂x′1
= γβ,

∂x1

∂x′0
= γβ,

∂x1

∂x′1
= γ

and

∂

∂x′0
= γ(

∂

∂x0
+ β

∂

∂x1
),

∂

∂x′1
= γ(β

∂

∂x0
+
∂

∂x1
),

∂

∂x′2
=
∂

∂x2
,

∂

∂x′3
=
∂

∂x3

which is the same as as (1) with aµ = ∂
∂xµ

c.
The operator for momentum ~p is −ih̄~∇, i.e.

p1 = −ih̄ ∂
∂x1

, p2 = −ih̄ ∂
∂x2

, p3 = −ih̄ ∂
∂x3

(5)
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and

p1 = ih̄
∂

∂x1
, p2 = ih̄

∂

∂x2
, p3 = ih̄

∂

∂x3
(6)

The Schrödinger equation says

ih̄
∂ψ

∂t
= Hψ

where H is the energy operator. Since p0 = E
c

and x0 = ct, this can be written as

p0 = ih̄
∂

∂x0
(7)

If we write (5) and (7) in terms of pµ, we remove the sign difference between the 0 com-
ponent and the others.

pµ = ih̄
∂

∂xµ
,

which transforms as a Lorentz covariant vector, as we have shown in (b).

2. (a) In the lecture we have derived

ṗ0 = −∂H
∂q0

.

Therefore, p0 is constant in time if H does not depend on q0.
One example for such a system is given in part (b) below, where H does not depend

on φ. A second example would be a one dimensional harmonic oscillator (in x) embedded
in two dimensions such that there is no y dependence and therefore the momentum py =
constant.
(b) In polar coordinates

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ ,

the kinetic energy is given by

1

2
m
[

ṙ2 + (rθ̇)2 + (r sin θφ̇)2
]

,

and with the potential energy V the Lagrangian is given by

L =
1

2
m
[

ṙ2 + (rθ̇)2 + (r sin θφ̇)2
]

− V .

Now

pr =
∂L

∂ṙ
= mṙ ,

pθ =
∂L

∂θ̇
= mr2θ̇ ,

pφ =
∂L

∂φ̇
= mr2 sin2 θφ̇ .
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Hence

H =
∑

i

piq̇i − L = mṙ2 +mr2θ̇2 +mr2 sin2 θφ̇2 − m

2

(

ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)

+ V

=
m

2

(

ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)

+ V

=
pr

2

2m
+

pθ
2

2mr2
+

pφ
2

2mr2 sin2 θ
+ V .

With this we get

ṗφ = −∂H
∂φ

= −∂V
∂φ

= 0 .

An axisymmetric potential does not depend on φ, so pφ is a constant of the motion,
and the angular momentum about the symmetry axis is conserved.

3a.
~J± =

1

2
( ~J ± i ~K)

J+ and J− generate the algebra SU(2)⊗SU(2)†. J2
+ and J2

− are the Casimir operators
of SU(2) and SU(2)†, respectively, and are therefore invariants of the Lorentz group.

J2
+ =

1

4
(J2 −K2 + 2i ~J · ~K)

J2
− =

1

4
(J2 −K2 − 2i ~J · ~K)

J2 −K2 = 2(J2
+ + J2

−)

~J · ~K = −i(J2
+ − J2

−)

Therefore J2−K2 and ~J · ~K are Lorentz invariants as well, being the sum and difference
of Lorentz invariants.

3b. For the representation (j1, j2) of the SU(2) ⊗ SU(2)† algebra the number of states is
(2j1 + 1)(2j2 + 1).
The total spin is given by j1 + j2. Therefore the composition j1 ⊗ j2 breaks under

SU(2)J with the following spin states

j1 + j2 ⊕ j1 + j2 − 1 ⊕ · · · ⊕ |j1 − j2|

4.
γµ∂µψ + imψ = 0 , (∂µψ

†)γµ† − imψ† = 0

⇒ (∂µψ
†)γ0γµγ0 − imψ† = 0 and (∂µψ̄)γµ − imψ̄ = 0 .
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(a) With this

∂µ(ψ̄γµψ) = (∂µψ̄)γµψ + ψ̄γµ(∂µψ) = (imψ̄)ψ + ψ̄(−imψ) = 0 .

(b) Similarly, and with {γ5, γµ} = 0 we get

∂µ(ψ̄γµγ5ψ) = (∂µψ̄)γµγ5ψ + ψ̄γµγ5(∂µψ) = (imψ̄)γ5ψ − ψ̄γ5(γµ∂µψ) = 2imψ̄γ5ψ .

(c) From the Dirac equation for the spinors ūf and ui we have

0 = ūf ( 6 pf −m)γµui = ūfγ
µ( 6 pi −m)ui

⇒ 2mūfγ
µui = ūf ( 6 pfγ

µ + γµ 6 pi)ui

and 6 pfγ
µ + γµ 6 pi = γνγµpfν

+ γµγνpiν
.

Now
γµγν + γνγµ = 2gµν ,

γµγν − γνγµ = −2iσµν

⇒ γµγν = gµν − iσµν and γνγµ = gµν + iσµν .

So we get

6 pfγ
µ + γµ 6 pi = gµν(pf + pi)ν + iσµν(pf − pi)ν = (pf + pi)

µ + iσµν(pf − pi)ν ,

and finally have derived the Gordon decomposition

ūfγ
µui =

1

2m
ūf [(pf + pi)

µ + iσµν(pf − pi)ν ] ui .

5.
To construct a consistent three dimensional theory, we must ensure that the dynamics

do not depend on the z–direction. The motion of the particle must be confined in the
(x, y) plane. Since the Lorents force is perpendicular to the magnetic field, it follows that
the components of the magnetic fields in the (x, y) plane has to vanish. Similarly, the
component of the electric field in the z–direction is zero. Hence, we take

Ez = Bx = By = 0.

The remaining components Ex, Ey and Bz can only depend on x and y. Similarly, the
velocity and current components in the z–directions are zero, i.e. vz = jz = 0. Maxwell’s
equations then become

∂Ex

∂x
+
∂Ey

∂y
= ρ from ~∇ · ~E = ρ
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∂Ex

∂x
− ∂Ey

∂y
= −1

c

∂Bz

∂t
from ~∇× ~E = −1

c

∂ ~B

∂t

∂Bz

∂y
=
jx

c
+

1

c

∂Ex

∂t

−∂Bz

∂x
=
jy

c
+

1

c

∂Ey

∂t

from ~∇× ~B =
~j

c
+

1

c

∂ ~E

∂t

The remaining Maxwell equation ~∇ · ~B = 0 is trivial because Bx = By = 0 and Bz =
Bz(x, y). The Lorentz force law gives nontrivial equations only for the x and y components:

dpx

dt
=q
(

Ex +
vy

c
Bx

)

,

dpy

dt
=q
(

Ey − vx

c
By

)

.

5b. In three dimensions we have Aµ =
(

Φ, A1, A2
)

, Aµ = (Φ,−A1,−A2), and jµ =
(

cρ, j1, j2
)

. Moreover, Fµν = ∂µAν − ∂νAµ, so

F0i =
1

c

∂Ai

∂t
+
∂Φ

∂xi
≡ −Ei

F12 =
∂Ay

∂x
− ∂Ax

∂y
≡ Bz

Thus, the field strength tensor takes the form

Fµν =





0 −Ex −Ey

Ex 0 Bz

Ey −Bz 0



 Fµν =





0 Ex Ey

−Ex 0 Bz

−Ey −Bz 0





The above D = 3 field strength F can be viewed as the D = 4 one with Ez = Bx = By = 0.
The D = 3 current j can be viewed as the D = 4 current with jz = 0. The three
dimensional Maxwell equations are therefore the truncation to Ez = Bx = By = 0 and
jz = 0 of the original four dimensional ones
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6a.

+ + + + +

+ + + - -

- + + - +

+ - + - +

+ + - - +

- + + + -

+ - + + -

+ + - + -

- - + + +

- + - + +

+ - - + +

- - + - -

+ + + - -

+ + + - -

- - - - +

- - - + -

The weight lattice of the spinorial 16 representation of SO(10). Each entry is multiplied

by the 1

2
. These are the charges with respect to the five U(1) generators of the Cartan

subalgebra. The product of the five charges should be either positive or negative. In the

positive case we can have zero, two or four negative charges of the total five. In the negative

case there can be one, three or five negative charges. In either case the total number of

possibilities is 16. These are the two spinorial representations of SO(10) being the chiral

16 and the anti–chiral 16.

6(b).
Under SU(5) × U(1)X , using the combinatorial notation introduced in the class

16 =

(

5
0

)

+

(

5
2

)

+

(

5
4

)

where the combinatorial factor counts the number of − in a given state. Hence,

16 = (1,
5

2
) + (10,

1

2
) + (5̄,−3

2
)
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where the U(1)X charges are obtained by taking the trace QX = Q1 +Q2 +Q3 +Q4 +Q5,
and the Qi are the ±1

2
charges with respect to the five generators of the Cartan subalgebra.

To find the decomposition under SO(6)×SO(4) ≡ SU(4)×SU(2)L×SU(2)R we split the
five slots into the first three which correspond to SO(6) and the last two which correspond
to SO(4). Using the same combinatorial notation gives

16 =

[(

3
0

)

+

(

3
2

)][(

2
0

)

+

(

2
2

)]

+

[(

3
1

)

+

(

3
3

)][(

2
1

)]

Hence, under SO(6) × SO(4) ≡ SU(4) × SU(2)L × SU(2)R it decomposes as:

16 = (4, 2, 1) + (4̄, 1, 2)

The decomposition under SU(3) × U(1)C × SU(2) × U(1)L is

16 =

[(

3
0

)(

2
0

)]

+

[(

3
2

)(

2
0

)]

+

[(

3
0

)(

2
2

)]

+

[(

3
2

)(

2
2

)]

+

[(

3
1

)(

2
1

)]

+

[(

3
3

)(

2
1

)]

The charges under the U(1)s are given by the sums under QC = Q1 +Q2 +Q3 and QL =
Q4 +Q5 for U(1)C and U(1)L, respectively. Hence, under SU(3)×U(1)C ×SU(2)×U(1)L

the 16 decomposes as:

16 = (1,
3

2
, 1,+1)+(3̄,−1

2
, 1,+1)+(1,

3

2
, 1,−1)+(3̄,−1

2
, 1,−1)+(3,

1

2
, 2, 0)+(1,−3

2
, 2, 0).

6(c). From the last line we can read off the Standard Model states. These are in
order respectively

ec
L , dc

L ,Nc
L , uc

L , Q , L

where the subscript L indicates that these are all left–handed fields and the upperscript
c denotes charge conjugation (corresponding to antiparticles). The weak hypercharge is
given by

U(1)Y =
1

3
UC +

1

2
UL

and the electric charge by U(1)e.m. = T3L
+ U(1)Y where T3L

is the diagonal generator of
the SU(2) subgroup.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

7(a). The SU(2) × U(1)Y charges of the electroweak Higgs doublet φ.

φ : T =
1

2
; T3 = ±1

2
; Y = 1

(7b.) The electric charge is given by:

Qe.m.(φ+) = T3 +
1

2
Y =

1

2
+

1

2
= +1

Qe.m.(φ0) = T3 +
1

2
Y = −1

2
+

1

2
= 0
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(7c.) The Lagrangian density for the Higgs field include the kinetic and potential terms

∣

∣

∣

∣

(

∂µ − ig ~T · ~Wµ − ig′
Y

2
Bµ

)

φ

∣

∣

∣

∣

2

− V (φ)

where the potential is given by

µ2φ†φ+ λ
(

φ†φ
)2

(7d.) The relevant term for the gauge boson masses

∣

∣

∣

∣

(

g ~T · ~Wµ + g′
Y

2
Bµ

)

φ

∣

∣

∣

∣

2

=

∣

∣

∣

∣

(

g
~τ

2
· ~Wµ + g′

Y

2
Bµ

)

φ

∣

∣

∣

∣

2

=

1

4

∣

∣

∣

∣

(

g

2

[(

0 1
1 0

)

W 1
µ +

(

0 −i
i 0

)

W 2
µ +

(

1 0
0 −1

)

W 3
µ

]

+
g′

2

(

1 0
0 1

)

Bµ

)

φ

∣

∣

∣

∣

2

=

1

4

∣

∣

∣

∣

[

g

(

W 3
µ W 2

µ − iW 1
µ

W 2
µ + iW 1

µ −W 3
µ

)

+ g′
(

Bµ 0
0 Bµ

)]

1√
2

(

0
v

)∣

∣

∣

∣

2

=

1

8

∣

∣

∣

∣

(

gW 3
µ + g′Bµ g(W 2

µ − iW 1
µ)

g(W 2
µ + iW 1

µ) −gW 3
µ + g′Bµ

)(

0
v

)∣

∣

∣

∣

2

=

1

8
v2
(

g
(

W 2
µ + iW 1

µ

)

,
(

−gW 3
µ + g′Bµ

))

(

g
(

W 2
µ − iW 1

µ

)

−gW 3
µ + g′Bµ

)

=

1

4
g2v2Wµ+Wµ− +

1

8
v2(g2 + g′2)

(

−gW 3
µ + g′Bµ

)2

(

√

g2 + g′2
)2

=

(

1

2
gv

)2

Wµ+Wµ− +
1

2
v2

(

g2 + g′2
)

4

(

−gW 3
µ + g′Bµ

√

g2 + g′2

)2

=

M2
W± Wµ+Wµ− +

1

2
M2

ZZ
2

reading off from the last two lines we have

MW± =
gv

2
; MZ =

1

2
v
(

g2 + g′2
)

1

2

hence
MW

MZ

=
g

(g2 + g′2)
1

2

= cos θW
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