MATH 431 — Aug 2019: Solutions

All problems are similar to homework problems or material covered in the lectures.

1.
ao CLO, a; = —al, an —CL2, as = —CLS
ag = a"® =y(a® — Ba') = y(ao + Bay) (1)
ay = —a't = —y(—Ba’ + a') = y(Bao + a1)
and ahy = a, ay = as
b.
Suppose we have a function f(x° 2! 22 23) which we express as a function of
20, 't 22, 2’3 by expressing z* as a function of 2/#. The standard chain rule for

partial differentiation says that

Of (a¥(2'") = Of Oz

ox'H a ‘ oxv Ox'H
v=

for n=20,1,2,3

Using the summation convention and writing as an operator equation we get

0 ox¥ 0

ox'H - ox'* Oxzv

We need z as a function of 2/, the inverse of the Lorentz transformation that gives 2’ as a
function of x. For a boost along the z’ axis, the inverse is a boost with the opposite speed,
SO

xO _ ,y(a:/() +ﬁ$,1), xl — ,y(ﬁxlo +x/1), x2 _ 3:123:3 — x/3

Hence
9" D’ Ozt Ozt
6,1:/0 = 77 61”1 = 7/87 61”0 = 7/67 w = ’y
and
0 0 0 0 0 0 0 0 0 0
da’ 7(3$O +ﬁ6$1)’ ozt wﬁ@xo * le)’ oz'2  0x2’ Qa3 Ox3
which is the same as as (1) with a, = g?

c.
The operator for momentum p'is —ihﬁ, i.e.

0 0 0
12—'71— 22—'71— 3 _ .
p ’ 6.%17 p ’ 6.%27 p 6.%3
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and

0 0 0

p1= ih@, p2 = ih@, p3 = ih@ (6)
The Schrodinger equation says
oY
h— = H
ihge =Y
where H is the energy operator. Since p® = % and 2% = ct, this can be written as
0
=ih—- 7
Po t 0 ( )

If we write (5) and (7) in terms of p,,, we remove the sign difference between the 0 com-
ponent and the others.

L0
Pu:m@,

which transforms as a Lorentz covariant vector, as we have shown in (b).

. (a) In the lecture we have derived
OH

dq0

Therefore, pg is constant in time if H does not depend on qq.

One example for such a system is given in part (b) below, where H does not depend
on ¢. A second example would be a one dimensional harmonic oscillator (in x) embedded
in two dimensions such that there is no y dependence and therefore the momentum p, =
constant.

(b) In polar coordinates

Do =

xr = rsinflcos¢,
y = rsinfsing,
z = rcosf,

the kinetic energy is given by

%m [7*2 + (rf)? + (rsin 94{))2] :

and with the potential energy V the Lagrangian is given by

L = %m [7*2 + ()% + (rsin 0&)2} -V.

Now
oL .
Pro= %y = ™
oL 94
= — = mr<o,
Pe = 96
oL 2 .. 2.5
= — = mr°sin©60¢.
Do ) o



3a.

3b.

Hence

H = Zpidi — L =mi? + mr26? + mr?sin? 092 — % (7;2 + 726 + 2 sin? 9¢2> +V
i

= % (7*2 + 1262 + r? sin? 9¢2> +V
P’ pe’ Py”

— V.
2m + 2mr? + 2mr2 sin® 0 *

With this we get

. OH oV 0

o7 e T o T
An axisymmetric potential does not depend on ¢, so py is a constant of the motion,
and the angular momentum about the symmetry axis is conserved.

1

5
J4 and J_ generate the algebra SU(2)®@SU(2)". J? and J? are the Casimir operators
of SU(2) and SU (2)*, respectively, and are therefore invariants of the Lorentz group.

Jr = =(J +iK)

1 - —
Ji = ZUQ — K*+2iJ - K)
1 - —
J? = ZUQ ~K?-2iJ-K)
J?— K?=2(J2 + J?)
J-K=—i(J2 —J?%)
Therefore J2— K2 and J-K are Lorentz invariants as well, being the sum and difference

of Lorentz invariants.

For the representation (ji,jo) of the SU(2) ® SU(2)" algebra the number of states is
(271 + 1)(2j2 + 1).
The total spin is given by j; 4+ j2. Therefore the composition j; ® jo breaks under

SU(2); with the following spin states

+ie@ji+j—1&--- @51 — jo

Voo +imp = 0, (D) —imyt = 0
= 0"y —imyt =0  and  (9u¥)v* —imap = 0.
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(a) With this
Oy ) = ()Y + 97" (9ut) = (imah)y +d(—imyp) = 0.
(b) Similarly, and with {7°,7#} = 0 we get
O (O v°) = (Db )"y 9 + Pyt y*(Ouh) = (im)y* Y — Oy (Y 0ut) = 2imapy™y) .
(c) From the Dirac equation for the spinors @ and u; we have
0 = ay(py —m)v u; = upy"(p; — m)wi

= 2mupyup = ap(ppyt " )
and  peyt +" b = Vs, + 9 i,

Now
VA AT = 29",
YA ="y = =2ie™
= yHyY = gt —ioh” and AR = gM + it .
So we get

by T b = 9" (pr + i)y +i0" (pp —pi) = (pf +pi)" +ic" (pr —pi)v,
and finally have derived the Gordon decomposition

1

apyu = o g [(py +pi) + 0" (pr = pi)u]ui

5.

To construct a consistent three dimensional theory, we must ensure that the dynamics
do not depend on the z—direction. The motion of the particle must be confined in the
(x,y) plane. Since the Lorents force is perpendicular to the magnetic field, it follows that
the components of the magnetic fields in the (z,y) plane has to vanish. Similarly, the
component of the electric field in the z—direction is zero. Hence, we take

E,=B,=B,=0.

The remaining components E,, E, and B, can only depend on = and y. Similarly, the
velocity and current components in the z—directions are zero, i.e. v, = j, = 0. Maxwell’s
equations then become

E, E 5 o
9 _}_Q:p from V.-E=p
ox oy




0E, 0E, 10B. . = 108

— = f E=—-—-—"—
ox oy c Ot rom VX c Ot
0B, _j_x 18E$
dy ¢ ¢ Ot

_8BZ _j_y lﬁEy
oxr ¢ c Ot
from ﬁxé:z—kla—E
c ¢ Ot

The remaining Maxwell equation V - B = 0 is trivial because B, = B, =0and B, =
B.(z,y). The Lorentz force law gives nontrivial equations only for the z and y components:

dp v
= Ex _me) ;
dt q< + c

dpy Vg
Py _ E——B).
dt q<y c Y

5b. In three dimensions we have A* = (@,Al,AQ), A, = (®,-A,-A), and j» =
(cp,jl,jQ). Moreover, F),, = 0, A, — 0,A,, so

104; 09
Fi = — r— _Ei
0T ot + or’
0A 0A
Flo=—""*Y_"—"2=p,
200 oy
Thus, the field strength tensor takes the form
0 —-E, —-E 0 E, FE,
F,, =1 E; 0 B, =\ —-F, 0 B,
E, -B, 0 -E, -B, 0

The above D = 3 field strength F' can be viewed as the D = 4 one with £, = B, = B, = 0.
The D = 3 current j can be viewed as the D = 4 current with j, = 0. The three
dimensional Maxwell equations are therefore the truncation to £, = B, = B, = 0 and
Jj» = 0 of the original four dimensional ones



6a.
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The weight lattice of the spinorial 16 representation of SO(10). Each entry is multiplied
by the % These are the charges with respect to the five U(1) generators of the Cartan
subalgebra. The product of the five charges should be either positive or negative. In the
positive case we can have zero, two or four negative charges of the total five. In the negative
case there can be one, three or five negative charges. In either case the total number of
possibilities is 16. These are the two spinorial representations of SO(10) being the chiral
16 and the anti—chiral 16.

6(b).
Under SU(5) x U(1) x, using the combinatorial notation introduced in the class

- (3)+(9)+(2)

where the combinatorial factor counts the number of — in a given state. Hence,

16 = (1, g) + (10, %) + (5, —%)
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where the U(1)x charges are obtained by taking the trace Qx = Q1+ Q2+ Q3+ Q4+ Q5,
and the (); are the j:% charges with respect to the five generators of the Cartan subalgebra.
To find the decomposition under SO(6) x SO(4) = SU(4) x SU(2), x SU(2) g we split the
five slots into the first three which correspond to SO(6) and the last two which correspond
to SO(4). Using the same combinatorial notation gives

o= () G)IGE)+ G+ 1)+ GG
Hence, under SO(6) x SO(4) = SU(4) x SU(2)1, x SU(2)x it decomposes as:

16 = (4,2,1) + (1,1,2)

The decomposition under SU(3) x U(1)c x SU(2) x U(1)y, is

0= 1(6) GG )G COE) GG G G

The charges under the U(1)s are given by the sums under Q¢ = Q1 + Q2 + Q3 and Q =
Q4+ Q5 for U(1)e and U(1) g, respectively. Hence, under SU(3) x U(1)e x SU(2) xU(1)p,
the 16 decomposes as:

3 o1 3 o1 1 3
16 =(1,,1,41 —, L+ +(1,5,1, -1 —=,1,-1 =2 1,—=
6 ( 727 7+ )+(37 27 7+ )+( 727 Y )+(37 27 Y )+(3727 70)+( Y 27

2,0).
6(c). From the last line we can read off the Standard Model states. These are in
order respectively

C C C C
ef ,d7 ,Ng ,u7 ,Q,L

where the subscript L indicates that these are all left—handed fields and the upperscript
¢ denotes charge conjugation (corresponding to antiparticles). The weak hypercharge is
given by
1 1
U(l)y = gUC —|— §UL
and the electric charge by U(1)e.m. = T3, + U(1)y where T3, is the diagonal generator of
the SU(2) subgroup.

e i i e e i i o S i i o R SR A

7(a). The SU(2) x U(1)y charges of the electroweak Higgs doublet ¢.

1 1
T=-:Ty=4-;Y=1
¢ 9 ; 43 2 )
(7b.) The electric charge is given by:
1 1 1
e.m. =T33+ Y =5+-=+1
Qem.(6+) 3+ 5 3 + 2 +
1 1 1
e.m. =T3+Y=—-+-=
Qen.(¢0) =T + 5 5+5=0



(7c.) The Lagrangian density for the Higgs field include the kinetic and potential terms

2

. - V(6)

A Y
’ (GM —agT - W, — ig’—BM) 10)
where the potential is given by
2
12oTo+ A (¢79)

(7d.) The relevant term for the gauge boson masses

. Y
’ (gT W, + g’EBM) o

Y
2
O—iW2+1OW3+g_’1032_
i 0 ) "rT o —1) " T3 \0 1)
@ . 0
v

1’( gW2+4' B, g(Wj—iwg)) (o

8 |\g(W2+iW,;) —gW2+gB, v
1o 2 oyl 3 g (W2 —iWw})
50" (g (Wi +iW,), (=gWi +9'By)) S
W3+ ¢'B
—gQUQW“+W“7+—v2(g2+g’2)< Wy T9 MQ) _
4 8 ( g2 +g/2>
2 2, 2\ /13 o A 2
(1gv) W 4 L2 (9*+97?) [ —gW2+ 4B,
2 2 4 /% + g2
1
Mp,e WHTWHS 4 5M§Z2

reading off from the last two lines we have
v 1 1
Mwi:% ; MZ:§U(92—|—9’2)2

hence
= cos Oy




