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la The vacuum expectation value of the electroweak Higgs field ¢:
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The Standard Model SU(2) x U(1)y quantum numbers of the component of the Higgs
field with non-trivial VEV are:
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Hence, the electromagnetic symmetry remains unbroken by the VEV of the Higgs
field.
The Lagrangian density of the Higgs field is given by:
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The relevant term for the gauge boson masses:
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reading off from the last two lines we have
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1b We will derive the general case for Higgs representations and then substitute.

general term for the gauge bosons masses has the form
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where in the last line we used
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M}, is the coefficient of WTW ™,
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and where in the last line correspond to the quantum eigenvalues of the electrically
neutral component of the Higgs representations. We require that Q(¢;o) = 0, which

ensures that electric charge remains unbroken by the vacuum expectation values of
the Higgs fields.
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M?2 is obtained from the matrix element of the second term
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For T} = 3 and Y = 4 we have
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For any number of doublets T; = %, Y; =1




For a triplet T} = 1Y =2
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Experimentally, p =~ 1.0000.... is highly constrained.

(2a) The fundamental and anti-fundamental representations of SU(5) are

The 24 representation is obtained by takingthe product 5 x 5

5x5=[(3,1) 2 + (1,2)+1] X [(3,1)% + (1,2)_1]
= (87 1)0 + (17 1)0 + (372)—g + (372)4-% + (173)0 + (17 1)0 =24+1

The leptoquarks in the 24 representation are:

with electric charges

=155+ 104

In SU(5) the matter states are embedded in the 5 and 104 representations as:

Df = (3,1)2
Lo =(1,2)
Uf = (3,1)_1
QL =(3,2):
Ef = (1,1)



Note that all the states are taken as left—handed fields.
The diagrams that couple fermions to the leptoquarks vector bosons
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which contains the left-handed electron field uz’, as
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(3b) The decay pu — ey is allowed by kinematics and w.r.t. charge conservation, but is
forbidden in the Standard Model as it would violate the separate conservation of the
lepton numbers N, and N.. Empirically, N, , r are conserved and the decay p — ey
is not observed.

(3c) Feynman diagram for p~ — v, e” 7. in the Standard Model to lowest order:

The solid ‘external’ lines stand for the incoming and outgoing spin-1/2 particles, the
muon, electron, muon-neutrino and electron anti-neutrino. The wavy internal line is
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the propagator of the W~ boson, the carrier of the weak interaction. It mediates the
transition from the initial state ;1= to the final state v, and creates the e~ and 7, in
the final state. The solid dots denote the vertices of this weak interaction.

The algebraic expressions for the different elements are:

— incoming p~: spinor u

— outgoing v,: spinor 4

— outgoing e : spinor u

— outgoing v,: spinor v

— vertices: —i%vo‘%(l —7%) and —i%vﬁ%(l —~®), with weak coupling constant g

— propagator: in.s/(q> — m¥,), where g is the four-momentum transfer and myy is
the mass of the W boson
The momentum transfer squared, ¢2, is of the order of (but limited by) mi, which
is very small compared to m%v. Thefore the propagator is well approximated by
—inas/mi¥,. This is a very strong suppression factor, which would not be present if
the W would be massless.

The 7 lepton is much heavier than the u or the e, therefore it can decay into both:
T —VUr€ Ve, T —VUrlh Vy.

The decays are very similar, with only small differences due to the different masses
of the final state particles. In addition, as the 7 is also heavier than light hadrons, it
can decay in many hadronic final states like pions (the v, must always be there due
to N, conservation). In these cases the W intially couples to a quark pair which then
hadronises. One example is the decay

T —>1/T7r_7r0.



