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2(i). Taking the inverse of (1), we have
(LTnL)_l — ,'7—1 = L_l’l]_l(LT)_l — ,’7—1
Multiplying on the left by L and on the right by LT, we find
LL—l,r’—l(LT)—lLT :L’I']_lLT
n~' =Ly 'L7,
as required.
(ii) Putting u = v =0 in (3), we have
NapL®LPo =1, 1L L% =1
. 2 2 2 2
1.€. (Loo) - (Llo) - (L20) - (L30) = 1,
20 \2 (70 \2 =0 \2 =0 \2
(L%)" = (L%1)" = (L%)" = (L%)" =1
2 “0\2
= (LO()) — |1|2 = 1, (Loo) — |1|2 =1

T F0 \2
= |l = /(L%)" =1, [1]=1/(L%)" ~1.

(i)
(LL)% =L°,L%

=L%L% + L% L'y + L% L%, + L°3 L%,

=L%L% +11
(iv)

L1 < YT} = = QI <T1< |

= (using (iii)) (LL)% — L%L% > —1|]1|
= (LL)° > L%L% — |1
ie. (using (i) (LL)% > L%L% — /(L%)* — 14/ (L%)* - 1.

(v)

(z—y)* > 0= 2> =20y +y* > 0= —2ay > —2” — ¢
= 22y — 2y +1>2%% — 22 —y? +1
=22 22y +1> (22 - 1)(3* - 1) = (zy — 1) > (22 — 1)(y* - 1).
= either zy—1>1v22—1y/32—-1 or zy—1<—vaz2— 122 — 1.

If z,y > 1 then zy — 1 is positive, and we must have the first inequality, implying

oy — Va2 — 12 —1> 1.
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Writing L% = z, L% = y, we have from (iv)

(LL)% > I%L% — \/(L9%)? — 11/ (L%)® =1 > 1.

(vi) Obviously if det L = det L = 1, then

det(LL) = det Ldet L = 1.

(vii) We have now shown that if L € Ll, Le ETF, then LL € LTF. It is clear that 1 € Lil.

(viii) We can write (1) as
(' LT L=n""n=1,

Wthh ShOWS that L_l = 77_1LT77, i.e. (L_l)NV — nHQ(LT)aﬁnﬂy — n”aLﬂanﬂu- SO
(L=1)% =7 LO%mngo = L%. Moreover,

det L™' = detn ' det LT detn = (—1)det L(—1) = det L = 1.

So L7t e E_TF. The remaining group property is associativity, (L1 Lg)Ls = L1(LaLs3),
which is true for all matrices. So El s a group.

I:_b3

Then
a'tb, = a’b)y + o’} + a’?bly + a’3by+
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a™b, = y(a® — Ba' )y (b° — Bb') — y(—Ba’ + a')y(—pb° + b)) — a®by — a®bs
=? [a®°(1 — B?) — a'b* (1 — B?)] — a®b2 — a®bs
=a%° — a'b! — a%b? — a®b® = by + a'by + a®by + a3bs

— b
= alb,

4.
Lorentz transformations, derivatives and quantum operators

a.
ap=a’, ay = —a', ay = —d?, a3 =—a
ap = a’® = y(a” — Ba') = y(ao + Ba1) (1)
ay = —a't = —y(—pfa’ +a') = v(Bao + a1)

and ab = a, aj = ag
b.

u we have a function f(z",z", x*, z°) which we expr unction of ™, z'*, '°, =
Suppose we have a functio 0 z! 22, 2%) which we express as a function of 2’°, %, /2, '3

by expressing z# as a function of z’#. The standard chain rule for partial differentiation
says that

df <~ Of Ox¥

ox'H ‘ oz Oz'H
v=

for n=0,1,2,3

Using the summation convention and writing as an operator equation we get

0 ox¥ 0

ox'H - ox'* Ozxv

We need z as a function of 2/, the inverse of the Lorentz transformation that gives z’ as a
function of z. For a boost along the z’ axis, the inverse is a boost with the opposite speed,
SO

.’L‘O — ,y(xxo +ﬁ£€ll), 581 — ,y(ﬁxlo +£L"1)

Hence 9 P P P P 9

50 ~ Wog0 TPggt) Gam = 1P gp0 + 55105
which is the same as as (1) with a, = gzu
c.

The operator for momentum p'is —ihﬁ, i.e.

0 0
1——' _ 2:—' _ 3:—' R —
p = —ih , P Zh&cg’ P Zh@:vg (5)
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and 5 5 5
pl_lha 1ap2_Zha 27p3 h@ (6)

The Schrodinger equation says

P

Mor =1V

where H is the energy operator. Since p® = % and z° = ct, this can be written as

0

If we write (5) and (7) in terms of p,, we remove the sign difference between the 0 com-
ponent and the others.

.0
pu:m%a

which transforms as a Lorentz covariant vector, as we have shown in (b).



