Action principle for fixed values of q(t;) = gin, g(tf) = gout, then the classical
trajectory which satisfies these boundary conditions is an extremum of the
action

tout
0 dt L(q,-, gi, t) =0
tin

oL

RO
0q; dt \ J0q;

Classical field theory

the action is given by

S= /d4x L(¢p,0'p) <« relativistic notation

Q>



The equations of motions for the field ¢ are obtained by requiring that the

variation of the action vanishes and demanding that d¢ = 0 at t; and t».
5/£(¢, OFp)d*x =0

we note that there is no explicit dependence of £ on x*.
Since this holds for any d¢ we have that

OL(¢, 0" ¢) OL(p,0*P)\
9o _8“< A(0,0) >_O

These are the Euler—Lagrange equations of motion for the field ¢.
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Example: in the case of the harmonic chain

_1 -2_1 12
ﬁ—zuy 5TV

or_ 9L

ay ay Y
oL

oL oL %y
"o0.y) oy or
which is the familiar wave equation.

/

oL

5 =
02y

T— =
Ox2

0

0



L= 2 (0u)(06) — 5 m’? = 2 (a0)(D0) — 3’

L6 0"0) 1 ,,0(0u0) 1 s 0(059)
0.0~ 2" 860 0t " 9555

1 o 1 o
= 577 65au(a,8¢) + 577 Béﬁu(aaqb)

1 1 1
= 3717(050) + 50" (0a0) = 520" (9,0)

OL(9,0" ) 0L(p,0"¢) v 2

= (9,0" + m?)p(%,t) =0

This is the Klein—Gordon equation of a reletivistic free scalar field that we will

encounter in more detail later on.
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The Hamiltonian for a field can be written has
H= /h(gb,w)dxdydz

where the generalised momentum density is given by

(X, t) = g—;

where the generalised Hamiltonian density is defined by
h= (X, t)n(%,t) — L
and
H = / Px($(%, ) (%, ) — L) = / & h(g,)

For the Klein—Gordon field,

£= 36— (Vo) - me?)
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We used here 9" = (9;,V) , Oy = (0, -V) —» O= 0,0t = (02 — V2)
oc .
= — =

99

he &= (30 - (V6F = ) ) = 1 (3 (Vo) + mie?)

the total energy [ hd3x should be conserved if H # H(t), and be the zero
component of some four vaector P¥. To construct it we introduce the energy
momentum tensor

oL

T = 5w,9

— Ly

pr [ Togs
and H=P° = /T°°d3x
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TH¥ is conserved as it satisfies the continuity equation

8, T =

= o* — Lyt
o (o5 - 1)
= 00, () + 00 g — 1 (Goa+ 5 aam)

(9v9) (0, ¢) ¢ 9(O9)
oL oL oL oL
= || === ot — 0,0 —0"0
(2 (s0m7) ~ 36) 9+ B ™o~ oy "0 =
The conservation of T implies that
Pt = / THd3x

transforms as a 4—vector and is time independent.

P# is the energy—momentum 4—vector.
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In non—relativistic quantum mechanics

= - ., 0
P——iRV |, E— /ha quantum operators
The Hamiltonian for an energy conserving system is

-

He v

N — F
oy T V()
leads to the Shrodinger equation by substitution

.

2 0
=2 — — . —
74 V(qg,t)=ih—V(q,t
9 V(@) ¥@t) = V(a0
In special relativity the four vector P* is given by

E -
Pu:(ZvP)

=} =3 E DA
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we have OF = (%%,ﬁ) ;0= (%g—, —V) Therefore we can identify
PH = jhoM.
In special relativity E = \/”szz ) P= ’"—‘7V2 Therefore,
T2 T2
2 3 . I
PPt = % — P? = m?c?. Following the example of non-relativistic quantum
mechanics we use P* — ihd" and obtain the wave equation

~120,0Mp = m* 2o

or

2 m2C2 A . .
0° + = o(X,t)=0 < the Klein—Gordon equation

Its interpretation as a single particle is problematic. The equation describes a
scalar field but not in a single state but a multi—state, i.e. a quantised field.
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