MATH431 — Introduction to Modern Particle Theory: FEEDBACK/SOLUTIONS 3
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2. (i) Taking the inverse of (1), we have
(LTpL) "t =yt = L4y L (LT) "L = 2.
Multiplying from the left by L and from the right by L, we find
LL Yy Y LT) LT =Ly LT
n~t=Lp LT
as required.
(ii) Putting 4 = v =0 in (3), we have
nasL®0L 0 =1, 7L L% =1,
e, (L%)° = (L'o)” = (L%)° = (L%)” =1,
(L) = (L%)" = (L%)" = (L%)" =1

TP =1, (L%)°-*=1

= (L%)

= 1] = \/(L%)* =1, ] =4/(L%)" 1.
(iii) . i
(LL)°y =L°, L%
=L%L% + L° L'+ L L% + L5 L%,
=L%L% +11

1



L1 < [T = — 1] <11 < 1]
= (using (iii)) (LL)% — L%L% > —[1|]]|
= (LL)% > L%L% — 1|1,

e, (using (1) (LL)% > L0%L% — /(L%)* — 11/(19%)* — 1.

(x—y)?>0=2"—2zy+y* > 0= —2ay > —a° —
:>x2y2—2xy+12x2y2—x2—y2+1
= 2%y —2ry+1> (22 - 1)(y* - 1) = (2y —1)* > (2> = 1)(y* - 1)
= either zcy—lZ\/xQ—l\/yQ—l or xy—lg—\/;c?—l\/yQ_l,

If x,y > 1 then zy — 1 is positive, and we must have the first inequality, implying

zy— Va2 —1/y2—1>1.

Writing L% = z, L% = y, we have from (iv)

(LL)% > L%L% — \/(L00)2 —1 \/(EOO)2 -1>1.

(vi) Obviously if det L = det L = 1, then

det(LL) = det Ldet L = 1.

(vii) We have now shown that if L € EL, LeLl then LL € £L. It is clear that 1 € EL.

(viii) We can write (1) as
(' L' L=n""n=1,

which shows that L~! = n~'LTn, ie. (L7Y)", = n#*(L")a 15, = n**LPang,. So
(L=1)% =7 LY%noe = L%. Moreover,

det L™' = detn'det LT detn = (—1)det L(—1) = det L = 1.

So L7t e EL. The remaining group property is associativity, (L1 Lo)Ls = L1(LoLs3),
which is true for all matrices. So E_Ti_ 1S a group.



3. (a)

In the lectures we have defined the operators .J; + by

and seen that f+ and J_ are both generating the algebra SU(2) but commute between
each other. In this way we have rewritten the Lorentz algebra as the algebra of

SU(2) x SU(2). As j;% and J2 are Casimir operators of the two commuting SU(2)
groups they are thus also invariants of the Lorentz group. We have

]_ — — —
J2 = Z(j2—1<*2+2z'J-K),

1 — - —
J? = Z(jQ—lr(?—mJ-K),

and hence .
JP—K? = 2(J2 + %),

- -

J-K = —i(J: - J2).
Therefore J2— K2 and J-K are Lorentz invariants as well, being the sum and difference

of Lorentz invariants.

For the representation (ji, j2) of the SU(2) x SU(2) algebra the number of states is
(2j1 + 1)(2j2 + 1). The total spin is given by j = j; + j2. Therefore the composition
Jj1 ® jo breaks under SU(2); with the following spin states

+J@ii+j—1& @ |j —jol.



