
Special relativity and the Lorentz group

Rotations in 2D

xy

θ

y

x
Rotations in 2D

(

x ′1
x ′2

)

=

(

cos θ sin θ

− sin θ cos θ

)

(

x1

x2

)

≃

[(

1 0

0 1

)

+ θ

(

0 1

−1 0

)]

(

x1

x2

)

(for small θ)

Similarly in three dimensions ~X ′ = R ~X R = 3x3 matrix.

~X ′
· ~X ′ = ~X · ~X or ~XTRTR ~X = ~X · ~X =⇒ RTR = I

The metric in this case is ηij =







1 0 0

0 1 0

0 0 1









Einstein’s special relativity follows from two basic tenets:

c , the speed of light in vacuum is constant in all inertial frames with

c = 3 · 108m/s (in these lectures we often set c = 1).

The laws of physics are the same in all inertial frames.

Events are labelled by their time and position in intertial frames.

−→ 4vector Xµ = (ct, ~X ) µ = 0, 1, 2, 3

x0 = ct ~X = (x1, x2, x3) = (x , y , z)

The length of the four vector is given by

X · X = c2t2 − x2 − y2 − z2 = t2 − x2 − y2 − z2 with c = 1

written as X · X =
3
∑

µ,ν=0

ηµνX
µX ν = ηµνX

µX ν = XµX
µ µ = 0, 1, 2, 3

Einstein’s summation convention, repeated upper and lower indices are summed
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The Minkowski metric ηµν =













1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1













general scalar product of two 4–vectors → X · Y =

3
∑

µ,ν=0

ηµνX
µY ν

using Einstein’s summation convention. Different types of objects:

scalar – no free indices. All indices are summed over.

vector – one free index (e.g. Xµ)

tensor – two and more free indices (gµν , Rµνρσ)

Lorentz transformations → preserve the scalar product & length of 4–vectors.

t2 − ~X2 = X · X = ηµνX
µX ν = X ′

· X ′ = ηµνX
′µX ′ν = t ′

2
− ~X′

2

MATH431 Lecture 1 2020–2021 Semester 2 3 / 9



X and X ′ are related by a Lorentz transformation : Xµ
→ X ′µ = Λµ

νX
ν

In general we write the metric as gµν and its components can be functions of

spacetime. This is the subject of general relativity in which spacetime can be

curved. The metric satisfies

gµνgνσ = δµσ ⇒ (gµν)−1 = gµν

In flat spacetime that we are dealing with in this lectures gµν → ηµν . We

distinguish between 4–vectors with upper and lower indices. We write

Xµ =

3
∑

ν=0

gµνX
ν

Xµ is a covariant vector and Xµ is a contravariant vector.

For Xµ = (t, ~X) → Xµ = (t,−~X), for our choice of the Minkowski metric.
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Given a vector Xµ = (t, ~X) there are two differential quantities of interest

1. dXµ → differential → contra variant four vector

2. ∂
∂Xµ = ∂µ → gradient → covariant four vector

How do they behave under coordinate transformations Xµ → X ′µ?

1. dXµ → dX ′µ = ∂X ′µ

∂Xν dX
ν

2. ∂
∂Xµ → ∂

∂X ′µ = ∂Xν

∂X ′µ

∂
∂Xν

We see that the differential and the grandient transform differently. A four

vector that transforms like the differential is a contra–variant vector

V ′µ =
∂X ′µ

∂X ν
V ν

whereas four vector that transforms like the gradient is a covariant vector

V ′

µ =
∂X ν

∂X ′µ
Vν
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in the following we will use the notation

∂µ =
∂

∂Xµ

Example of a four vector is the momentum vector Pµ = (E , ~P) and

Pµ = (E ,−~P). In relativistic quantum mechanics the momentum four vector is

proportional to the gradient

Pµ ∼
∂

∂Xµ

and

PµX
µ = Et − ~P · ~X
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Properties of Lorentz transformations

Lorentz transformations are transformations that preserve the scalar product

and the length of Lorentz four vectors, just like the rotations that preserve the

length of three vectors in three dimensional spatial space. The only difference

is that in three dimensions we are in Euclidean space with its Euclidean metric,

whereas Lorentz transformations operate in Minkowski spacetime with its

Minkowski metric. The length of four vectors in Minkowski space is given by

ηµνX
µX ν

which is invariant under Lorentz transformations, i.e. there no change in its

size and shape. The invariance implies the existence of a symmetry, which is

generated by a group, the Lorentz group.



Assume Xµ → X ′µ under some Lorentz transformation, i.e.

Xµ
→ X ′µ = Λµ

νX
ν

Hence

ηµνX
µX ν

→ ηµνX
′µX ′ν = ηµνΛ

µ
αΛ

ν
βX

αX β = ηαβX
αX β

⇒ ηµνΛ
µ
αΛ

ν
β = ηαβ (1)

or in matrix notation

ΛTηΛ = η

where η is the 4x4 Minkowski metric and Λ is the 4x4 matrix of Lorentz

transformations. The identity in eq. (1) defines the Lorentz transformations.

⇒ (DetΛ)2 = 1 ⇒ DetΛ = ±1
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The physical transformations correspond to those that can be continuously

connected to the identity, for which DetΛ = +1.

DetΛ = +1 → Proper Lorentz tranformations

DetΛ = −1 → Imroper Lorentz tranformations

We can look at the 00 component of the identity ηµνΛ
µ
αΛ

ν
β = ηαβ

ηµνΛ
µ
0Λ

ν
0 = +1

⇒ (Λ0
0)

2
−
∑

i

(Λi
0)

2 = +1

⇒ (Λ0
0)

2 = 1 +
∑

i

(Λi
0)

2
≥ 1

We have that as,

(Λ0
0)

2
≥ 1 ⇒ Λ0

0 ≥ +1 orthochronos LT

or Λ0
0 ≤ −1 non orthochronos LT
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