The Klein—Gordon equation
In non—relativistic quantum mechanics
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The Hamiltonian for an energy conserving system is
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leads to the Shrodinger equation by substitution
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In special relativity the four vector P* is given by
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Set P* — iho* and obtain the wave equation
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Its interpretation as a single particle is problematic. The equation describes a

> H(X, 1) =0 < the Klein—Gordon equation

scalar field but not in a single state but a multi—state, i.e. a quantised field.
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To find solutions of the Klein—Gordon equation we put it in a box and impose

that the wave—function vanishes on the boundaries. We then take the volume

to infinity. We assume that the particle is free i.e. V(X) = 0. The solution in
the box is a plane wave solution of the form

¢()?7 t) ~ eikuxﬂ

xt = (t,X)
Kt = (w, k) , k, = (w, —K) < constant
(;5()—(»7 t) ~ ei(wif—k-)?)
We want the solution to describe a free particle of mass m. We substitute this

solution into the Klein—Gordon equation
= kk" =w?— k> = m?
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The particle is confined in a box **1™¢ ¢(x,y,z,t) = T(t)X(x)Y(y)(Z(2)

o . T X 4 2
substituting in the KG equation — -7 + X + v + = = m“ — const
2 2 2 2
all constants —  w* — kg — k; — k;
To satisfy the boundary conditions we impose:
ke =55, k, =50 | k=2 where

ni, np, n3 are integers

. 2 . . .
and obtain w? = m* 4+ 75(n + n3 + n3) <« dispersion relations
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The solutions of the KG equations are momentum eigenstates

we have: ¢ = Ae kX = A X" o grg = §—¢ = — ikt AeT kX = — kg

Xu
P = —kk'p=—k¢
2.2 2.2
5 m-c _ o mct 1
= <8+ h2>¢—0 = k= = 2

A= % has dimension of length — Compton wave length of particle of mass m

we have:  PH¢ = iho'p = hkt ¢

¢ describes a momentum eigenstate with eigenvale hk*

.. 2.2 . ..
The condition k? = 77— is the same as P? = m?c?> — mass shell condition
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E
we have: P?>=— — B2 =m?c® = —=+Vm2c2+p?
c

= some solutions of the KGE correspond to negative energy states

— interpretation as a single particle state is problematic. Such interpretation

is in conflict with the probability interpretation of the wave function.
Quantum mechanics — non—relativistically [¢(x)|?> = p(x).
p(x) — probability density — % |y(x)]?dx =1

The probability density in quantum mechanics obeys a continuity equation.

. T .
where J= —é—m(w*vw A VZT

Provided that the potential V() is real, p(x) is conserved.
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We want to construct similar quantities for the KG equation. Furthermore, we

want the continuity equation to be covariant i.e. to hold in all inertial frames,

— Ot =0 < covariant
find a 4—vector j* = (j°, j) which obeys 0,,j* = 0.
Start with the KGE 1. ¢*-) (®+m’)p=0
2. ¢/ (P+m?)g* =0
1 -2 = 0% — ¢d*p* =0

108(6*0%0° ¢ — p0°0°¢*) = 150" (¢*0° ¢ — $0° ¢*)
= 9p(¢*0°¢ — ¢0°¢*) =0
= 1~ (070D — ¢ PT) = Pt =0

MATHA431 Lecture 13 2020-2021 Semester 2

7/9



In Schrodinger case p = ¥*.

Here, p= @5 ¢ o ¢>)

2mc2

¢~ oHIEEPR) _ (FIEL FB

The case with +E in the exponent corresponds to the antiparticle case. For
¢ ~ etEt(), with E ~ mc? we have

p= ¢+

ik imc? imc
2mc?

¢¢>——¢*¢<0

We get negative probability associated with the antiparticle and positive
probability asscociated with the particle. This does not make sense as

probability density — multiply by charge e.
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ih
= Charge density p = ﬁ </mc "+ ime? qS qzb)

Charge current density p = — (qﬁ ng) + qﬁV(b )

The interpretation of the solution of the KGE makes sense as charge density,
not as probability density.

— it makes sense as a quantum field — creating—annihilating particles
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