
MATH 431 — May 2010: Solutions

All problems are similar to homework problems or material covered in the lectures.

1. (a) In the lecture we have derived

ṗ0 = −
∂H

∂q0
.

Therefore, p0 is constant in time if H does not depend on q0.
One example for such a system is given in part (b) below, where H does not depend

on φ. A second example would be a one dimensional harmonic oscillator (in x) embedded
in two dimensions such that there is no y dependence and therefore the momentum py =
constant.
(b) In polar coordinates

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ ,

the kinetic energy is given by Bookwork

1

2
m

[

ṙ2 + (rθ̇)2 + (r sin θφ̇)2
]

,

and with the potential energy V the Lagrangian is given by

L =
1

2
m

[

ṙ2 + (rθ̇)2 + (r sin θφ̇)2
]

− V .

Now

pr =
∂L

∂ṙ
= mṙ ,

pθ =
∂L

∂θ̇
= mr2θ̇ ,

pφ =
∂L

∂φ̇
= mr2 sin2 θφ̇ .

Hence

H =
∑

i

piq̇i − L = mṙ2 +mr2θ̇2 +mr2 sin2 θφ̇2 −
m

2

(

ṙ2 + r2θ̇2 + r2 sin2 θφ̇2
)

+ V

=
m

2

(

ṙ2 + r2θ̇2 + r2 sin2 θφ̇2
)

+ V

=
pr

2

2m
+

pθ
2

2mr2
+

pφ
2

2mr2 sin2 θ
+ V .
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With this we get

ṗφ = −
∂H

∂φ
= −

∂V

∂φ
= 0 .

An axisymmetric potential does not depend on φ, so pφ is a constant of the motion,
and the angular momentum about the symmetry axis is conserved.

2. We consider the line element on a two dimensional surface

ds2 = dθ2 + sin2 θ dφ2 .

(a) The corresponding metric is

gµν =

(
1 0
0 sin2 θ

)

, and its inverse gµν =

(
1 0
0 1

sin2 θ

)

.

(b) Now we want to determine the infinitesimal transformations

θµ → θµ + ǫ ζµ(θ, φ) .

For this we want to find the two functions

A(θ, φ) = ζ1(θ, φ) and B(θ, φ) = ζ2(θ, φ) ,

such that ds2 remains invariant under the transformations

θ → θ + ǫA(θ, φ) ,

φ → φ+ ǫB(θ, φ) ,

with which sin θ → sin(θ + ǫA) ≈ sin θ + ǫA cos θ

and sin2 θ → sin2 θ + 2ǫA sin θ cos θ + O(ǫ2) .

Keeping terms to first order in ǫ we get the transformations

dθ → (1 + ǫ
∂A

∂θ
)dθ + ǫ

∂A

∂φ
dφ ,

dφ → ǫ
∂B

∂θ
dθ + (1 + ǫ

∂B

∂φ
)dφ ;

dθ2 → (1 + 2ǫ
∂A

∂θ
)dθ2 + 2ǫ

∂A

∂φ
dθdφ ,

dφ2 → (1 + 2ǫ
∂B

∂φ
)dφ2 + 2ǫ

∂B

∂θ
dθdφ ,

sin2 θ dφ2 → sin2 θ (1 + 2ǫ
∂B

∂φ
) dφ2 + sin2 θ 2ǫ

∂B

∂θ
dθ dφ+ 2ǫA sin θ cos θ dφ2 .
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We now demand that ds2 remains invariant:

dθ2 + sin θdφ2 → dθ2 + sin θ dφ2 + · · · · · · · · · · · · · · ·
︸ ︷︷ ︸

terms must vanish

.

Thus we obtain the following constraints:

dθ2 :
∂A

∂θ
= 0 ⇒ A = A(φ) = f ′(φ) =

df

dφ
,

dφ2 : sin2 θ
∂B

∂φ
+A sin θ cos θ = 0 ⇒

∂B

∂φ
= −

df

dφ

cos θ

sin θ
⇒ B = −f(φ)

cos θ

sin θ
+ g(θ) ,

dθdφ :
∂A

∂φ
+ sin2 θ

∂B

∂θ
= 0 ⇒ f ′′ + sin2 θ

(
f(φ)

sin2 θ
+ g′(θ)

)

= 0

⇒ f ′′(φ) + f(φ) = − sin2 θ g′(θ) = constant = c .

Solving the two differential equations for f and g we get

f ′′ + f = c ⇒ f = a sinφ+ b cosφ+ c ,

sin2 θ
dg

dθ
= −c ⇒ g = c

cos θ

sin θ
+ d .

For A and B we thus arrive at

A = f ′(φ) = a cosφ− b sinφ ,

B = −
cos θ

sin θ
(a sinφ+ b cosφ+ c) + c

cos θ

sin θ
+ d = −

cos θ

sin θ
(a sinφ+ b cosφ) + d .

We are left with the three parameters a, b and d, which in the following we denote as
α, β and γ, respectively:

A = α cosφ+ β sinφ ,

B = −
cos θ

sin θ
(α sinφ− β cosφ) + γ .

Hence we are left with three degrees of freedom needed to parametrise the transfor-
mation.

(c) The metric ds2 is the metric on the surface of a sphere. The transformations are
generated by the rotations in (θ, φ) of a vector fixed at the origin. The generators
associated with the three degrees of freedom are the operators for the three components
of the angular momentum, Ji. They obey the SU(2) algebra,

[Ji, Jj ] = i ǫijkJk .

3



3. (a) Two-particle states are defined by

|p1,p2〉 = a†(p1)a
†(p2)|0〉 ,

with |p1,p2〉 = |p2,p1〉 as [a†(p1), a
†(p2)] = 0.

We also know that Bookwork

[a(p1), a
†(p2)] = (2π)32p0

1δ(p1 − p2) .

Hence

〈p′
1,p

′
2|p1,p2〉 = 〈0|a(p′

1)a(p
′
2)a

†(p1)a
†(p2)|0〉

= 〈0|a(p′
1){a

†(p1)a(p
′
2) + (2π)32p0

1δ(p1 − p′
2)}a

†(p2)|0〉

= 〈0|a(p′
1)a

†(p1){a
†(p2)a(p

′
2) + (2π)32p0

1δ(p2 − p′
2)}|0〉

+ (2π)32p0
1δ(p1 − p′

2)〈0|a(p
′
1)a

†(p2)|0〉

= (2π)32p0
2δ(p2 − p′

2)〈0|{a
†(p1)a(p

′
1) + (2π)32p0

1δ(p1 − p′
1)}|0〉

+ (2π)32p0
1δ(p1 − p′

2)〈0|{a
†(p2)a(p

′
1) + (2π)32p0

2δ(p2 − p′
1)}|0〉

= (2π)6(2p0
1)(2p

0
2){δ(p1 − p′

1)δ(p2 − p′
2) + δ(p1 − p′

2)δ(p2 − p′
1)} .

(b) The number operator is

N :=
1

(2π)3

∫
d3p′

2p′0
a†(p′)a(p′) .

With this [N, a†(p)] =

[
1

(2π)3

∫
d3p′

2p′0
a†(p′)a(p′), a†(p)

]

=
1

(2π)3

∫
d3p′

2p′0
[a†(p′)a(p′), a†(p)]

=
1

(2π)3

∫
d3p′

2p′0
{
a†(p′)[a(p′), a†(p)] + [a†(p′), a†(p)]a(p′)

}

=
1

(2π)3

∫
d3p′

2p′0
a†(p′)2p′0(2π)3δ(p− p′)

= a†(p) .

So we have

Na†(p) − a†(p)N = a†(p)

⇒ Na†(p) = a†(p)(N + 1) ,

and N |p1 . . .pn〉 = Na†(p1) . . . a
†(pn)|0〉

= a†(p1)(N + 1)a†(p2) . . . a
†(pn)|0〉

= a†(p1)a
†(p2)(N + 2) . . . a†(pn)|0〉

= . . . = a†(p1) . . . a
†(pn)(N + n)|0〉

= n a†(p1) . . . a
†(pn)|0〉 (as a(p)|0〉 = 0 and so N |0〉 = 0)

= n|p1 . . .pn〉 .
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4. (a) The electromagnetic field strength tensor is given by

Fµν = ∂µAν − ∂νAµ ,

and the electromagnetic Lagrangian is

Le.m. = −
1

4
FµνF

µν

= −
1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

= −
1

4
ηµαηνβ(∂αAβ − ∂βAα)(∂µAν − ∂νAµ) .

The Euler-Lagrange equations of motion for this Lagrangian are obtained from

∂

∂xν

(
∂L

∂(∂νAµ)

)

−
∂L

∂Aµ

= 0 .

Now
∂L

∂Aµ

= 0 ⇒
∂

∂xν

(
∂L

∂(∂νAµ)

)

= 0 .

Hence calculate

∂L

∂(∂δAǫ)
= −

1

4
ηαµηβν

[
(δδ

αδ
ǫ
β − δδ

βδ
ǫ
α)(∂µAν − ∂νAµ)

+ (∂αAβ − ∂βAα)(δδ
µδ

ǫ
ν − δδ

νδ
ǫ
µ)

]

= −
1

4

[
(ηδµηǫν − ηǫµηδν)(∂µAν − ∂νAµ)

+ (∂αAβ − ∂βAα)(ηαδηβǫ − ηαǫηβδ)
]

= −
1

4
4

[
∂δAǫ − ∂ǫAδ

]

= − F δǫ .

So
∂

∂xδ

(
∂L

∂(∂δAǫ)

)

= −
∂

∂xδ
F δǫ = 0 ,

which are the Maxwell equations in the absence of sources.

(b)
Aµ → Ãµ = Aµ + ∂µΛ .

Now
F̃µν = ∂µÃν − ∂νÃµ = ∂µ(Aν + ∂νΛ) − ∂ν(Aµ + ∂µΛ)

= ∂µAν − ∂νAµ + ∂µ∂νΛ − ∂ν∂µΛ

= ∂µAν − ∂νAµ = Fµν
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as the derivatives of the scalar function Λ commute. With Fµν also Le.m. is invariant
under the transformation.

(c) The Lagrangian for a massive photon without sources is given by

−
1

4
FµνF

µν +m2AµA
µ .

As before the first term is invariant under the transformation considered above. How-
ever, the second term transforms as

m2AµA
µ → m2ÃµÃ

µ = m2AµA
µ +m2(∂µΛ∂µΛ + ∂µΛAµ + Aµ∂

µΛ) .

The extra terms do not vanish, so the mass term would not be invariant under the
transformation, i.e. break the invariance. Insisting on the invariance therefore forbids
the mass term, i.e. m2 = 0 and the photon has to remain massless.

5. The Dirac spinor for the hydrogen ground state (with spin up) is given by

ψ(r, θ, φ) = R(r)






1
0

ia cos θ
iaeiφ sin θ




 .

For the normalisation we calculate:

1 =

∫

d3rψ†ψ =

∫

4πr2dr |R|2(1 + a2)

⇒ N2 :=

∫ ∞

0

r2|R|2dr = [4π(1 + a2)]−1 .

(a) (h̄ = 1 here and in part (b))

Lz = −i
∂

∂φ
⇒ Lzψ = R






0
0
0

iaeiφ sin θ




 6∝ ψ ,

so ψ is NOT an eigenstate of Lz.

(b)

〈Lz〉 =

∫

d3rψ†Lzψ = 2π

∫

r2dr d cos θ |R|2a2 sin2 θ .

Now
∫ 1

−1

d cos θ(1 − cos2 θ) = 2 −
2

3
=

4

3
⇒ 〈Lz〉 =

8π

3
a2 1

4π(1 + a2)
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⇒ 〈Lz〉 =
2a2

3(1 + a2)
.

In the H-atom, v/c ∼ α ⇒ 〈Lz〉 = O(v2/c2) is a relativistic effect which is due to
the spin-orbit interaction. In the non-relativistic limit a→ 0, and the four-component
Dirac spinors for the spin-up and spin-down states reduce to (decoupled) solutions of
the Schroedinger equation multiplied by the two-component Pauli-spinors.

(c) Bookwork

Sz =
1

2
h̄Σz =

1

2
h̄






+1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 −1






⇒ Szψ =
1

2
h̄ R






1
0

ia cos θ
−iaeiφ sin θ




 ,

hence Jzψ = (Lz + Sz)ψ =
1

2
h̄ R






1
0

ia cos θ
iaeiφ sin θ




 =

1

2
h̄ ψ ⇒ Jz = +

h̄

2
.

6. (a) The Lagrangian density is invariant under global transformations of the phase of the
field φ,

φ→ eiαφ .

(b) If the coefficient of the highest power, i.e. λ, is negative, then there is no stable
vacuum as the system could gain infinite potential energy by choosing large field
values. Therefore the case λ < 0 is not physical. In contrast, the Lagrangian with
µ2 > 0 and λ > 0 descibes a charged, interacting scalar field with mass mφ = µ.

(c) The choice µ2 < 0 and λ > 0 leads to spontaneous symmetry breaking (SSB). To see
this, we first write the Lagrangian in terms of two real components of φ, φ1 and φ2:

L =
1

2

(
(∂µφ1)

2 + (∂µφ2)
2
)
−

1

2
µ2(φ2

1 + φ2
2) −

1

4
λ(φ2

1 + φ2
2)

2 .

The potential is then given by

V (φ1, φ2) =
1

2
µ2(φ2

1 + φ2
2) +

1

4
λ(φ2

1 + φ2
2)

2 ,

with the minima determined by

∂V

∂φi

= µ2φi + λ(φ2
1 + φ2

2)φi = φi

(
µ2 + λ(φ2

1 + φ2
2)

)
= 0
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⇒ µ2 + λ(φ2
1 + φ2

2) = 0 .

We can choose

〈φ1〉 =

√

−µ2

λ
=: v , 〈φ2〉 = 0

as our new vacuum after SSB. Expanding the field around the new vacuum we can write

φ(x) = v + η(x) + iζ(x)

and finally obtain for the Lagrangian L′ after SSB

L′ =
1

2

(
(∂µη)

2 + (∂µζ)
2
)

+ µ2η2 + constant + (cubic & quartic terms in η & ζ) .

The term µ2η2 is a mass term for the field η with mη =
√

−2µ2. There is no corresponding
mass term for the field ζ which is a massless scalar field and hence a Goldstone Boson.

7. (a) Setting u = 1/αs the differential equation becomes

du

d lnE
= b0 +

b1
u
.

Truncating at lowest order, the solution is given by u(E) = u(µ) + b0 ln(E/µ), with a
free integration constant u(µ). After sustituting back u → 1/αs this is the proposed
solution, with the ‘initial condition’ αs(µ).

(b) The proposed definition is equivalent to the substitution

µ = ΛQCD exp

[
1

b0αs(µ)

]

with which we obtain the form

αs(E) =
1

b0 ln(E/ΛQCD)
.

At energies E → ΛQCD the couplings develops a pole, the so-called Landau-pole.
For large values of the coupling the perturbative series breaks down, and the Landau
pole indicates the non-perturbative region of QCD. At large energies, the coupling
becomes small. This so-called ‘asymptotic freedom’ of QCD as an SU(3) gauge field
theory allows us to perform perturbative calculations on the parton level which in turn
reliably describe QCD processes at large momentum transfer. The sketch should show
a monotonically decreasing positive function, indicating the Landau pole at E = ΛQCD

and a small value of αs at large energies.
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(c) The solution valid at the next order of perturbation theory is obtained by inserting
our lowest-order solution into the differential equation including the next order term
∼ b1, leading to

du

d lnE
= b0 +

b1
b0 ln(E/ΛQCD)

.

The solution of this differential equation is given by

u(E) =
1

αs(E)
= b0 ln(E/ΛQCD) + (b1/b0) ln ln(E/ΛQCD) ,

with a suitable redefinition of ΛQCD to next order so that the integration constant
vanishes (formula not requested).
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