
from the previous lecture ...

Quantisation of the KG field (real scalar field).

The Lagrangian density : L =
1

2
∂µφ∂

µφ−
1

2
m2φ2 =

1

2
(∂φ)2 −

1

2
m2φ2

the conjugate momentum π =
∂L

∂φ̇
= φ̇

equal–time commutation relations

[

φ(~x , t), π(~x ′, t)
]

= i~δ(~x − ~x ′)
[

φ(~x , t), φ(~x ′, t)
]

=
[

π(~x , t), π(~x ′, t)
]

= 0



In the Heisenberg picture the equations of motion are given by

i~α̇ = [α,H] , where α→ operator, H–Hamiltonian α 6= α(t)

⇒ [φ(~x , t),H] = i~φ̇(~x , t)

we obtained the correct equations of motion.

The connection between the quatised field and its particle interpretation is seen

by looking at the Fourier transformed field

φ(~x , t) =
1

(2π)3

∫

d3~p

2po

(

e
−ip·x f+(~p) + e

ip·x f−(~p)
)
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So far the Fourier decomposition that we discussed is classical,

i.e. we didn’t yet impose the commutation relations.

If we impose the commutation relations

[π, φ] = δ3(~x − ~x ′) ,

[φ, φ] = [π, π] = 0

amplitudes of the Fourier modes become annihilation and creation operators,

f−(~p) = (f+(~p))
† = a†(~p)

f+(~p) = = a(~p)

It can then be shown that a(~p) and a†(~p) satisfy the commutation relations
[

a(~p), a†(~p′)
]

= 2p0δ3(~p − ~p′)(2π)3

[

a(~p), a(~p′)
]

= 0 =
[

a†(~p), a†(~p′)
]
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i.e. the quantum field φ(x) creates and annihilates particle states with

momentum ~p. The vacuum is defined by

a(~p)|0〉 = 0 ∀ ~p 〈0|0〉 = 1

1− particle state |~p〉 = a†(~p)|0〉

2− particle state |~p1, ~p2〉 = a†(~p1)a
†(~p2)|0〉

and so forth.

So far we discussed the free KG equation.

How do we incorporate interactions?
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In Newtonian mechanics we describe interactions by adding a potential.

L =
1

2

∑

i

(

dxi

dt

)2

− V (~x)

m
∑

i

ẍi = −~∇V (~x = ~F (~x)

if we have more than one particle

∑

j

mj

∑

i

ẍji =
∑

ij

−~∇V (~xi − ~xj)

typically we consider the interactions to be 2–body interactions and we sum

over all the interacting particles
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For the harmonic oscillator in one dimension

V (x) =
1

2
kx2

mẍ = −
∂V (x)

∂x
= −kx

In the case of the KGE

L =
1

2
(∂µφ)(∂

µφ)−
1

2
m2φ2

The second term looks like V (φ) ∼ 1
2kφ

2.
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Classically the particle is in a potential well. If it has initial energy E , it will

oscillate about the vacuum V (φ) = 0. The lowest point that the field can be

in is the vacuum. So far we are describing a free field. Suppose that we want

to describe a field which is not free in a potential

V( φ)

φ
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V (φ) = Aφ4 + Bφ2 ,with A > 0, and B < 0.

In Newtonian mechanics this will correspond to a double well. The point

V (φ) = 0 is no longer the vacuum

∂V (φ)

∂φ
= 4Aφ3 + 2Bφ = 0

or (2Aφ2 + B)φ = 0

⇒ φ = 0 , φ = ±

√

−B

2A
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We can now see how we can use this formalism to describe particles and their

interactions.

We developed a diagramatic representation of interactions.

→ Feynman diagrams
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The interactions that we described so far are by using a single scalar field

In nature we are familiar so far with gravity, E&M, weak, and strong

interactions.

Force Gravity E&M Weak Strong

Mediator Graviton Photon W±, Z -bosons Gluons

Spin +2 +1 +1 +1

mass 0 0 ∼ 80, ∼ 90GeV 0

gauge symmetry spacetime diff. U(1) SU(2) SU(3)
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How can we describe these interactions?

Standard Model → SU(3)C ×SU(2)L×U(1)Y local gauge interactions.

In the modern language of elementary particles, interactions correspond to

invariances of the Lagrangian under some local symmetry.

Interaction ←→ invariance under a local gauge symmetry
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