
from the previous lecture ...

The Dirac equation i~
1

c

∂

∂t
Ψ(~x , t) = (−i~~α · ~∇+ βmc)Ψ(~x , t)

Charge conjugation: ψ → ψC = Cψ∗ → charge conjugation C = iγ2

Parity invariance ψ(~r , t) → ψP(~r , t) = Pψ(−~r , t) = γ0ψ(−~r , t)

KGE invariant under parity transformation φ(~r , t) → φP(~r , t) = φ(−~r , t)

Since φ(~r , t) is a scalar under LTφ′(~r ′, t ′) = φ(~r , t)

In the case of the Dirac equation the scalar is Φ = ψ̄ψ = ψ†γ0ψ

Similarly, jµ is a true vector jP0(~r , t) = j0(−~r , t) , ~jP(~r , t) = −~j(−~r , t)



We define the matrix

γ5 = iγ0γ1γ2γ3 =

(

0 I2×2

I2×2 0

)

(in our representation)

We will see that weak interactions involve the axial current

J
µ
A = ψ̄γµγ5ψ = ψ†γ0γµγ5ψ

under parity transformations ψ → ψP = γ0ψ(−~r , t)

JPA
µ
= ψ†(−~r , t)γ0

†
γ0γµγ5γ0ψ(−~r , t)

now {γµ, γ5} = 0 forµ = 0, 1, 2, 3

(γ5)
2 = I

Hence JPA
0
(~r , t) = −JA

0(−~r , t) , ~JPA (~r , t) =
~JA(−~r , t)

As expected for an axial vector.
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Similarly : ΦP = ψ̄γ5ψ = ψ†γ0γ5ψ a pseudo scalar

ΦP
P(~r , t) = ψ†(−~r , t)γ0

†

︸ ︷︷ ︸

ψP†

γ0γ5 γ0ψ(−~r , t)
︸ ︷︷ ︸

ψP

= −ψ̄(−~r , t)γ5ψ(−~r , t)

= −ΦP(−~r , t)

Massless Dirac particles

The Dirac equation : Hψ = i~
∂ψ

∂t
=
(

−i~~α · ~∇+ βm
)

ψ

where

~α =

(

0 ~σ

~σ 0

)
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The positive energy free particle solutions are

ψ = u(E , ~p)e−i(Et−~p·~x)

For m = 0 ⇒ E = |~p| and u =
(
φ
χ

)
gives

EIu = ~α · ~pu =

(

0 ~σ · ~p

~σ · ~p 0

)

u

hence :

(

|~p| −~σ · ~p

−~σ · ~p |~p|

)(
φ

χ

)

= 0 ⇒
~σ · ~pχ = |~p|φ

~σ · ~pφ = |~p|χ
(1)

⇒ χ =
~σ · ~p

|~p|
φ & φ =

~σ · ~p

|~p|
χ ⇒ χ =

(
~σ · ~p

|~p|

)2

χ

⇒

(
~σ · ~p

|~p|

)2

= I

⇒ Λ =
~σ · ~p

|~p|
is the helicity operator with Λ2 = I
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and eigenvalues Λ = ±1 → spin
along

against
~p →

right

left
handed

Helicity operator: projection of spin on ~p
|~p| .

⇒ for massless particles with m = 0 the 2 components spinors χ and φ are

eigenstates of the helicity operator.

For massless particles helicity is a Lorentz invariant.

Note that if ψ represents a massless particle them

γ5ψ =

(

0 I

I 0

)(
φ

χ

)

=

(
χ

φ

)

=

(
Λφ

φ

)

=

(
Λφ

Λχ

)

= Λψ (Λ2 = 1)

Hence, γ5 is the helicity operator for massless particles (minus helicity for

massless anti–particles).

In the case of massless particles we can decompose the Dirac equation into two

equations for the two helicity eigenstates.
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We can introduce the basis

γ0 =

(

0 I

I 0

)

; γj =

(

0 σj

−σj 0

)

; γ5 =

(

−I 0

0 I

)

This basis is called the chiral basis. In this basis

(
γ0|~p| − ~γ · ~p

)
(
φ

χ

)

=

(

0 |~p| − ~σ · ~p

|~p|+ ~σ · ~p 0

)(
φ

χ

)

= 0

Hence, in this basis,

~σ · ~p

|~p|
χ = +1χ ;

~σ · ~p

|~p|
φ = −1φ

Therefore, in this basis χ and φ are the eigenstates of the helicity operator

with eigenvalues +1 and −1 respectively. We denote,

χ = ψR ; φ = ψL
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ψL and ψR are two component spinors that tranform as (12 , 0) and (0, 12)

representations of the Lorentz group.

A Dirac spinor can be written as

ψ =

(
ψL

ψR

)

ψL, ψR are called Weyl spinors

We define the operators

PL,R =

(
1± γ5

2

)

In the chiral basis we have

PL =
1

2

[(

1 0

0 1

)

−

(

−1 0

0 1

)]

=

(

1 0

0 0

)

, PL
2 = PL

PR =
1

2

[(

1 0

0 1

)

+

(

−1 0

0 1

)]

=

(

0 0

0 1

)

, PR
2 = PR
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and

PRPL = PLPR = 0

PL + PR =
1 + γ5

2
+

1− γ5

2
= 1

PLγ
µ = γµPR ; PRγ

µ = γµPL

Hence, we have PLψ =

(
ψL

0

)

= ψL

PRψ =

(
0

ψR

)

= ψR

Furthermore, from PRPL = 0 we have PRψL = 0, PLψR = 0.
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The weak interactions were observed experimentally to have the vector minus

axial–vector form, (V − A), i.e.

(JµV − J
µ
A)fi = ψ̄f γ

µ(1− γ5)ψi

If i is a massless particle then (1− γ5)ψi vanishes for helicity +1, i.e. only

left–handed fields interact. The same applies to particle f since

ψ̄f γ
µ(1− γ5)ψi = ψ

†
f γ

0(1 + γ5)γµψi

= ψ
†
f (1− γ5)γ0γµψi =

[
(1− γ5)ψf

]†
γ0γµψi

This is non–vanishing only if the f –particle is a left–handed field.

In the Standard Model only left–handed fields interact via the weak interactions.
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The Langrangian density that gives the Dirac equation of motion

LD = ψ̄iγµ∂µψ −mψ̄ψ =

ψ̄(P2
L + P2

R)iγ
µ∂µψ −mψ̄(P2

L + P2
R)ψ =

ψ†PRγ
0iγµ∂µPRψ + ψ†PLγ

0iγµ∂µPLψ −mψ†PRγ
0PLψ −mψ†PLγ

0PRψ =

ψ
†
Rγ

0iγµ∂µψR + ψ
†
Lγ

0iγµ∂µψL −m(ψ†
Rγ

0ψL + ψ
†
Lγ

0ψR) =

ψ̄R iγ
µ∂µψR + ψ̄Liγ

µ∂µψL −m(ψ̄RψL + ψ̄LψR).

The first two terms are the kinetic terms, whereas the last two are the Dirac

mass terms.

We see that the kinetic terms containing the derivatives involve L ↔ L and

R ↔ R terms, whereas the mass terms involve L ↔ R and R ↔ L terms. This

is a crucial result for modern particle physics.
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