
from the previous lecture ...

we require:

U(Λ2, a2)U(Λ1, a1) = U(Λ2Λ1,Λ2a1 + a2) (1)

where U(λ, a) is given by

U(Λ, a) = 1 + i~α · ~J − i ~β · ~K + iaµPµ (2)

Here, αi , βi and aµ are infinitesimal parameters. Hence, (2) is an expansion of

U(Λ, a) to first order in the infinitesimal parameters. Inserting (2) into (1) and

keeping terms to second order in the inifinitesimal parameters, we derive the

commutation relations. Alternatively, we can use the differential form of the

operators Pµ and Lµν that we presented in the previous lecture to find the

commutation relations between the operators. We saw that the linear

momentum generators commute among themselved whereas Lµν satisfy



[Lµν , Lρσ] = iηνρLµσ − iηµρLνσ − iηνσLµρ + iηµρLνσ (3)

which are the commutation relations of the SO(1, 3) Lie algebra. The most

general representation of the generators of the SO(1, 3) algebra that obeys eq.

(3) is given by

Jµν = Lµν + Sµν

where Sµν obeys eq. (3) and commutes with Lµν .

[Jµν ,Pρ] = −iηµρPν + iηνρPµ (4)

In terms of Ji and Ki the commutation relations become

[Ji ,Pj ] = iǫijkPk

[Ki ,Pj ] = iHδij where H = P0

[Ji ,H] = 0 , [Pi ,H] = 0 , [Ki ,H] = iPi
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Pauli–Lubanski vector

A more elegant form of the commutation relations is obtained by defining the

Pauli–Lubanski vector

Wσ = −
1

2
ǫσµνλJ

µνPλ (5)

We note the appearance of the antisymmetric tensor in four dimensions ǫσµνλ,

which generalises the antisymmetric tensor in three dimensions ǫijk . Before

proceeding to examine the Pauli–Lubasnki vectort, we digress to discuss the

generalisation of the antisymmetric tensor in any number of dimensions.
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antisymmetric tensor in 3D: ǫijk i , j , k = 1, 2, 3

ǫ123 = +1 ǫ132 = −1

ǫ231 = +1 ǫ213 = −1

ǫ312 = +1 ǫ321 = −1

i.e. ǫ123 = ǫeven permutations = ǫodd permutations

For a 3× 3 matrix A =







a1 a2 a3

b1 b2 b3

c1 c2 c3






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DetA =
∑

i ,j ,k

ǫijkaibjck

= ǫ123a1b2c3 + ǫ132a1b3c2 + ǫ213a2b1c3

+ǫ231a2b3c1 + ǫ312a3b1c2 + ǫ321a3b2c1

= a1(b2c3 − b3c2)− a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

useful identities : ǫijkǫilm = (δjlδkm − δjmδkl )

ǫijlǫijk = 2δlk

facilitates vector calculus calculations in 3D.
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Generalises to nD ǫµνρ ··· σ : ǫ123···n = +1 = ǫe.p. = −ǫo.p.

For a n × n matrix A =









a11 · · · a1n
...

an1 · · · ann









DetA =
∑

i ,j ,k,···

ǫijk ···
a1ia2j · · · anρ

in 4D ǫµρστ µ, ρ, σ, τ = 0, 1, 2, 3
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Returning to the Pauli–Lubanski vector eq. (5) we have

WσP
σ = −

1

2
ǫσµνλJ

µνPλPσ = +
1

2
ǫµνλσJ

µνPλPσ = 0

W0 = −
1

2
ǫ0ijkJ

ijPk = −JkP
k = −~J · ~P

Wi = −
1

2
ǫijk0J

jkP0 −
1

2
ǫij0kJ

j0Pk −
1

2
ǫi0jkJ

0jPk

=
1

2
ǫ0ijkJ

jkP0 −
1

2
ǫ0ijkJ

j0Pk −
1

2
ǫ0ijkJ

j0Pk

= P0Ji + ǫijkPjKk

~W = P0
~J + ~P × ~K

For ~P = 0 , P0 = m ⇒ ~W = +m~J = +m~S
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The commutation relations become:

[Jµν ,Wρ] = i(ηνρWµ − ηµρWν)

[Wµ,Pν ] = 0

[Wµ,Wν ] = iǫµνρσW
ρPσ
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Casimir invariants of the Poincare group

A Casimir operator is one that commutes with all the generators of the group.

Eigenvalues of the Casimir operators are labels of 1–particle states.

The Casimir operator C commutes with the Hamiltonian

H = P0 ⇒ [C ,H] = 0

P0 = i~
∂

∂t
↔ translation in time

Hence, the eigenvalues of the Casimir operator are constants in time →

constants of the motion.
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single particle states: ψ(x) = |~P,S〉
~P represents the momentum vector

S stands for other quantum numbers

PµP
µ is the first Casimir operator of the Poincare group

PµP
µ|~P ,S〉 = m2

0|
~P ,S〉 → m0 rest mass of the particle

The rest mass of the particle is a Poincare invariant.

The second Casimir operator of the Poincare group is given by WµW
µ.

We saw that Wµ is a Lorentz four vector. Hence, WµW
µ is a Lorentz scalar,

and commutes with Jµν , the generators of the Lorentz group.

From the explicit form of Wµ it also follows that

[Wµ,Pν ] = 0

by using the asymmetry of ǫµνρσ and the symmetry of Pν = i∂ν .
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it follows that

[WµW
µ,Pν ] = 0

Since, WµW
µ is a Lorentz invariant, we can compute it in a convenient frame.

If m 6= 0 it is convenient to choose the rest frame of the particle. In this frame

Pµ = (m, 0, 0, 0).

W µ = −
1

2
ǫµνρ0JνρP0 + · · · = −

m

2
ǫµνρ0Jνρ · · · =

m

2
ǫ0µνρJνρ

⇒ W 0 = 0

W i =
m

2
ǫ0ijkJjk =

m

2
ǫijkJjk = mJ i

Therefore, on a one particle state with mass m and spin j we have

−WµW
µ = m2JiJ

i = m2~J2

−WµW
µ|~P ,S〉 = m2j(j + 1)|~P ,S〉 (m 6= 0)
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