
from the previous lectures ...

Starting from : SU(2)W × U(1)y

gJ3µW
3µ +

g ′

2
JYµ Bµ

(

Bµ

W 3
µ

)

=

(

cos θW − sin θW

sin θW cos θW

)(

Aµ

Zµ

)

θW → Weinberg angle

−→ eJe.m.
µ Aµ +

g

cos θW
JNC
µ Zµ

impose e = g sin θW = g ′ cos θW =⇒ tan θW =
g ′

g

νe

Ζµ
Τ3

L

νe



Problem

→ E&M interactions → Long range → mγ = 0

→ Weak interactions → Short range → mW±;Z 6= 0

How ? → symmetry breaking

Lagrangian is invariant, but vacuum → symmetry breaking

The vacuum → the states of lowest energy
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The Higgs mechanism

Consider a real scalar field with the Lagrangian

L = T − V =
1

2
(∂µφ)

2 − (
1

2
µ2φ2 +

1

4
λφ4)

V (φ) =
1

2
µ2φ2 +

1

4
λφ4 with λ > 0

This Lagrangian is invariant under the transformation φ → −φ

For µ2 > 0 the potential looks like

V(  )φ

φ

MATH431 Lecture 31 2020–2021 Semester 2 3 / 12



The Lagrangian describes a self–interacting scalar field with coupling λ and

mass µ. The ground state correspond to 〈φ〉 = 0 and it obeys the reflection

symmetry of the Lagrangian.

For µ2 < 0 the potential looks like
V( φ)

φ

The potential has two minima at
∂V

∂φ
= φ(µ2 + λφ2) = 0

⇒ 〈φ〉 = ±v with v =

√

−µ2

λ
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The extremum φ = 0 does not correspond to the minimum of the energy.

We perform perturbative calculation around the classical minimum φ = v or

φ = −v .

we write φ(x) = v + η(x)

η(x) represents quantum fluctuations about this minimum.

Substituting into the Lagrangian we obtain

L′ =
1

2
∂µ(v + η)∂µ(v + η)− 1

2

(

µ2(v + η)2 +
λ

4
(v + η)4

)

=
1

2
(∂µη)

2 −
(

µ2

2
(v2 + 2ηv + η2) +

λ

4
(v4 + 4v3η + 6v2η2 + 4vη3 + η4)

)

=
1

2
(∂µη)

2 +
λv2

2
(v2 + 2ηv + η2)− λ

4
(v4 + 4v3η + 6v2η2 + 4vη3 + η4)

=
1

2
(∂µη)

2 − λv2η2 − λvη3 − λη4

4
+ const
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The field η has a mass term with the correct sign

mη =
√
2λv2 =

√

−2µ2

The higher terms in η are self–interaction terms. We do perturbation theory

around a stable minimum φ = v + η.

η is a massive field

The reflection symmetry is broken by the choice of the vacuum.

Consider now a complex scalar field

φ =
(φ1 + iφ2)√

2
.

L = (∂µφ)
∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2

L is invariant under the global U(1) symmetry

φ → e iαφ
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For λ and µ2 < 0 we rewrite the Lagrangian

L =
1

2

(

(∂µφ1)
2 + (∂µφ2)

2
)

− 1

2
µ2(φ2

1 + φ2
2)−

1

4
λ(φ2

1 + φ2
2)

2

There is now a circle of minima
V( φ)

φ
1

φ
2 η

ζ

at φ2
1 + φ2

2 = v2 with v2 = −µ2

λ
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We translate the field φ to 〈φ1〉 = v , 〈φ2〉 = 0.

Expand the Lagrangian around the vacuum with

φ(x) =
1√
2
(v + η(x) + iζ(x))

L′ =
1

2

(

(∂µη)
2 + (∂µζ)

2
)

+ µ2η2 + constant

+(cubic & quartic terms in η & ζ)

The term µ2η2 is a mass term for the η field mη =
√

−2µ2 as before.

There is no corresponding mass term for ζ → massless scalar field

Goldstone theorem → spontaneously broken continuous global symmetry

→ Goldstone boson
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Consider now a complex scalar field coupled to a continuous U(1) symmetry

φ(x) → eiα(x)φ(x)

As we saw local phase invariance requires that we replace ∂µ by

Dµ = ∂µ − ieAµ

and the gauge field Aµ transforms as

Aµ → Aµ +
1

e
∂µα

The gauge invariant Lagrangian is

L = (∂µ + ieAµ)φ
∗(∂µ − ieAµ)φ− µ2φ∗φ− λ(φ∗φ)2 − 1

4
FµνF

µν
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For µ2 > 0 → Lagrangian for charged self–interacting scalar field with mass µ

For µ2 < 0 expand φ(x) =
1√
2
(v + η(x)+ iζ(x))

→ L′ =
1

2

(

(∂µη)
2 + (∂µζ)

2
)

− λv2η2 +
1

2
e2v2AµA

µ

−evAµ∂
µζ − 1

4
FµνF

µν + interaction terms

The particle spectrum appears to be

massless Goldston boson ζ with mζ = 0

massive scalar η with mη =
√
2λv2

massive vector boson Aµ with mA = ev

However, this interpretation should be revised
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massless Aµ → 2T physical degrees of freedom

massive Aµ → 2T + 1L physical degrees of freedom

where did the third degree of freedom come from ? Note that to lowest order

φ =
1√
2
(v + η(x) + iζ(x)) ∼= 1√

2
(v + η(x)) ei

ζ(x)
v

→ use a different set of fields h, θ, Aµ

φ → 1√
2
(v + h(x))ei

θ(x)
v

Aµ → Aµ +
1

ev
∂µθ

substitute into L. We get

L′′ =
1

2
(∂µh)

2 − λv2h2 +
1

2
e2v2AµA

µ − λvh3 − 1

4
λh4

+
1

2
e2AµA

µh2 + ve2AµA
µh − 1

4
FµνF

µν
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The Goldstone boson disappeared altogether

→ The Goldstone boson is absorbed as the longitudenal mode of Aµ

→ only 2 physical fields h and Aµ.
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