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Preface to the instructor’s manual

The first version of the Instructor’s manual to Modern Particle Physics contains
fully-worked solutions to all the problems in Chapters 1–18 of the main text. This
document has not been proof-read to the extent of the main text, so I apologies
in advance for any errors. Many of the problems have been used in the course
that taught for a number of years, so these are battle-hardened. For new questions,
introduced to address specific points in the text (particularly in the later chapters),
there are a couple issues which have been noted in the solutions.

In some cases there may be more elegant approaches to the problems, the intention
was to keep the solutions as straightforward as possible. Comments and sugges-
tions are always welcome.

Mark Thomson, Cambridge, December 14th 2013
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1 Introduction

1.1 Feynman diagrams are constructed out of the Standard Model vertices shown in
Figure 1.4. Only the weak charged-current (W±) interaction can change the flavour of
the particle at the interaction vertex. Explaining your reasoning, state whether each of
the sixteen diagrams below represents a valid Standard Model vertex.

a) e− e−

γ

b) νe νe

γ

c) e− e+

γ

d) νe νe

Z
e) e− µ−

γ

f) e− νe

W

g) e− τ−

Z

h) e− νµ

W
i) e− e−

g

j) b b

g

k) d s

g

l) γ γ

γ

m) u u

W

n) u d

W

o) d t

W

p) e− e−

γ γ

The purpose of this question is to get students to understand the that (with the
exception of gauge boson triple and quartic coupling) all Feynman diagrams are
built out of the Standard Model three-point vertices of Figure 1.4. Of the sixteen
vertices in this question, the only valid Standard Model vertices are: a), d), f), j), n)
and o). The other diagrams are forbidden for the following reasons:

b) The electron neutrino is neutral and therefore does not couple to the gauge
boson of the electromagnetic interaction;

c) This diagram violates both charge conservation and has the effect of turning
a particle into an antiparticle (the arrows on the electron lines both point
towards the vertex);
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e) The electron magnetic interaction does not change flavour, and hence a dia-
gram coupling an electron to a muon is not allowed;

g) The weak neutral current also does not change flavour and hence this dia-
gram is forbidden;

h) The weak charged current does change flavour, but by definition only couple
together leptons with the corresponding neutrino, hence this diagram which
couples together an electron and a muon neutrino is not allowed.

i) The electron does not carry the colour charge of the strong interaction - it
is colour neutral - and hence the electron does not participate in the strong
interaction;

k) The strong interaction does not change flavour and hence a coupling be-
tween a down-quark and a strange-quark is forbidden;

l) In the Standard Model there is no three-photon vertex;
m) Since W bosons are charged, the weak charged current must change flavour;
p) There is no Standard Model vertex couping two fermion lines to two boson

lines - all fermion vertices involve a coupling to a single gauge boson.

1.2 Draw the Feynman diagram for τ− → π−ντ (the π− is the lightest du meson).

Since the decay involves a change of flavour it can only be a weak charged-current
interaction (W±):

W
τ−

ντ

u

d

1.3 Explain why it is not possible to construct a valid Feynman diagram using the
Standard Model vertices for the following processes:

a) µ− → e+e−e+ ,
b) ντ + p→ µ− + n ,
c) ντ + p→ τ+ + n ,
d) π+(ud) + π−(du)→ n(udd) + π0(uu) .

a) The process µ− → e+e−e+ would require a change of flavour. There is no
problem with producing a particle and its antiparticle (here the e+e−) and
therefore the required flavour change is µ− → e− and there is no corre-
sponding Standard Model vertex and the process cannot occur. This used
to be referred to as conservation of muon and electron numbers. However,
with the discovery of neutrino oscillations this concept is obsolete.
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b) Two changes of flavour are required u→ d and ντ → µ−. Whilst the first of
these flavour changes can be achieved by a charged-interaction vertex, the
second cannot. Leptons only couple to the corresponding weak eigenstate
neutrino flavour. In addition, electric charge is not conserved.

c) This process requires a vertex that has the effect ντ → τ+, i.e. turning a
particle into an antiparticle. No such vertices exist.

d) Here the net number of particles − antiparticles changes. This can not hap-
pen because all Standard Model vertices involving fermions are three point
interactions with a single boson, as a consequence the net number of parti-
cles − antiparticles in the Universe is constant.

1.4 Draw the Feynman diagrams for the decays:
a) ∆+(uud)→ n(udd)π+(ud) ,
b) Σ0(uds)→ Λ(uds) γ ,
c) π+(ud)→ µ+νµ ,

and place them in order of increasing lifetime.

All other things being equal, strong decays will dominate over EM decays, and
EM decays will dominate over weak decays. So here the order is a), b), c) with the
Feynman diagrams below.

g
∆+

n

d

d
π+

u

d

u

d
u

u

Σ0 Λ
u u
d d
s s

γ

u

d

W
π+

νµ

µ+

1.5 Treating the π0 as a uu bound state, draw the Feynman diagrams for:
a) π0 → γγ ,
b) π0 → γe+e− ,
c) π0 → e+e−e+e− ,
d) π0 → e+e− .

By considering the number of QED vertices present in each decay, estimate the relative
decay rates taking α = 1/137.

The observed branching ratios are BR(π0 → γγ) = 98.8%, BR(π0 → γe+e−) =

1.2%, BR(π0 → γe+e−e+e−) ∼ 3 × 10−5 and BR(π0 → e+e−) = 6 × 10−8.
By counting the number of QED vertices it might be expected that the matrix
elements for the processes are: a) M ∝ e2; b) M ∝ e3; c) M ∝ e4; and d)
M ∝ e2. Consequently, one would expect the branching ratios to be proportional to
a) |M|2 ∝ α2; b) |M|2 ∝ α3; c) |M|2 ∝ α4; and d) |M|2 ∝ α2. Relative to the domi-
nant π0 → γγ decay modes it might be expected that BR(π0 → γe+e−) ∼ O(10−2),
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and BR(π0 → e+e−e+e−) ∼ O(10−4), in reasonable agreement with the observed
values.

u

u

γ

γ

u

u

γ

e−

e+

u

u

e−

e+

e−

e+

u

u

e−

e+

The observed branching ratio to e+e− is much smaller than that predicted from sim-
ple vertex counting (the contribution from this Feynman diagram is heavily helicity
suppressed, see for example 11). This is an important point, simple vertex factor
counting only addresses one of the contributions to the matrix element squared,
other factors may be just as important.

1.6 Particle interactions fall into two main categories, scattering processes and anni-
hilation processes. as indicated by the Feynman diagrams below.

Draw the lowest-order Feynman diagrams for the scattering and/or annihilation pro-
cesses:

a) e−e− → e−e− ,
b) e+e− → µ+µ− ,
c) e+e− → e+e− ,
d) e−νe → e−νe ,
e) e−νe → e−νe .

In some cases there may be more than one lowest-order diagram.

a) For this scattering process there are two diagrams, the u-channel diagram has
to be included since there are identical particles in the final state (the exchanged
gauge boson could also be a Z or even the H):

e−

e−

e−

e−

e−

e−

e−

e−

b) Here there is just the s-channel annihilation diagram.
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c) Here there are both s-channel and t-channel diagrams:

e+

e−

e+

e−

e+

e−

e+

e−

d) Here there are two t-channel diagrams (involving either an exchanged Z or W):

Z

e−

νe

e−

νe

W

e−

νe

νe

e−

e) Here there are s- and t-channel diagrams:

W

e−

νe

e−

νe

Z

e−

νe

e−

νe

1.7 High-energy muons traversing matter lose energy according to

−1
ρ

dE
dx
≈ a + bE ,

where a is due to ionisation energy loss and b is due to the bremsstrahlung
and e+e− pair-production processes. For standard rock, taken to have A = 22,
Z = 11 and ρ = 2.65 g cm−3, the parameters a and b depend only weakly on the
muon energy and have values a ≈ 2.5 MeV g−1 cm2 and b ≈ 3.5× 10−6 g−1 cm2.

a) At what muon energy are the ionisation and bremsstrahlung/pair pro-
duction processes equally important?

b) Approximately how far does a 100 GeV cosmic-ray muon propagate in
rock?

a) Ionisation and bremsstrahlung/pair production processes are equally likely (in
standard rock) when a = bE, i.e. for muons with an energy of E = 714 GeV.



6 Introduction

b) Integrating the energy loss equations gives

− dE
a + bE

= ρ dx

⇒ − [ln(a + bE)]0
E0

= bρ [x]L
0

⇒ L =
1
ρb

ln
[
1 +

b
a

E0

]
= 141 m

From this it can be seen that high-energy muons are highly penetrating particles.
Muons with E > 10 GeV will usually traverse the entire volume of a collider de-
tector.

1.8 Tungsten has a radiation length of X0 = 0.35 cm and a critical energy of Ec =

7.97 MeV. Roughly what thickness of Tungsten is required to fully contain a 500 GeV
electromagnetic shower from an electron?

The number of particles in a shower doubles every radiation length of material tra-
versed. Hence the typical particle energy 〈En〉 in a shower after n radiation lengths
is

〈En〉 = E/2n , (1.1)

and the shower terminates when this mean energy is equal to the critical energy,
hence

n ln 2 = ln (E/Ec) .

For a 500 GeV electromagnetic shower in Tungsten this corresponds to n = 16
radiation lengths or 5.6 cm of Tungsten. The above analysis is overly simplistic. In
practice, due to fluctuations, the shower extends deeper than the above calculation
would suggest, although with ever decreasing numbers of particles.

1.9 The CPLEAR detector (see Section 14.5.2) consisted of: tracking detectors in a
magnetic field of 0.44 T; an electromagnetic calorimeter; and Čerenkov detectors with
a radiator of refractive index n = 1.25 used to distinguish π± from K±.

A charged particle travelling perpendicular to the direction of the magnetic field
leaves a track with a measured radius of curvature of R = 4 m. If it is observed to
give a Čerenkov signal, is it possible to distinguish between the particle being a pion
or kaon? Take mπ ≈ 140 MeV/c2 and mK = 494 MeV/c2.

The momentum of the particle can be obtained from

p cos λ = 0.3 BR

giving p = 528 MeV/c. Since the particle produced a Čerenkov signal β > 1/n, i.e.
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β > 0.8. Using E = γmc2 and p = γmβc, the particle’s velocity is given by

β =
pc
E

=
p√

p2c2 + m2c4
.

For the two hypothesis considered here, for p = 528 MeV/c, βπ = 0.97 and βK =

0.73. Hence the observed particle track could be due to a pion but cannot be a kaon.

1.10 In a fixed-target pp experiment, what proton energy would be required to achieve
the same centre-of-mass energy as the LHC, which will ultimately operate at 14 TeV.

The centre-of-mass energy
√

s is given by

s = p2 =

∑
i

Ei

2

−
∑

i

p
2

= (E + mp)2 − p2 ,

where E and p are the energy and momentum of the proton beam. Since E � p,

s ≈ (E + mp)2 − E2 ≈ 2E mp .

Consequently, to achieve a centre-of-mass energy of 14 TeV,

E =
142

2 × 940 × 10−6 = 1.05 × 105 TeV ,

which is far above the energy achievable by any foreseeable particle accelerator.
The reason such high energy is required for a fixed target experiment is that mo-
mentum must be conserved, and hence, most of the energy in the final state is
associated with the high velocity of the centre-of-mass of the final state system.

1.11 Note that the question is an updated and clearer version of the original problem.
At the LEP e+e− collider, which had a circumference of 27 km, the electron and positron
beams consisted of four equally spaced bunches in the accelerator. Each bunch cor-
responded to a beam current of 1.0 mA. The beams collided head-on at the interaction
point, where the beam spot had an rms profile of σx ≈ 250 µm and σy ≈ 4 µm, giving
an effective area of 1.0×103 µm2. Calculate the instantaneous luminosity and estimate
the event rate for the process e+e− → Z, which has a cross section of about 40 nb.

The instantaneous luminosity is given by (1.5)

L = f
n1n2

4πσxσy
.

Here σxσy = 1.0× 103 µm2 = 1.0× 10−5 cm2. If the number of electrons/positrons
in each bunch is ne and each bunch circulates the ring at a frequency of fb =

c/(27 × 103) = 11.1 kHZ, the bunch current I is given by

I = fb × nee .
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A current of 1 mA therefore corresponds to ne = 5.6 × 1011 per bunch,

n1 = n2 = 5.6 × 1011 .

With four bunches per beam, the bunch-crossing frequency of

f = 4 · c/27000 = 4 fb = 44.4 kHz .

The instantaneous luminosity is

L = 44.4 × 103 (5.6 × 1011)2

4π 1.0 × 10−5 = 1.1 × 1032 cm−2s−1 .

Using the values in the original text L = 6 × 1030 cm−2s−1.

At the peak of the e+e− → Z resonance, the total cross section is approximately
40 nb, or equivalently 4 × 10−8 × 10−24 cm2 and consequently the event rate for a
luminosity of L = 1 × 1032 cm−2s−1, given by σL, is approximately 4 s−1.



2 Underlying Concepts

2.1 When expressed in natural units the lifetime of the W boson is approximately
τ ≈ 0.5 GeV−1. What is the corresponding value in S.I. units?

To restore the correct dimensions a factor of ~ needs to be inserted. Hence

τ = ~ × 0.5 GeV−1 = 0.5
1.06 × 10−34

1.6 × 10−10 = 3.3 × 10−25 s .

In natural units, the decay rate

Γ =
1
τ
.

Dimensional analysis gives

[E] = [T ]−1 ,

and it is necessary to insert a factor of ~ on the RHS:

Γ =
~

τ
.

2.2 A cross section is measured to be 1 pb, convert this to natural units.

In natural units, the dimension of area is [GeV]−2 and hence

σ[pb] = σ[GeV−2] × (~c)2

GeV2

Here the cross section of 1 pb expressed in natural units is

σ = 1 × 10−40 × (1.6 × 10−10)2(
1.06 × 10−34 · 3 × 108)2 = 2.6 × 10−9 GeV−2 .

Alternatively converting into fm2 and using the conversion factor ~c = 0.197 GeV fm
gives

σ = 10−10 fm2 ≡ 10−10/0.1972 GeV−2 = 2.6 × 10−9 GeV−2 .

9



10 Underlying Concepts

2.3 Show that the process γ→ e+e− can not occur in the vacuum.

This is most easily demonstrated by considering the reaction in the rest frame of
the e+e− pair, namely the frame in which the total momentum is zero. In this frame
p = 0 and E = Ee− + Ee+ > 2me. Since energy and momentum are conserved this
would imply the photon has p = 0 and E > 2me, which is not consistent with E = p
for the massless photon.

2.4 A particle of mass 3 GeV is travelling in the positive z-direction with momentum
4 GeV, what are its energy and velocity?

Here the key equations are (in natural units):

E = γm , p = γmβ and E2 = p2 + m2 .

From E2 = p2 + m2 the particle’s energy is E = 5 GeV and from the above expres-
sions for E and p,

β = p/E = 0.8 .

2.5 In the laboratory frame, denoted Σ, a particle travelling in the z-direction has
momentum p = pzẑ and energy E.
a) Use the Lorentz transformation to find expressions for the momentum p′z and energy
E′ of the particle in a frame Σ′, which is moving in a velocity v = +vẑ relative to Σ, and
show that E2 − p2

z = (E′)2 − (p′z)
2.

b) For a system of particles, prove that the total four momentum squared,

p µpµ ≡
∑

i

Ei

2

−
∑

i

pi

2

,

is invariant under Lorentz transformations.

a) Remembering that γ2 = 1/(1− β2) or equivalently γ2(1− β2) = 1, and using the
explicit energy-momentum Lorentz transformations

E′ = γ(E − βpz) , p′x = px , p′y = py and p′z = γ(pz − βE) ,

then E′ − p′ can be written:

E′ − p′ = γ2(E − βpz)2 − p2
x − p2

y − γ2(pz − βE)2

= γ2(E2 − 2βEpz + β2 p2
z ) − p2

x − p2
y − γ2(p2

z − 2βEpz + β2E2)

= γ2(1 − β2)E2 − p2
x − p2

y − γ2(1 − β2)p2
z

= E2 − p2 .
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b) Here

p µpµ ≡
∑

i

(
E2

i − p2
i

)
+

∑
i, j

(
EiE j − pxi px j − pyi py j − pzi pz j

)
.

From the first part of the question, to show explicitly that p µpµ for a system of
particles is Lorentz invariant it is only necessary to show that E′i E

′
j − p′zi p

′
z j

=

EiE j − pzi pz j , the proof of which is almost identical to the first part of the question.

2.6 For the decay a → 1 + 2, show that the mass of the particle a can be expressed
as

m2
a = m2

1 + m2
2 + 2E1E2(1 − β1β2 cos θ) ,

where β1 and β2 are the velocities of the daughter particles (βi = vi/c) and θ is the
angle between them.

Since m2
a = E2

a − p2
a and energy and momentum are conserved in the decay

m2
a = (E1 + E2)2 − (p1 + p2)2

= E2
1 + E2

2 + 2E1E2 − p2
1 − p2

2 − 2p1 · p2

= m2
1 + m2

2 + 2E1E2 − 2p1p2 cos θ

= m2
1 + m2

2 + 2E1E2(1 − β1β2 cos θ) ,

where the last step follows from p = βE.

2.7 In a collider experiment, Λ baryons can be identified from the decay Λ → π−p
that gives rise to a displaced vertex in a tracking detector. In a particular decay, the
momenta of the π+ and p are measured to be 0.75 GeV and 4.25 GeV respectively,
and the opening angle between the tracks is 9◦. The masses of the pion and proton
are 139.6 MeV and 938.3 MeV.
a) Calculate the mass of the Λ baryon.

b) On average, Λ baryons of this energy are observed to decay at a distance of 0.35 m
from the point of production. Calculate the lifetime of the Λ.

a) From E2 = p2 + m2 the energies of the two decay products are

Eπ = 0.763 GeV and Ep = 4.352 GeV .

The corresponding velocities (β = p/E) are

βπ = 0.983 and βp = 0.976 .

Using the result of the previous question,

m2
Λ = m2

1 + m2
2 + 2E1E2(1 − β1β2 cos θ) = 1.244 GeV2 .

Hence the mass of the Λ obtained from the measurements give is mΛ = 1.115 GeV.
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b) Accounting for relativistic time dilation the mean distance travelled will be

d = γβcτ .

From the relation p = γmβ, γβ = p/m. The energy of the Λ is simply

EΛ = Eπ + Ep = 5.115 GeV ,

from which pΛ = 4.99 GeV and therefore γβ = p/m = 4.47. From which

τ = 0.35/4.47c = 2.6 × 10−10 s .

2.8 In the laboratory frame, a proton with total energy E collides with proton at rest.
Find the minimum proton energy such that process

p + p→ p + p + p + p

is kinematically allowed.

The lowest energy configuration is where all four final-state particles are at rest in
the centre-of-mass frame, thus in general, the centre-of-mass energy

√
s > 4mp,

i.e. s > 16m2
p. Because s = E2

TOT − p2
TOT is Lorentz invariant, writing the proton

energy and momentum as E and p, the condition in the laboratory frame is

(E + mp)2 − (p + 0)2 > 16m2
p

E2 + 2Emp + m2
p − p2 > 16m2

p

2Emp + m2
p > 16m2

p

⇒ E > 7mp .

2.9 Find the maximum opening angle between the photons produced in the decay
π0 → γγ if the energy of the neutral pion is 10 GeV, given that mπ0 = 135 MeV.

⌃

y

z

⌃⇤

y⇤

z⇤

�

�

⇡0
✓⇤

�⇡
p⇤1

p⇤2

In the rest frame of the π0, the four-momenta of the photons are p∗1 = (E, 0, E sin θ∗, E cos θ∗)
and p∗1 = (E, 0,−E sin θ∗,−E cos θ∗), where E = m0

π/2. The four-momenta of the
photons in the laboratory frame can be found from the (inverse) Lorentz transfor-
mation of Equation 2.6 where px = p∗x = 0, py = p∗y = ±E sin θ∗ and

E1 = γE∗1 + γβp∗z1 = γE(1 + β cos θ∗) and pz1 = γp∗z1 + γβE = γE(cos θ∗ + β)

E2 = γE∗2 + γβp∗z2 = γE(1 − β cos θ∗) and pz2 = γp∗z2 + γβE = γE(− cos θ∗ + β)
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One can either assume that the extreme values occur for the case where θ∗ = 0
and θ∗ = π/2 or one can derive the general expression for the opening angle in the
laboratory frame

cos θ =
p1 · p2

p1p2
=

px1 px2 + py1 py2 + pz1 pz2

E1E2

=
−E2 sin2 θ∗ + γ2E2(β2 − cos2 θ∗)

γ2E2(1 − β2 cos2 θ∗)

=
− sin2 θ∗/γ2 + β2 − cos2 θ∗

1 − β2 cos2 θ∗

=
β2(1 + sin2 θ∗) − 1

1 − β2 cos2 θ∗

where the extreme values are cos θ = −1 and cos θ = 2β2 − 1.

Here, since γ = Eπ/mπ = 74.1 and therefore using β2 = 1 − 1/γ2 = 0.99982, the
minimum opening angle is

cos θmin = 2β2 − 1 = 0.9963 or θmin = 0.027 rad ≡ 1.5◦ .

2.10 The maximum of the π−p cross section, which occurs at pπ = 300 MeV, corre-
sponds to the resonant production of the ∆0 baryon (i.e.

√
s = m∆). What is the mass

of the ∆?

Taking the protons to be at rest, the squared centre-of-mass energy s is given by

s = (Eπ + mp)2 − (p2
π)

= E2
π − p2

π + 2Eπmp + m2
p

= m2
p + m2

π + 2Eπmp

= m2
p + m2

π + 2mp(p2
π + m2

π)1/2

= 1.52 GeV

Therefore the mass of the ∆ is

m∆ =
√

s = 1.23 GeV .

2.11 Tau leptons are produced in the process e+e− → τ+τ− at a centre-of-mass
energy of 91.2 GeV. The angular distribution of the π− from the decay τ− → π−ντ is

dN
d(cos θ∗)

∝ 1 + cos θ∗ , (2.1)

where θ∗ is the polar angle of the π− in the τ-lepton rest frame, relative to the direction
defined by the τ spin. Determine the laboratory frame energy distribution of the π− for
the cases where the τ-lepton spin is i) aligned with or ii) opposite to its direction of flight.
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The angular dependence arises from the chiral nature of the weak interaction,
which implies that the ντ is left-handed. The two cases are indicated below. In
the rest frame of the four-momentum of the π− are respectively given by:

p∗ = (E∗π, 0, p
∗
π sin θ∗, p∗π cos θ∗) and p∗ = (E∗π, 0, p

∗
π sin θ∗,−p∗π cos θ∗) .

y

z

y⇤

z⇤

✓⇤⌧�
p⇤ ⇡

�

⌫⌧

�⌧

y

z

y⇤

z⇤

✓⇤

⌧�

p⇤ ⇡
�

⌫⌧

�⌧

In the laboratory frame, the energies of the charged pions are

E± = γE∗π ± βγp∗π cos θ∗ , (2.2)

where E+ refers to the first case where the spin of the tau lepton is on the same
direction as the motion of the tau and β and γ are respectively the velocity and
Lorentz factor of the tau-lepton. This implies that the minimum and maximum
energies of the decay pions (cos θ∗ = ±1) are

Emin = γE∗π − βγp∗π and Emax = γE∗π + βγp∗π ,

which can be used to write

γE∗π = 1
2 (Emax + Emin) and βγp∗π = 1

2 (Emax − Emin) .

For both spin-orientations:

dN
dE±

=
dN

d(cos θ∗)
×

∣∣∣∣∣ dE±
d(cos θ∗)

∣∣∣∣∣−1

∝ (1 + cos θ∗)/(βγp∗π)

∝ 1 + cos θ∗

Emax − Emin
.

This can be written in terms of the measured energy of the pion using (2.2), which
when expressed in terms of Emax and Emin gives

1 + cos θ∗ =
Emax − Emin ± (2E± − Emax − Emin)

Emax − Emin
.

Therefore for the two different spin orientations

dN
dEπ

=
Eπ − Emin

Emax − Emin
and

dN
dEπ

=
Emax − Eπ

Emax − Emin
,

where now E± have simply been written as Eπ.
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Here the τ energy is simply mZ/2 and therefore γ = mZ/2mτ = 25.65 and β =

0.9992. It is straightforward to show that the E∗π = 0.894 GeV and p∗π = 0.883 GeV.
Therefore Emin = 0.3 GeV and Emax = 45.5 GeV. Consequently, the energy distri-
butions of the charged pion from τ− → π−ντ decays (shown below) provides a way
of measuring the average polarisation of the tau lepton.

⌧�

E⇡

dN
dE⇡

⌧�

E⇡

dN
dE⇡

2.12 For the process 1 + 2→ 3 + 4, the Mandelstam variables s, t and u are defined
as s = (p1 + p2)2, t = (p1 − p3)2 and u = (p1 − p4)2. Show that

s + u + t = m2
1 + m2

2 + m2
3 + m2

4 .

This is a fairly straightforward problem if approached correctly:

s + u + t = (p1 + p2)2 + (p1 − p3)2 + (p1 − p4)2

= p2
1 + p2

2 + 2p1 ·p2 + p2
1 + p2

3 − 2p1 ·p3 p2
1 + p2

4 − 2p1 ·p4

= 3p2
1 + p2

2 + p2
3 + p2

4 + 2p1 ·(p2 − p3 − p4)

= 3p2
1 + p2

2 + p2
3 + p2

4 − 2p1 ·p1

= p2
1 + p2

2 + p2
3 + p2

4

= m2
1 + m2

2 + m2
3 + m2

4 .

2.13 At the HERA collider, 27.5 GeV electrons were collided head-on with 820 GeV
protons. Calculate the centre-of-mass energy.

Both the electron and proton can be treated as ultra-relativistic such that p ≈ E and
therefore

s = E2 − p2 = (Ep + Ee)2 − (Ep − Ee) = 90200 GeV2 ,

and hence the centre-of-mass energy
√

s = 300 GeV.

2.14 Consider the Compton scattering of a photon of momentum k and energy E =
|k| = k from an electron at rest. Writing the four-momenta of the scattered photon and
electron respectively as k′ and p′, conservation of four-momentum is expressed as
k + p = k′ + p′. Use the relation p′2 = m2

e to show that the energy of the scattered
photon is given by

E′ =
E

1 + (E/me)(1 − cos θ)
,

where θ is the angle through which the photon is scattered.
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Using four-vectors, this is a fairly straightforward problem. Writing p′ = k− k′ + p
and squaring (the four-vectors) gives

p′2 = (k − k′)2 + p2 + 2p·(k − k′)

m2
e = k2 + k′2 − 2k·k′ + m2

e + 2me(E − E′)
2EE′(1 − cos θ) = 2me(E − E′)

E′ {E(1 − cos θ) + me} = 2meE

⇒ E′ =
E

1 + (E/me)(1 − cos θ)
.

2.15 Using the commutation relations for position and momentum, prove that[
L̂x, L̂y

]
= iL̂z .

Using the commutation relations for the components of angular momenta prove[
L̂2, L̂x

]
= 0 ,

and

L̂2 = L̂−L̂+ + L̂z + L̂2
z .

a) For the first part, starting from the definition of angular momentum L = r × p,

L̂x = ŷp̂z − ẑ p̂y , L̂y = ẑ p̂x − x̂ p̂z and L̂z = x̂ p̂y − ŷp̂x ,

the commutator in question can be simplified using
[
ẑ, p̂z

]
= i as follows[

L̂x, L̂y
]

=
[
ŷ p̂z − ẑ p̂y, ẑ p̂x − x̂ p̂z

]
=

[
ŷ p̂z, ẑ p̂x

]
+

[
ẑ p̂y, x̂ p̂z

]
= ŷp̂x

[
p̂z, ẑ

]
+ p̂y x̂

[
ẑ, p̂z

]
= −iŷ p̂x + ip̂y x̂

= i(x̂ p̂y − ŷp̂x)

= iL̂z .

b) To show that
[
L̂2, L̂x

]
= 0, the angular momentum commutation relations written
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in the form L̂xL̂y = L̂yL̂x + iL̂z can be used:[
L̂2, L̂x

]
=

[
L̂xL̂x, L̂x

]
+

[
L̂yL̂y, L̂x

]
+

[
L̂zL̂z, L̂x

]
= L̂yL̂yL̂x − L̂xL̂yL̂y + L̂zL̂zL̂x − L̂xL̂zL̂z

= L̂y(L̂xL̂y − iL̂z) − (L̂yL̂x + iL̂z)L̂y + L̂z(L̂xL̂z + iL̂y) − (L̂zL̂x − iL̂y)L̂z

= −i(L̂yL̂z + L̂zL̂y) + i(L̂zL̂y + L̂yL̂z)

= 0

c) First expand L̂+L̂−

L̂−L̂+ = (L̂x − iL̂y)(L̂x + iL̂y)

= L̂2
x + L̂2

y − i
[
L̂y, L̂x

]
= L̂2

x + L̂2
y − i(−iL̂z)

= L̂2
x + L̂2

y − L̂z .

Then express in terms of L̂2:

L̂2 = L̂2
x + L̂2

y + L̂2
z

= L̂+L̂− + L̂z + L̂2
z .

2.16 Show that the operators Ŝ i = 1
2σi, where σi are the three Pauli spin-matrices,

Ŝ x = 1
2

(
0 1
1 0

)
, Ŝ y = 1

2

(
0 −i
i 0

)
and Ŝ z = 1

2

(
1 0
0 −1

)
,

satisfy the same algebra as the angular momentum operators, namely[
Ŝ x, Ŝ y

]
= iŜ z ,

[
Ŝ y, Ŝ z

]
= iŜ x and

[
Ŝ z, Ŝ x

]
= iŜ y .

Find the eigenvalue(s) of the operator Ŝ2
= Ŝ 2

x + Ŝ 2
y + Ŝ 2

z , and deduce that the eigen-
states of Ŝ z are a suitable representation of a spin-half particle.

a) The commutation relations can be obtained by direct matrix multiplication, e.g.[
Ŝ x, Ŝ y

]
= 1

4

[(
0 1
1 0

) (
0 −i
i 0

)
−

(
0 −i
i 0

) (
0 1
1 0

)]
= 1

4

[(
i 0
0 −i

)
−

( −i 0
0 i

)]
= i 1

2

(
1 0
0 −1

)
= iŜ z .
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b) Each of the Pauli spin matrices satisfies σ2
k = I and therefore

Ŝ2
= 1

4

(
σ2

x + σ2
y + σ2

z

)
= 3

4 I .

Given that the commutation relations are the same as for angular momentum the
states in the vector space upon which the Ŝ act can be described by two quantum
numbers |s,m〉, where the eigenvalue of Ŝ2

is s(s + 1) and there are 2s + 1 states
differing by one unit of m. For the two-component state vector

Ŝ2 |s,m〉 = 3
4 |s,m〉 ≡ s(s + 1) |s,m〉 .

Hence s(s + 1) = 3/4 which is satisfied for s = 1/2. Hence there are two states
in this vector space with s = 1/2 and ms = ±1/2. Since the operators satisfy the
commutation relations of the angular momentum operators, it can be concluded
that Ŝ x, Ŝ y and Ŝ z are a suitable (but not unique) representation of the operators
for the algebra of spin-half.

2.17 Find the third-order term in the transition matrix element of Fermi’s Golden rule.

The third-order term in the perturbation series can be found be substituting the
solution to second-order back into (2.42):

i
∑

k′

dck

dt
φk′e−iEk′ t ≈ Ĥ′φie−iEit − i

∑
k,i

∫
〈k|Ĥ′|i〉ei(Ek−Ei)t′ Ĥ′φke−iEkt′ dt′

+ (−i)2
∑
k,i

∑
j,i,k

∫
〈k|Ĥ′| j〉ei(Ek−E j)t′′ dt′′

∫
〈 j|Ĥ′|i〉ei(E j−Ei)t′ Ĥ′φke−iEkt dt′ .

Multiplying both sides by φ∗f gives

i
dc f

dt
e−iE f t ≈ 〈 f |Ĥ′|i〉e−iEit − i

∑
k,i

∫
〈k|Ĥ′|i〉ei(Ek−Ei)t′〈 f |Ĥ′|k〉e−iEkt′ dt′

+ (−i)2
∑
k,i

∑
j,i,k

∫
〈k|Ĥ′| j〉ei(Ek−E j)t′′ dt′′

∫
〈 j|Ĥ′|i〉ei(E j−Ei)t′〈 f |Ĥ′|k〉e−iEkt dt′ .

Multiplying through by eiE f t and performing the integrals with respect to t′ and t′′

leads to

i
dc f

dt
≈ 〈 f |Ĥ′|i〉ei(E f−Ei)t − i

∑
k,i

〈k|Ĥ′|i〉 ei(Ek−Ei)t

i(Ek − Ei)
〈 f |Ĥ′|k〉ei(E f−Ek)t

+ (−i)2
∑
k,i

∑
j,i,k

〈k|Ĥ′| j〉 ei(Ek−E j)t

i(Ek − E j)
〈 j|Ĥ′|i〉 ei(E j−Ei)t

i(E j − Ei)
〈 f |Ĥ′|k〉ei(E f−Ek)t

dc f

dt
≈ −i

(
〈 f |Ĥ′|i〉 +

∑ 〈k|Ĥ′|i〉〈 f |Ĥ′|k〉
(Ek − Ei)

+
∑∑ 〈 f |Ĥ′|k〉〈k|Ĥ′| j〉〈 j|Ĥ′|i〉

(Ek − E j)(E j − Ei)

)
ei(E f−Ei)t ,
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and therefore, to third-order,

T f i = 〈 f |Ĥ′|i〉 +
∑ 〈k|Ĥ′|i〉〈 f |Ĥ′|k〉

(Ek − Ei)
+

∑∑ 〈 f |Ĥ′|k〉〈k|Ĥ′| j〉〈 j|Ĥ′|i〉
(Ek − E j)(E j − Ei)

.



3 Decay Rates and Cross Sections

3.1 Calculate the energy of the µ− produced in the decay at rest π− → µ−νµ. Assume
mπ = 140 MeV, mµ = 106 MeV and take mν ≈ 0. Momentum is conserved so the

momentum of the muon and neutrino are equal and opposite with magnitude p.
Conservation of energy implies that

mπ = Eµ + Eν
⇒ mπ − p = Eµ

where the neutrino mass has been neglected Eν = p. Squaring and using E2 =

m2 + p2gives

m2
π − 2mπp + p2 = m2

µp2

⇒ p =
m2
π − m2

µ

2mπ
= 30 MeV .

Therefore the energy of the muon E2
µ = m2

µ + p2 = 110 MeV.

3.2 For the decay a → 1 + 2, show that the momenta of both daughter particles in
the centre-of-mass frame p∗ are

p∗ =
1

2ma

√[
(m2

a − (m1 + m2)2] [m2
a − (m1 − m2)2] .

In the parent particle’s rest frame, the momenta of the two daughter particles are

equal and conservation of energy implies ma = E1 + E2. Writing this as ma − E2 =

E1 and squaring gives

m2
a − 2maE2 + E2

2 = E2
1

m2
a − 2maE2 + m2

2 + p∗2 = m2
1 + p∗2

⇒ m2
a + (m2

2 − m2
1) = 2maE2 .

20
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Squaring again to eliminate E2 leads to

m4
a + 2m2

a(m2
2 − m2

1) + (m2
2 − m2

1)2 = 4ma(m2
2 + p∗2)

m4
a − 2m2

a(m2
2 + m2

1) + (m1 − m2)2(m1 + m2)2 = 4map∗2

m4
a − 2m2

a

[
(m1 + m2)2 + (m1 − m2)2

]
+ (m1 − m2)2(m1 + m2)2 = 4map∗2[

m2
a − (m2 + m2)2

] [
m2

a − (m1 − m2)2
]

= 4map∗2 ,

thus showing that

p∗ =
1

2ma

√[
(m2

a − (m1 + m2)2
] [

m2
a − (m1 − m2)2

]
.

3.3 Calculate the branching ratio for the decay K+ → π+π0, given the partial decay
width Γ(K+ → π+π0) = 1.2 × 10−8 eV and the mean kaon lifetime τ(K+) = 1.2 × 10−8 s.

The branching ratio is related to the total decay width Γ by

BR(K+ → π+π0) =
Γ(K+ → π+π0)

Γ
,

where (in natural units) Γ = 1/τ or in S.I units (as given here) Γ = ~/τ . Hence

BR(K+ → π+π0) =
τ

~
× Γ(K+ → π+π0)

=
1.2 × 10−8

1.06 × 10−34 · 1.2 × 10−8 · 1.6 × 10−19 = 21 % .

3.4 At a future e+e− linear collider operating as a Higgs factory at a centre-of-mass
energy of

√
s = 250 GeV, the cross section for the process e+e− → HZ is 250 fb. If the

collider has an instantaneous luminosity of 2×1034 cm−2 s−1 and is operational for 50 %
of the time, how many Higgs bosons will be produced in five years of running? Note:

1 femtobarn ≡ 10−15 b.

The total number of events is given by

N =

∫
σL dt ,

or equivalently, the event rate is σL. Remembering that 1 barn ≡ 10−24 cm2,

Rate = σL = (250 × 10−39) × (2 × 1034) = 0.005 s−1

Therefore in five years of operation with 50 % lifetime, a total of 0.005 × 0.5 ×
365.25 × 86400 = 394000 e+e− → HZ events would be accumulated.

3.5 The total e+e− → γ → µ+µ− annihilation cross section is σ = 4πα2/3s, where
α ≈ 1/137. Calculate the cross section at

√
s = 50 GeV, expressing your answer in
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both natural units and in barns (1 barn = 10−28 m2). Compare this to the total pp cross
section at

√
s = 50 GeV which is approximately 40 mb and comment on the result.

In natural units

σ =
4πα2

3s
=

4π/1372

3 · 502 = 8.9 × 10−8 GeV−2 .

To convert to natural units, either insert the missing factor of (~c)2 or use the con-
version factor ~c = 0.197 GeV fm and 1 fm2 = 10−30 m2 = 10−2 b, therefore

σ = 8.9 × 10−8 GeV−2 × 0.1972 × 0.01 b = 34 pb .

This is a factor of approximately 109 smaller than the strong interaction pp cross
section.

3.6 A 1 GeV muon neutrino is fired at a 1 m thick block of Iron (56
28Fe) with density

ρ = 7.874 × 103 kg m−3. If the average neutrino-nucleon interaction cross section is
σ = 8 × 10−39 cm2, calculate the (small) probability that the neutrino interacts in the
block.

From the definition of cross section the event rate is given by flux × cross section ×
number of targets, Rate = φσNt. The total number of interactions Nint is therefore

Nint = σNt

∫
φ dt .

Suppose the ”beam” of one neutrino is confined to an area A, then the integrated
flux is just 1/A. Writing the thickness of the Iron as x, the number of targets tra-
versed by the ”beam” is Axn, where n is the number density of target nuclei. Hence

Nint = σ
1
A

nAx = σnx .

Taking the average mass of a nucleon to be 1.67× 10−27 kg, here the product of the
number density and thickness is

nx =
7874

56 · 1.67 × 10−27 × 1 m = 8.4 × 1028 m−2 ≡ 8.4 × 1024 cm−2 .

Hence the average number of interactions for the single neutrino traversing the
block is 8.4 × 1024 · 8 × 10−39 = 7 × 10−10. Therefore the interaction probability is
less than 10−9.

3.7 For the process a + b→ 1 + 2 the Lorentz invariant flux term is

F = 4
[
(pa ·pb)2 − m2

am2
b

] 1
2 .

In the non-relativistic limit, βa � 1 and βb � 1, show that

F ≈ 4mamb |va − vb| ,



23 Decay Rates and Cross Sections

where va and vb are the (non-relativistic) velocities of the two particles.

First consider the low energy limit of the four-vector product pa·pb = EaEb−pa ·pb
where, (as expected) the non-relativistic limit of the particle energy and momentum
are (in natural units)

E = γm = m
(
1 − β2

)−1/2 ≈ m(1 + 1
2β

2) = m + 1
2 mβ2 ,

and to O(β):

p = γmβ = m
(
1 − β2

)−1/2
β ≈ mβ .

Hence pa ·pb = EaEb − pa · pb is approximately

pa ·pb ≈ mamb
(
1 + 1

2β
2
a

) (
1 + 1

2β
2
b

)
− mambβa · βb

= mamb
[
1 + 1

2 (β2
a + β2

b) − βa · βb + 1
4β

2
aβ

2
b

]
= mamb

[
1 + 1

2 (βa − βb)2 + 1
4β

2
aβ

2
b

]
≈ mamb

[
1 + 1

2 (βa − βb)2
]
.

Therefore to O(β2)

(pa ·pb)2 ≈ m2
am2

b

[
1 + (βa − βb)2

]
⇒ F = 4

[
(pa ·pb)2 − m2

am2
b

]1/2

= 4mamb|βa − βb| ,
or equivalently in S.I. units, F = 4mamb|va−vb|. As expected, in the non-relativistic
limit, the flux depends on the relative velocities of the particles.

3.8 The Lorentz invariant flux term for the process a + b → 1 + 2 in the centre-of-
mass frame was shown to be F = 4p∗i

√
s, where p∗i is the momentum of the intial-state

particles. Show that the corresponding expression in the frame where b is at rest is

F = 4mbpa .

Independent of rest frame, the Lorentz invariant flux is given by F = 4
[
(pa ·pb)2 − m2

am2
b

]1/2
.

Here pa = (Ea, 0, 0, pa) and pb = (mb, 0, 0, 0) and therefore

F = 4
[
E2

am2
b − m2

am2
b

]1/2

= 4
[
(p2

a + m2
a)m2

b − m2
am2

b

]1/2

= 4pamb .

3.9 Show that the momentum in the centre-of-mass frame of the initial-state particles
in a two-body scattering process can be expressed as

p∗2i =
1
4s

[s − (m1 + m2)2][s − (m1 − m2)2] .
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In the centre-of-mass frame
√

s = E∗1 + E∗2 and therefore

(
√

s − E∗1)2 = E∗22

s − 2
√

sE∗1 + E∗21 = E∗22

s − 2
√

sE∗1 + m2
1 + p∗2i = m2

1 + p∗2i

⇒ 2
√

sE∗1 = s + (m2
1 − m2

2)

4s(p∗2i + m2
1) = s2 + 2s(m2

1 − m2
2) + (m2

1 − m2
2)2

4sp∗2i = s2 − 2s(m2
1 + m2

2) + (m2
1 − m2

2)2

= s2 − 2s(m2
1 + m2

2) + (m1 − m2)2(m1 + m2)2

=
[
s − (m1 + m2)2

] [
s − (m1 − m2)2

]
⇒ p∗2i =

1
4s

[
s − (m1 + m2)2

] [
s − (m1 − m2)2

]
3.10 Repeat the calculation of Section 3.5.2 for the process e−p → e−p where the
mass of the electron is no longer neglected.
a) First show that

dE3

d(cos θ)
=

p1p2
3

p3(E1 + mp) − E3p1 cos θ
.

b) Then show that

dσ
dΩ

=
1

64π2 ·
p2

3

p1me
· 1

p3(E1 + mp) − E3p1 cos θ
· |M f i|2 ,

where (E1, p1) and (E3, p3) are the respective energies and momenta of the initial-state
and scattered electrons as measured in the laboratory frame.

✓ z

y e�

e�

p

p

(E1,p1)

(E3,p3)

(E4,p4)

a) With the electron masses (m) included this is a somewhat tedious calculation. In
the laboratory frame where the proton is at rest the four-momenta of the particles
(shown above) can be written

p1 = (E1, 0, 0, p1) , p2 = (mp, 0, 0, 0) , p3 = (E3, 0, p3 sin θ, p3 cos θ) and p4 = (E4,p4) .

Differentiating E2
3 = p2

3 + m2
3 with respect to cos θ gives

2E3
dE3

d(cos θ)
= 2p3

dp3

d(cos θ)
. (3.1)
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Then equating the expressions for the Mandelstam t variable written in terms of
the electron and proton four-momenta gives

t = (p1 − p3)2 = (p2 − p4)2

2m2
e − 2p1 ·p3 = 2m2

p − 2p2 ·p4

2m2
e − 2(E1E3 − p1p3 cos θ) = 2m2

p − 2mpE4

2m2
e − 2(E1E3 − p1p3 cos θ) = 2m2

p − 2mp(E1 + mp − E3) ,

which can be differentiated with respect to cos θ remembering that E1 and p1 are
the fixed intial-state electron energy and momentum:

−E1
dE3

d(cos θ)
+ p1

dp3

d(cos θ)
+ p1p3 = mp

dE3

d(cos θ)

⇒ (E1 + mp)
dE3

d(cos θ)
− p1 cos θ

dp3

d(cos θ)
= p1p3 .

Using (3.1) this can be written

(E1 + mp)
dE3

d(cos θ)
− p1

E3

p3
cos θ

dE3

d(cos θ)
= p1p3

⇒
(
E1 + mp − p1E3 cos θ

p3

)
dE3

d(cos θ)
= p1p3

⇒ dE3

d(cos θ)
=

p1p2
3

p3(E1 + mp) − p1E3 cos θ
,

which is the desired result.

b) From (3.37) of the main text,

dσ
dt

=
1

64πs p∗2i

|M f i|2 .

This can be related to the differential cross section in terms of solid angle using

dσ
dΩ

=
dσ
dt

dt
dΩ

=
1

2π
dt

d(cos θ)
dσ
dt

.

But t = (p4 − p2)2 = 2m2
p − 2mpE4 = 2m2

p − 2mp(E1 + mp − E3) and therefore

dt
d(cos θ)

= 2mp
dE3

d(cos θ)
.

Putting the things together gives

dσ
dΩ

=
1

2π
2mp

dE3

d(cos θ)
1

64πs p∗2i

|M f i|2

=
1

64π2

mpp1p2
3

sp∗2i

1
p3(E1 + mp) − p1E3 cos θ

|M f i|2 . (3.2)
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All that remains is to express sp2
i in terms of the laboratory frame quantities. The

centre-of-mass energy squared is just

s = (E1 + mp)2 − p2
1 = 2mpE1 + m2

p + m2
e ,

and from the previous question

sp∗2i = 1
4

[
s − (me + mp)2

] [
s − (me − mp)2

]
= 1

4

[
s − m2

e − m2
p − 2memp

] [
s − m2

e − m2
p + 2memp

]
= 1

4

[
2mpE1 − 2memp

] [
2mpE1 + 2memp

]
= m2

pE2
1 − m2

em2
p

= m2
pp2

1 .

Substituting this expression back into (3.2) gives

dσ
dΩ

=
1

64π2 ·
p2

3

mpp1
· 1

p3(E1 + mp) − p1E3 cos θ
· |M f i|2 .
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4.1 Show that

[p̂2, r̂ × p̂] = 0 ,

and hence the Hamiltonian of the free particle Schrödinger equation commutes with
the angular momentum operator.

Consider the commutator of p̂2 with the x-component of L̂ = r̂ × p̂:

L̂x = ŷp̂z − ẑ p̂y .

Hence [
p̂2, L̂x

]
=

[
p̂2

x + p̂2
y + p̂2

z , ŷ p̂z − ẑ p̂y
]

=
[
p̂2
y, ŷ p̂z

]
−

[
p̂2

z , ẑ p̂y
]

=
[
p̂2
y, ŷ

]
p̂z −

[
p̂2

z , ẑ
]

p̂y , (4.1)

where the last line follows since, for example, p̂z commutes with ŷ. Using[
y, p̂y

]
= ŷ p̂y − p̂yŷ = i ,

the commutators in the previous expression can be simplified, for example[
p̂2
y, ŷ

]
= p̂y p̂yŷ − ŷ p̂y p̂y

= p̂y(ŷ p̂y − i) − ŷp̂y p̂y
= p̂yŷ p̂y − ip̂y − ŷp̂y p̂y
= (ŷy p̂y − i)p̂y − ip̂y − ŷ p̂y p̂y
= −2ip̂y .

Similarly
[
p̂2

z , ẑ
]

= −2ip̂z and therefore (4.1) becomes[
p̂2, L̂x

]
=

[
p̂2
y, ŷ

]
p̂z −

[
p̂2

z , ẑ
]

p̂y

= −2ip̂y p̂z + 2ip̂z p̂y
= 0 .

27
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Hence the commentator
[
p̂2, r̂ × p̂

]
is identically equal to zero. Since the Hamilto-

nian for a non-relativistic free particle can be written ĤD = p̂2/2m, it immediately
follows that [

ĤD, L̂
]

= 0 .

Since the Hamiltonian for a non-relativistic free particle commutes with the oper-
ator for angular momentum, angular momentum is a conserved quantity for a free
Dirac particle.

4.2 Show that u1 and u2 are orthogonal, i.e. u†1u2 = 0.

The two normalised spinors are

u1(p) =
√

E + m


1
0
pz

E+m
px+ipy
E+m

 and u2(p) =
√

E + m


0
1

px−ipy
E+m−pz
E+m


and therefore u1(p)†u2(p) is

u1(p)†u2(p) = (E + m)
(
1, 0, pz

E+m ,
px−ipy
E+m

) 
0
1

px−ipy
E+m−pz
E+m


= (E + m)

(
0 + 0 +

pz(px−ipy)
E+m − pz(px−ipy)

E+m

)
= 0 .

Since u1(p)†u2(p) = 0, taking the Hermitian conjugate shows that u2(p)†u1(p) = 0.

4.3 Verify the statement that the Einstein energy-momentum relationship is recov-
ered if any of the four Dirac spinors of (4.48) are substituted into the Dirac equation
written in terms of momentum, (γ µpµ − m)u = 0.

In matrix form γµpµ − m is given by

γµpµ − m = E


1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

 − px


0 0 0 1
0 0 1 0
0 -1 0 0

-1 0 0 0

 − py


0 0 0 -i
0 0 i 0
0 i 0 0
-i 0 0 0

 − pz


0 0 1 0
0 0 0 -1

-1 0 0 0
0 1 0 0

 − mI

=


E − m 0 −pz −px + ipy

0 E − m −px − ipy pz

pz px − ipy −(E + m) 0
px + ipy −pz 0 −(E + m)

 .
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Hence the Dirac equation for u1, when written out in gory detail, is

(γ µpµ − m)u = 0
E − m 0 −pz −px + ipy

0 E − m −px − ipy pz

pz px − ipy −(E + m) 0
px + ipy −pz 0 −(E + m)




1
0
pz

E+m
px+ipy
E+m

 = 0


(E − m) + 0 − p2

z
E+m +

−p2
x−p2

y

E+m
0 + 0 − pz

(px+ipy)
+

pz
(px+ipy)

pz + 0 − pz + 0
(px + ipy) + 0 + 0 − (px + ipy)

 = 0

1
E + m


E2 − m2 − p2

x − p2
y − p2

x
0
0
0

 = 0 ,

which is only true when E2 = p2 +m2. Of course, this had to be true since the Dirac
equation was constructed to be consistent with the Einstein energy-momentum re-
lation.

4.4 For a particle with four-momentum p µ = (E,p), the general solution to the free
particle Dirac Equation can be written

ψ(p) = [au1(p) + bu2(p)]ei(p·x−Et) .

Using the explicit forms for u1 and u2, show that the four-vector current j µ = (ρ, j) is
given by

j µ = 2p µ .

Furthermore, show that the resulting probability density and probability current are
consistent with a particle moving with velocity β = p/E.

For arbitrary spinors ψ and φ, with spinor components ψi and φi, matrix multipli-
cation gives, for µ = 0,

ψγ0φ = (ψ∗1, ψ
∗
2,−ψ∗3,−ψ∗4)


1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1



φ1
φ2
φ3
φ4

 = ψ∗1φ1 + ψ∗2φ2 + ψ∗3φ3 + ψ∗4φ4 .
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Repeating this for µ = 1, 2, 3 gives

ψγ0φ = ψ∗1φ1 + ψ∗2φ2 + ψ∗3φ3 + ψ∗4φ4

ψγ1φ = ψ∗1φ4 + ψ∗2φ3 + ψ∗3φ2 + ψ∗4φ1

ψγ2φ = −i(ψ∗1φ4 − ψ∗2φ3 + ψ∗3φ2 − ψ∗4φ1)

ψγ3φ = ψ∗1φ3 − ψ∗2φ4 + ψ∗3φ1 − ψ∗4φ2

For the free particle spinor u1(p), the first element of the four-vector is

u1γ
0u1 = (E + m)

1 +
p2

z

(E + m)2 +
(p2

x + p2
y)

(E + m)2


= (E + m)

[
1 +

p2

(E + m)2

]
=

(E + m)2 + p2

E + m

=
2E2 + 2Em

E + m
= 2E .

Repeating this for the remaining terms in the four-vector current gives

u1γ
0u1 = 2E , u1γ

1u1 = 2px , u1γ
2u1 = 2py and u1γ

3u1 = 2pz ,

and therefore

u1γ
µu1 = (2E, 2px, 2py, 2pz) ≡ 2p µ .

For u2, v1 and v2 the corresponding expressions are

u1γ
µu1 = u2γ

µu2 = v1γ
µv1 = v2γ

µv2 = 2p µ .

and the corresponding cross terms all give zero

u1γ
µu2 = u2γ

µu1 = v1γ
µv2 = v2γ

µv1 = 0 .

For a particle, with ψ = u(p)eip.x, we have

ψ = ψ†γ0 = u(p)†γ0e−ip·x = u(p)e−ip·x ,

and hence

j µ = ψγ µψ = uγ µu .

For an antiparticle spine the same relation is found; jµ = vγ µv.

A particle spinor u(p) can always be expressed as a linear combination of the basis
spinors u1(p), u2(p):

u = α1u1 + α2u2 , with |α1|2 + |α2|2 = 1 .
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Hence

uγ µu = |α1|2u1γ
µu1 + |α2|2u2γ

µu2 = 2p µ .

Thus for any free-particle spinor

j µ ≡ uγ µu = 2p µ .

The four-vector current j µ = (ρ, j), leading to the identification

ρ = 2E , j = 2p .

This shows that the general spinor u(p) is normalised to 2E particles per unit vol-
ume and from E = γm and p = γmv, the corresponding particle flux is j = 2Ev.
Hence the particle flux is, as expected,

j = ρv .

4.5 Writing the four-component spinor u1 in terms of two two-component vectors

u =

(
uA
uB

)
,

show that in the non-relativistic limit, where β ≡ v/c � 1, the components of uB are
smaller than those of uA by a factor v/c.

Here we are looking for the general order of magnitude of the relative size of the
upper and lower components. So for simplicity, consider a particle travelling in the
z-direction, which from the definition of u1 has

uA = N
(

1
0

)
, and uB = N

( p
E+m
0

)
.

Here the two lower components of the spinor are smaller than the upper two com-
ponents by a factor

p
E + m

=
γmβ

(γ + 1)m
.

In the non-relativistic limit where γ ≈ 1 this factor is of order β = v/c.

4.6 By considering the three cases µ = ν = 0, µ = ν , 0 and µ , ν show that

γ µγν + γνγ µ = 2g µν .

For the case where µ = ν = 0,

γ0γ0 + γ0γ0 = 2I = 2g00 .
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For the case where µ = ν = k,

γkγk + γkγk = −2I = 2gkk for k = 1, 2, 3 .

For the case where µ , ν, the anti-commutation relation γ µγν = −γνγ µ immedi-
ately implies that

γ µγν + γνγ µ = 0 = 2g µν for µ , ν .

In each case γ µγν + γνγ µ = 2g µν.

4.7 By operating on the Dirac equation,

(iγ µ∂µ − m)ψ = 0 ,

with γν∂ν, prove that the components of ψ satisfy the Klein-Gordon equation,

(∂ µ∂µ + m2)ψ = 0 .

Acting on the Dirac equation with γν∂ν and multiplying by −i gives

γνγ µ∂ν∂µψ + miγν∂νψ = 0 .

But since ψ satisfies the Dirac equation iγν∂νψ = mψ and thus

(γνγ µ∂ν∂µ + m2)ψ = 0 .

Since the order of differentiation doesn’t matter γνγ µ∂ν∂µ can be written

γνγ µ∂ν∂µ = 1
2 (γνγ µ + γ µγν)∂ν∂µ = g µν ∂ν∂µ ,

and therefore

(g µν∂ν∂µ + m2)ψ = 0

⇒ (∂ µ∂µ + m2)ψ = 0 ,

which is the Klein-Gordon equation.

4.8 Show that

(γ µ)† = γ0γ µγ0 .

Recall the γ0† = γ0, γk† = γk, γ0γ0 = I and γ0γk = −γkγ0. For µ = 0,

γ0† = γ0 = γ0γ0γ0 .

For µ = k , 0,

γk† = −γk = −γ0γ0γk = +γ0γkγ0 ,



33 The Dirac Equation

and therefore for µ = 0, 1, 2, 3,

(γ µ)† = γ0γ µγ0 .

4.9 Starting from
(γ µpµ − m)u = 0 ,

a) show that the corresponding equation for the adjoint spinor is

u(γ µpµ − m) = 0 .

b) Hence, without using the explicit form for the u spinors, show that the normalisation
condition u†u = 2E leads to

uu = 2m ,

and that
uγ µu = 2p µ .

a) Taking the Hermitian conjugate of the Dirac equation (γ µpµ −m)u = 0 (remem-
bering that the pµ are just real numbers), gives

0 = u†(γ µ†pµ − m)

= u†γ0γ0(γ µ†pµ − m)

= u†γ0(γ µγ0 pµ − mγ0)

= u(γ µpµ − m)γ0 ,

where one of the intermediate steps used the relation γ0γ µ† = γ µ†γ0 for all µ.
Finally, pre-multiplying γ0 by both sides of the above expression leads to

u(γ µpµ − m) = 0 .

b) Consider the uγν× the Dirac equation and Dirac equation for the adjoint spinor
×γνu

uγν(γ µpµ − m)u = 0 and u(γ µpµ − m)γνu = 0

and take the sum:

u(γνγ µ + γ µγν)pµu − 2muγνu = 0

u2g µνpµu = 2muγνu

pνuu = muγνu .

For the case ν = 0 this reduces to

p0uu = mu†γ0γ0u

Euu = mu†u = 2mE

⇒ uu = 2m .
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Substituting this back into the first line:

pνuu = muγνu

pν(2m) = muγνu

⇒ uγνu = 2pν .

4.10 Demonstrate that the two relations of equation (4.45) are consistent by showing
that

(σ · p)2 = p2 .

This can be shown either by writing out the explicit form of σ · p using the Pauli
spin matrices or (more elegantly) by using the properties of the matrices, namely
σ2

k = 1 and σxσy = −σyσx from which

(σ · p)2 = (pxσx + pyσy + pzσz)(pxσx + pyσy + pzσz)

= p2
xσ

2
x + p2

yσ
2
y + p2

zσ
2
z +

px py(σxσy + σyσx) + px pz(σxσz + σzσx) + pypz(σyσz + σzσy)

= p2
x + p2

y + p2
z

= p2 .

4.11 Consider the e+e− → γ → e+e− annihilation process in the centre-of-mass
frame where the energy of the photon is 2E. Discuss energy and charge conservation
for the two cases where: a) the negative energy solutions of the Dirac equation are
interpreted as negative energy particles propagating backwards in time;

b) the negative energy solutions of the Dirac equation are interpreted as positive en-
ergy antiparticles propagating forwards in time.

a) In the first interpretation (left diagram), the intial-state positive e− of energy +E
emits a photon of energy 2E. To conserve energy it is now a negative energy e− and
therefore propagates backwards in time. At the other vertex, the photon interacts
with a negative energy e−, which is propagating backwards in time and scattering
results in a positive energy e−.

b) In the Feynman-Stückelberg interpretation (right diagram), the intial-state pos-
itive e− of energy +E annihilates with a positive energy e+ to produce a photon
of energy 2E. At the second vertex the photon produces an e+e− pair. All particles
propagate forwards in time.

4.12 Verify that the helicity operator

ĥ =
Σ̂ · p̂
2p

=
1
2p

(
σ · p̂ 0

0 σ · p̂

)
,
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γ(2E)

e−(−E)

e−(+E)

e−(−E)

e−(+E)

γ(2E)

e+(+E)

e−(+E)

e+(+E)

e−(+E)

tFig. 4.1 The interpretation of the annihilation process e+e− → e+e−. In both diagrams (which are
not Feynman diagrams) the time axis runs strictly from left to right.

commutes with the Dirac Hamiltonian,

ĤD = α · p̂ + βm .

In the Pauli-Dirac representation

β =

(
I 0
0 −I

)
and αi =

(
0 σi

σi 0

)
,

and since β contains the identity matrix it is clear that
[
ĥ,=

]
mβĥ = 0 and therefore

it is only necessary to consider
[
ĥ,α · p̂

]
.

[
ĥ, ĤD

]
=

1
2p

[(
σ · p̂ 0

0 σ · p̂

) (
0 σ · p̂

σ · p̂ 0

)
−

(
0 σ · p̂

σ · p̂ 0

) (
σ · p̂ 0

0 σ · p̂

)]
=

1
2p

[(
0 (σ · p̂)2

(σ · p̂)2 0

)
−

(
0 (σ · p̂)2

(σ · p̂)2 0

)]
= 0 .

4.13 Show that

P̂u↑(θ, φ) = u↓(π − θ, π + φ) ,

and comment on the result.

In the Dirac-Pauli representation

P̂ = γ0 =


1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

 and u↑(θ, φ) =
√

E + m


c

seiφ

p
E+m c
p

E+m seiφ

 .
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Therefore

P̂u↑(θ, φ) =
√

E + m


1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1




c
seiφ

p
E+m c
p

E+m seiφ


=
√

E + m


c

seiφ

− p
E+m c

− p
E+m seiφ

 .
This can be compared to

u↓(π − θ, π + φ) =
√

E + m


− sin(π/2 − θ/2)

cos(π/2 − θ/2)ei(φ+π)

p
E+m sin(π/2 − θ/2)

− p
E+m cos(π/2 − θ/2)ei(φ+π)


=
√

E + m


−c
−seiφ

p
E+m c
p

E+m seiφ

 ,
and therefore, up to an overall phase factor, P̂u↑(θ, φ) = u↓(π−θ, π+φ). As expected
the action of the parity operator has the effect that p → −p (reversing the direc-
tion of the particle), but leaves the orientation of the spin unchanged in space, this
transforming a RH particle into a LH particle travelling in the opposite direction.

4.14 Under the combined operation of parity and charge conjugation (ĈP̂) spinors
transform as

ψ→ ψc = ĈP̂ψ = iγ2γ0ψ∗ .

Show that up to an overall complex phase factor

ĈP̂u↑(θ, φ) = v↓(π − θ, π + φ) .

In the Dirac-Pauli representation

γ0 =


1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

 , γ2 =


0 0 0 -i
0 0 i 0
0 i 0 0
-i 0 0 0

 and u↑(θ, φ) =
√

E + m


c

seiφ

p
E+m c
p

E+m seiφ

 .
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Hence

ĈP̂u↑(θ, φ) = iγ2γ0u↑(θ, φ)∗ = i


0 0 0 -i
0 0 i 0
0 i 0 0
-i 0 0 0




1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1


√

E + m


c

se−iφ

p
E+m c
p

E+m se−iφ


= i


0 0 0 -i
0 0 i 0
0 i 0 0
-i 0 0 0


√

E + m


c

se−iφ

− p
E+m c

− p
E+m se−iφ


=
√

E + m


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0




c
se−iφ

− p
E+m c

− p
E+m se−iφ


=
√

E + m


− p

E+m se−iφ

p
E+m c
−se−iφ

c


This can be compared to

v↓(π − θ, φ + π) =
√

E + m


p

E+m s
− p

E+m ceiφ

s
−ceiφ

 = −eiφ
√

E + m


− p

E+m se−iφ

p
E+m c
−se−iφ

c

 ,
and thus

ĈP̂u↑(θ, φ) = −eiφv↓(π − θ, π + φ) .

This overall (unobservable phase) could have been included in the original defini-
tion of the v↓.

4.15 Starting from the Dirac equation, derive the identity

u(p′)γ µu(p) =
1

2m
u(p′)(p + p′) µu(p) +

i
m

u(p′) Σ µνqνu(p) ,

where q = p′ − p and Σ µν = i
4 [γ µ, γν].

Starting with the Dirac equation for the spinor u(p) and the corresponding equation
for the adjoint spinor u(p′):

(γ µpµ − m)u(p) = 0 and u(p′)(γ µp′µ − m) = 0 ,
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gives

γ µpµu(p) = mu(p) and u(p′)γ µp′µ = mu(p′) . (4.2)

Now consider the u(p′) Σ µνqνu(p) term, remembering that the pν are just numbers
and taking care to preserve the order of the γ-matrices:

u(p′) Σ µνqνu(p) =
i
4

[
u(p′)γ µγν(p′ν − pν)u(p) − u(p′)γν(p′ν − pν)γ µu(p)

]
.

Wherever the terms u(p′)γνp′ν and γνpνu(p) appear, the relations of (4.2) can be
used to simplify the above expression, hence

u(p′) Σ µνqνu(p) =
i
4

[
u(p′)γ µγνp′νu(p) − mu(p′)γ µu(p) − mu(p′)γ µu(p) + u(p′)γνpνγ µu(p)

]
=

i
4

[−2mu(p′)γ µu(p) + u(p′)γ µγνp′νu(p) + u(p′)γνpνγ µu(p)
]
.

The two terms containing two γ-matrices can be simplified by using γ µγν = 2g µν−
γνγ µ to place them in the order where (4.2) can again be used.

u(p′) Σ µνqνu(p) =
i
4

[−2mu(p′)γ µu(p) + u(p′)(2g µν − γνγ µ)p′νu(p)

u(p′)(2g µν − γ µγν)pνu(p)
]

=
i
4

[−2mu(p′)γ µu(p) + 2u(p′)p′µu(p) − u(p′)p′νγ
νγ µu(p)

+2u(p′)p µu(p) − u(p′)γ µγνpνu(p)
]

=
i
4

[−2mu(p′)γ µu(p) + 2u(p′)(p′µ + p µ)u(p) − 2mu(p′)γ µu(p)
]

=
i
4

[−4mu(p′)γ µu(p) + 2u(p′)(p′µ + p µ)u(p)
]

⇒ iu(p′) Σ µνqνu(p) = mu(p′)γ µu(p) − 1
2

u(p′)(p′µ + p µ)u(p)

⇒ u(p′)γ µu(p) =
1

2m
u(p′)(p′µ + p µ)u(p) +

i
m

u(p′) Σ µνqνu(p) ,

as required.



5 Interaction by Particle Exchange

5.1 Draw the two time-ordered diagrams for the s-channel process shown in Fig-
ure 5.5. By repeating the steps of Section 5.1.1, show that the propagator has the same
form as obtained for the t-channel process. Hint: one of the time-ordered diagrams is

non-intuitive, remember that in second-order perturbation theory the intermediate state
does not conserve energy.

The two possible time-orderings are shown below. In the first a+b annihilate into X
and then X produces c+d. In the second time-ordering, the three particles c+d + X̃
“pop out” of the vacuum and subsequently a + b + X̃ annihilate into the vacuum.

a a

sp
ac

e

sp
ac

e

time time

i ij jf f
b

b

c

c

d

X
X̃

Vji

Vf j

d
Vji

Vf j

For the first time-ordering, the transition matrix element is given by second-order
perturbation theory:

T ab
f i =

〈 f |V | j〉〈 j|V |i〉
Ei − E j

=
〈c + d|V |X〉〈X|V |a + b〉

(Ea + Eb) − (EX)
.

The non-invariant matrix element V ji is related to the Lorentz invariant (LI) matrix
elementM ji by

V ji =M ji

∏
k

(2Ek)−1/2 ,

where the index k runs over the particles involved at the interaction vertex. For the
simplest scalar interactionMa+b→X =MX→c+d = g and thus

T ab
f i =

1
2EX

· 1
(2Ea2Eb2Ec2Ed)1/2

g2

(Ea + Eb) − (EX)
,

39
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and the corresponding LI matrix element is

Mab
f i =

1
2EX

g2

(Ea + Eb) − (EX)
.

For the second time-ordering all five particles are present in the intermediate state
and thus,

T cd
f i =

〈c + d + X|V |0〉〈0|V |a + b + X〉
(Ea + Eb) − (Ea + Eb + Ec + Ed + EX)

,

where zero denotes the vacuum state. The corresponding LI matrix element is

Mcd
f i = − 1

2EX

g2

Ec + Ed + EX
= − 1

2EX

g2

(Ea + Eb) + EX
.

The total amplitude is the sum of the two time-orderings

M =
g2

2EX

[
1

Ea + Eb − EX
− 1

(Ea + Eb) + EX

]
=

g2

2EX

 2EX

(Ea + Eb)2 − E2
X


=

g2

(Ea + Eb)2 − E2
X

.

Writing E2
X = (pa + pb)2 + m2

X gives

M =
g2

(Ea + Eb)2 − (pa + pb)2 − m2
X

=
g2

q2 − m2
X

,

where q2 = (pa + pb)2. This is exactly the same form as for the t-channel pro-
cess considered in the main text, and as before the four-momentum that appears in
the expression is obtained from conservation of four-momentum at the interaction
vertex.

5.2 Draw the two lowest-order Feynman diagrams for the Compton scattering pro-
cess γe− → γe−.

The lowest-order diagrams have just two QED eeγ interaction vertices. Here there
is a t-channel and an s-channel diagram. It should be remembered that a Feynman
diagram is defined solely by its topology as it already represents all possible time-
orderings for a process. In both cases the virtual particle, labelled as e, represents
an e− in one time-ordering and an e+ in the other.
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e

e−

γ

γ

e−

e

e−

γ

γ

e−

5.3 Draw the lowest-order t-channel and u-channel Feynman diagrams for e+e− → γγ

and use the Feynman rules for QED to write down the corresponding matrix elements.

Because the there are identical particles in the final state, both t- and u-channel
diagrams can contribute. In the first diagram the virtual photon has four-momentum
q = p1− p3 = p4− p2, whereas in the second diagram q = p1− p4 = p3− p2. Using

p1 p3

q = p1 − p3

p4p2

e−

e+

γ

γ

p1

q = p1 − p4
p4

p2

p3

e−

e+

γ

γ

the Feynman rules for QED, and remembering to label the vertices with different
indices, the matrix elements are

−iMt =
[
ε∗µ(p3)ieγ µu(p1)

]
·
[
− i(γ ρqρ + me)

q2 − me

]
· [v(p2)ieγνε∗ν(p4)

]
−iMu =

[
ε∗µ(p4)ieγ µu(p1)

]
·
[
− i(γ ρqρ + me)

q2 − me

]
· [v(p2)ieγνε∗ν(p3)

]
.



6 Electron-Positron Annihilation

6.1 Using the properties of the γ-matrices of (4.33) and (4.34), and the definition of
γ5 ≡ iγ0γ1γ2γ3, show that

(γ5)2 = 1 , γ5† = γ5 and γ5γ µ = −γ µγ5 .

i) Remembering that γ µγν = −γνγ µ for µ , ν then the γ-matrices can be permuted
and then removed using (γ0)2 = 1 and (γk)2 = −1:

(γ5)2 = −γ0γ1γ2γ3γ0γ1γ2γ3

= +γ0γ1γ2γ0γ3γ1γ2γ3

= −γ0γ1γ0γ2γ3γ1γ2γ3

= +γ0γ0γ1γ2γ3γ1γ2γ3

= +γ1γ2γ3γ1γ2γ3

= +γ1γ1γ2γ3γ2γ3

= −γ2γ3γ2γ3

= +γ2γ2γ3γ3

= +1 .

ii) Similarly

γ5† = −iγ3γ2γ1γ0

= +iγ3γ2γ0γ1

= −iγ3γ0γ2γ1

= +iγ0γ3γ2γ1

= +iγ0γ1γ3γ2

= −iγ0γ1γ2γ3

= −γ5 .

Of course this can be shown much more quickly be realising that six permutations
of the form γ µγν = −γνγ µ are required to reorder γ5† into γ5.

42
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iii) Since

γ5γ µ = iγ0γ1γ2γ3γ µ ,

it takes three permutations of the form γ µγν = −γνγ µ to place the γ µ at the front
of the expression. It is three, not four, because no permutation is required when γ µ

is next to the corresponding γ-matrix. Thus

γ5γ µ = −iγ µγ0γ1γ2γ3 = −γ µγ5 .

6.2 Show that the chiral projection operators

PR = 1
2 (1 + γ5) and PL = 1

2 (1 − γ5) ,

satisfy
PR + PL = 1 , PRPR = PR , PLPL = PL and PLPR = 0 .

It is clear that PR + PL = 1. Using (γ5)2 = 1, it is straightforward to show PRPR =

PR,

PRPR = 1
4 (1 + γ5)(1 + γ5)

= 1
4 (1 + 2γ5 + (γ5)2)

= 1
4 (2 + 2γ5) = PR .

The relation PLPL = PL follows in the same way. Finally

PRPL = 1
4 (1 + γ5)(1 − γ5)

= 1
4 (1 − (γ5)2)

= 0 .

6.3 Show that

Λ+ =
m + γ µpµ

2m
and Λ− =

m − γ µpµ
2m

,

are also projection operators, and show that they respectively project out particle and
antiparticle states, i.e.

Λ+u = u , Λ−v = v and Λ+v = Λ−u = 0 .

i) Firstly it is necessary to show that the Λ± matrices are projections operators.
Clearly Λ+ + Λ− = 1 as required. Secondly, it is necessary to show Λ+Λ+ = Λ+,
such that the repeated action of a projection operator induces no change. Here
(remembering that the pµ are just numbers):

Λ+Λ+ = 1
4m2 (m + γ µpµ)(m + γνpν)

= 1
4m2 (m2 + m[γ µpµ + γνpν] + pµpνγ µγν) .
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Because pµpνγ µγν is a symmetric tensor it can be written as 1
2 pµpν(γ µγν + γνγ µ)

and since γ µγν + γνγ µ = 2g µν

pµpνγ µγν = 1
2 pµpν(γ µγν + γνγ µ)

= g µνpµpν
= pµp µ = m2 .

Thus

Λ+Λ+ = 1
4m2 (m2 + m[γ µpµ + γνpν] + pµpνγ µγν)

= 1
4m2 (2m2 + 2mγ µpµ)

= 1
2m (m + γ µpµ)

= Λ+ .

Similarly Λ+Λ− = 0 and Λ−Λ− = Λ−.

ii) The free particle u-spinors and v-spinors respectively satisfy

(γ µpµ − m)u = 0 and (γ µpµ + m)u = 0 ,

and therefore

γ µpµu = +mu and γ µpµv = −mv .

Therefore

Λ+u = 1
2m (m + γ µpµ)u

= 1
2m (m + m)u = u .

The other relations follow in the same way.

6.4 Show that the helicity operator can be expressed as

ĥ = − 1
2
γ0γ5γ · p

p
.

In the Dirac-Pauli representation, the relevant matrices are

Ŝ k = 1
2 Σ̂k = 1

2

(
σk 0
0 σk

)
, γk =

(
0 σk

−σk 0

)
, γ0 =

(
I 0
0 −I

)
and γ5 =

(
0 I
I 0

)
,

where k = 1, 2, 3 and Ŝ k are the components of the spin operator for a Dirac spinor.
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The combination −1
2γ

0γ5γk gives

− 1
2γ

0γ5γk = − 1
2

(
I 0
0 −I

) (
0 I
I 0

) (
0 σk

−σk 0

)
= − 1

2

(
0 I
−I 0

) (
0 σk

−σk 0

)
= 1

2

(
σk 0
σk 0

)
= Ŝ k ,

and therefore

ĥ = −1
2
γ0γ5γ · p

p
=

Ŝ · p
p

,

which gives the projection of the spin of a particle along its direction of motion.

6.5 In general terms, explain why high-energy electron-positron colliders must also
have high instantaneous luminosities.

Because s-channel QED cross sections decrease as 1/s, as the centre-of-mass en-
ergy increases, higher instantaneous luminosities are required to obtain a reason-
able event rate, Rate = σL.

6.6 For a spin-1 system, the eigenstate of the operator Ŝ n = n · Ŝ with eigenvalue
+1 corresponds to the spin being in the direction n̂. Writing this state in terms of the
eigenstates of Ŝ z, i.e.

|1,+1〉θ = α|1,−1〉 + β|1, 0〉 + γ|1,+1〉 ,
and taking n = (sin θ, 0, cos θ) show that

|1,+1〉θ = 1
2 (1 − cos θ) |1,−1〉 + 1√

2
sin θ |1, 0〉 + 1

2 (1 + cos θ) |1,+1〉 .

Hint: write Ŝ x in terms of the spin ladder operators.

This question is a fairly straightforward but requires care with the algebra. Firstly, it
should be noted that α2+β2+γ2 = 1. Secondly, by definition Ŝ n|1,+1〉θ = +|1,+1〉θ,
where Ŝ n = n · Ŝ and, without loss of generality n taken to lie in the xz plane.

Ŝ n = n · Ŝ = sin θŜ x + cos θŜ z .

The operator Ŝ n can be written in terms of operators in terms of the |s,m〉 states
using the angular momentum ladder operators,

Ŝ + = Ŝ x + iŜ y and Ŝ + = Ŝ x − iŜ y ,

and therefore Ŝ x = 1
2 (Ŝ +Ŝ −). Hence

Ŝ n = n · Ŝ = 1
2 sθ[Ŝ + + Ŝ −] + cθŜ z ,
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where for compactness the notation sθ = sin θ and cθ = cos θ has been used. Since
Ŝ n|1,+1〉θ = +|1,+1〉θ, then(

1
2 sθ[Ŝ + + Ŝ −] + cθŜ z

)
(α|1,−1〉 + β|1, 0〉 + γ|1,+1〉) = α|1,−1〉+β|1, 0〉+γ|1,+1〉 .

Using

Ŝ + |s,m〉 =
√

s(s + 1) − m(m + 1) |s,m + 1〉
Ŝ − |s,m〉 =

√
s(s + 1) − m(m − 1) |s,m − 1〉 ,

Ŝ n |1,+1〉 can be expressed in terms of the eigenstates of the Ŝ z eigenstates:

Ŝ n |1,+1〉 = α
(√

2sθ |1, 0〉 + cθ |1,−1〉
)

+ β
√

2sθ (|1,−1〉 + |1,+1〉) + γ(
√

2sθ |1, 0〉 + cθ |1,+1〉)
=

(
−αcθ + β

√
2sθ

)
|1,−1〉 +

√
2sθ (α + γ) |1, 0〉 +

(
β
√

2sθ + γcθ
)
|1,+1〉 .

Since this must be equal to α|1,−1〉 + β|1, 0〉 + γ|1,+1〉, equating the individual
terms gives the simultaneous equations,

β
√

2sθ = α(1 + cθ)√
2sθ(α + γ) = β

β
√

2sθ = γ(1 − cθ) .

From the first and third equations

α(1 − cθ) = γ(1 + cθ) and 2β2 = αγ ,

which, when combined with α2+β2+γ2 = 1 implies that α = 1
2 (1−cθ), γ = 1

2 (1+cθ)
and β = 1√

2
sθ. Hence

|1,+1〉θ = 1
2 (1 − cos θ) |1,−1〉 + 1√

2
sin θ |1, 0〉 + 1

2 (1 + cos θ) |1,+1〉 .

6.7 Using helicity amplitudes, calculate the differential cross section for e−µ− → e−µ−
scattering in the following steps:
a) From the Feynman rules for QED, show that the lowest-order QED matrix element
for e−µ− → e−µ− is

M f i = − e2

(p1 − p3)2 gµν
[
u(p3)γ µu(p1)

] [
u(p4)γνu(p2)

]
,

where p1 and p3 are the four-momenta of the initial- and final-state e−, and p2 and p4
are the four-momenta of the initial- and final-state µ−.
b) Working in the centre-of-mass frame, and writing the four-momenta of the initial- and
final-state e− as p µ

1 = (E1, 0, 0, p) and p µ
3 = (E1, p sin θ, 0, p cos θ) respectively, show that

the electron currents for the four possible helicity combinations are

u↓(p3)γ µu↓(p1) = 2(E1c, ps,−ips, pc) ,
u↑(p3)γ µu↓(p1) = 2(ms, 0, 0, 0) ,
u↑(p3)γ µu↑(p1) = 2(E1c, ps, ips, pc) ,
u↓(p3)γ µu↑(p1) = −2(ms, 0, 0, 0) ,



47 Electron-Positron Annihilation

where m is the electron mass, s = sin(θ/2) and c = cos(θ/2).
c) Explain why the effect of the parity operator P̂ = γ0 is

P̂u↑(p, θ, φ) = P̂u↓(p, π − θ, π + φ) .

Hence, or otherwise, show that the muon currents for the four helicity combinations are

u↓(p4)γ µu↓(p2) = 2(E2c,−ps,−ips,−pc) ,
u↑(p4)γ µu↓(p2) = 2(Ms, 0, 0, 0) ,
u↑(p4)γ µu↑(p2) = 2(E2c,−ps, ips,−pc) ,
u↓(p4)γ µu↑(p2) = −2(Ms, 0, 0, 0) ,

where M is the muon mass.
d) For the relativistic limit where E � M, show that the matrix element squared for the
case where the incoming e− and incoming µ− are both left-handed is given by

|MLL|2 =
4e4s2

(p1 − p3)4 ,

where s = (p1+p2)2. Find the corresponding expressions for |MRL|2, |MRR|2 and |MLR|2.
e) In this relativistic limit, show that the differential cross section for unpolarised e−µ− →
e−µ− scattering in the centre-of-mass frame is

dσ
dΩ

=
2α2

s
· 1 + 1

4 (1 + cos θ)2

(1 − cos θ)2 .

This is a fairly long question, but provides a good introduction to calculating matrix
elements using helicity amplitudes.

a) The lowest-order (QED) Feynman diagram for the e−µ− → e−µ− scattering
process is shown below The corresponding matrix element comprises three parts,

p2

p1 p3

p4

γ

µ−

e−

µ−

e−

µ

ν

the two vertices and the photon propagator. The product of these three parts is
equal to −iM. Remembering that the particle attached to the arrow leaving the
vertex appears as the adjoint spinor:

−iM f i =
[
u(p3)(−iQee)γ µu(p1)

] · [−i
gµν

q2

]
·
[
u(p4)(−iQµe)γνu(p2)

]
,
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where Qe = −1, Qµ = −1 and q = p1 − p3, hence

M f i = − e2 gµν

(p1 − p3)2

[
u(p3)γ µu(p1)

] [
u(p4)γνu(p2)

]
= − e2

(p1 − p3)2 je · jµ ,

where the electron and muon currents are j µe = u(p3)γ µu(p1) and jνµ = u(p4)γνu(p2).

b) For a particle of mass m the helicity eigenstate spinors are

u↑ =
√

E + m


c

eiφs
p

E+m c
p

E+m eiφs

 and u↓ =
√

E + m


−s
eiφc

p
E+m s

− p
E+m eiφc

 ,
where c = cos(θ/2) and s = sin(θ/2).

For the incoming electron, with p1 = (E1, 0, 0, p), with θ = 0, φ = 0, the two
possible spinors are:

u↑(p1) =
√

E1 + m


1
0
p

E1+m
0

 and u↓(p1) =
√

E1 + m


0
1
0

− mvp
E1+m

 .
For the outgoing electron, with p3 = (E1, p sin θ, 0, p cos θ), the spinors are:

u↑(p3) =
√

E1 + m


c
s

p
E1+m c

p
E1+m s

 and u↓(p3) =
√

E1 + m


−s
c
p

E1+m s
− p

E1+m c

 .
In the Dirac-Pauli representation, the four vector currents can be calculated from

ψγ0φ = ψ1φ1 + ψ2φ2 + ψ3φ3 + ψ4φ4

ψγ1φ = ψ1φ4 + ψ2φ3 + ψ3φ2 + ψ4φ1

ψγ2φ = −i(ψ1φ4 − ψ2φ3 + ψ3φ2 − ψ4φ1)

ψγ3φ = ψ1φ3 − ψ2φ4 + ψ3φ1 − ψ4φ2 .

Therefore, for the four possible combined helicity states of the initial- and final-
state electrons:

u↓(p3)γ µu↓(p1) = 2(E1c, ps,−ips, pc) ,

u↑(p3)γ µu↓(p1) = 2(ms, 0, 0, 0) ,

u↑(p3)γ µu↑(p1) = 2(E1c, ps, ips, pc) ,

u↓(p3)γ µu↑(p1) = −2(ms, 0, 0, 0) ,
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where m is the electron mass.

c) The parity operator reverses the momentum of a particle (a vector quantity)
but leaves the spin (an axial-vector quantity) unchanged, and therefore has the ef-
fect P̂u↑(E,p) = u↓(E,−p). This can be utilised here to obtain the possible muon
currents from the electron currents (once the different masses have been accounted
for), since in the centre-of-mass frame the initial- and final-state electron and muon
momenta are equal and opposite. Hence

u↓(p4)γ µu↓(p2) = P̂u↑(p3)γ µP̂u↑(p1)

= (γ0u↑(p3))†γ0γ µγ0u↑(p1)

= u†↑(p3)γ0γ0γ µγ0u↑(p1)

= u†↑(p3)γ µγ0u↑(p1)

=

 u†↑(p3)γ0γ µu↑(p1) if µ = 0
−u†↑(p3)γ0γ µu↑(p1) if µ = 1, 2, 3

=

{
u↑(p3)γ µu↑(p1) if µ = 0
−u↑(p3)γ µu↑(p1) if µ = 1, 2, 3

.

Therefore the muon currents can be obtained from the electron currents by revers-
ing the helicity states and multiplying the space-like components by −1, giving

u↓(p4)γ µu↓(p2) = 2(E2c,−ps,−ips,−pc) ,

u↑(p4)γ µu↓(p2) = 2(Ms, 0, 0, 0) ,

u↑(p4)γ µu↑(p2) = 2(E2c,−ps, ips,−pc) ,

u↓(p4)γ µu↑(p2) = −2(Ms, 0, 0, 0) ,

where M is the muon mass and E2 is the energy of the muon in the centre-of-mass
frame.

d) For the relativistic limit where terms of order of the electron and muon masses
can be neglected, the only non-zero currents are:

jµe↓↓ = u↓(p3)γ µu↓(p1) = 2E(c, s,−is, c) ,

jµe↑↑ = u↑(p3)γ µu↑(p1) = 2E(c, s, is, c) ,

jνµ↓↓ = u↓(p4)γ µu↓(p2) = 2E(c,−s,−is,−c) ,

jνµ↑↑ = u↑(p4)γ µu↑(p2) = 2E(c,−s, is,−c) .

When the incoming e− and incoming µ− are both left-handed, in this limit, the only
non-negligible matrix element is the one where ”helicity is conserved” through the
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vertex:

MLL = − e2

(p1 − p3)2 je↓↓ · jµ↓↓

= − e2

(p1 − p3)2 4E2 (c, s,−is, c)·(c,−s,−is,−c)

= − e2

(p1 − p3)2 4E2 (c2 + s2 + s2 + c2) = − e2

(p1 − p3)2 8E2 = − e2

(p1 − p3)2 2s

⇒ |MLL|2 =
4e4s2

(p1 − p3)4 .

Similarly,

MLR = − e2

(p1 − p3)2 je↓↓ · jµ↑↑

= − e2

(p1 − p3)2 4E2 (c, s,−is, c)·(c,−s,+is,−c)

= − e2

(p1 − p3)2 4E2 (c2 + s2 − s2 + c2) = − e2

(p1 − p3)2 8E2 cos2(θ/2)

= − e2

(p1 − p3)2 s(1 + cos θ)

⇒ |MLR|2 =
e4s2

(p1 − p3)4 (1 + cos θ) .

It is straightforward to show (and can be appreciated from spin arguments) that
|MRR|2 = |MLL|2 and |MRL|2 = |MLR|2.

d) In this ultra-relativistic limit, the spin-averaged matrix element squared is

〈|M|2〉 =
1
4

(
MRR|2 + |MLL|2 + |MRL|2 = |MLR|2

)
=

2e2s2

(p1 − p3)4

[
1 + 1

4 (1 + cos θ)
]
.

Neglecting the electron mass, (p1 − p3)2 = −2E2(1 − cos θ) = − 1
2 s(1 − cos θ) and

the differential cross section (in the centre-of-mass frame) is therefore

dσ
dΩ∗

=
1

64π2s
〈|M|2〉

=
1

64π2s
2e2s2

E4(1 − cos θ)2

[
1 + 1

4 (1 + cos θ)
]

=
2α2

s

[
1 + 1

4 (1 + cos θ)
]

(1 − cos θ)2 ,

where e2 = 4πα.
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6.8* Using γ µγν + γνγ µ = 2g µν, prove that

γ µγµ = 4 , γ µ/aγµ = −2/a and γ µ/a/bγµ = 4a·b .

i) This question is a good exercise in the manipulation of γ-matrices. The relation
γ µγµ = 4 can be shown by writing

γ µγµ = g µνγ
µγν

= 1
2gµν

(
γ µγν + γνγ µ

)
,

where the second line follows because gµν is a symmetric tensor. Thus

γ µγµ = 1
2g µν

(
γ µγν + γνγ µ

)
= gµνg

µν

= 4 .

ii) When written out in full (remembering that the components of a are just num-
bers),

γ µ/aγµ = aνγ µγνγµ
= aν

(
2g µν − γνγ µ) γµ

= aν
(
2γν − γνγ µγµ

)
= aν

(
2γν − 4γν

)
= −2/a ,

where the result from the first part of the question was used in the second to last
step.

iii) When written out in full,

γ µ/a/bγµ = aνbργ µγνγ ργµ
= aνbρ

(
2g µν − γνγ µ) γ ργµ

= aνbρ
(
2γ ργν − γνγ µγ ργµ

)
= aνbρ

(
2γ ργν − γν[2g µρ − γ ργ µ]γµ

)
= aνbρ

(
2γ ργν − 2γνγ ρ + γνγ ργ µγµ

)
= aνbρ

(
2γ ργν − 2γνγ ρ + 4γνγ ρ

)
= 2aνbρ

(
γ ργν + γνγ ρ

)
= 4aνbρg ρν

= 4a·b ;

fun if you like this sort of thing.
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6.9* Prove the relation
[
ψγ µγ5φ

]†
= φγ µγ5ψ .

In the main text it was shown that for a vector interaction (e.g. QED and QCD)
where the current has the form j = ψγ µφ, then j† = φγ µψ. For the weak interaction
one has to consider the axial-vector current j = ψγ µγ5φ.

[
ψγ µγ5φ

]†
= [ψ†γ0γ µγ5φ]†

= φ†γ5†γ µ†γ0†ψ

= φ†γ5γ µ†γ0ψ

= φ†γ µ†γ0γ5ψ

= φ†γ0γ µγ5ψ

= φγ µγ5ψ ,

and thus, taking the hermitian conjugate of an axial-vector current retains the form
of the current.

6.10* Use the trace formalism to calculate the QED spin-averaged matrix element
squared for e+e− → ff including the electron mass term.

The QED matrix element for the Feynman diagram shown below is

M f i =
Qfe2

q2

[
v(p2)γ µu(p1)

]
gµν

[
u(p3)γνv(p4)

]
.

Noting the order in which the spinors appear in the matrix element (working back-

p1

p4p2

γ

p3

e+

e−

f

f

µ ν

wards along the arrows on the fermion lines), the spin-summed matrix element
squared is given by

∑
spins

|M f i|2 =
Q2

f e4

q4 Tr
(
[/p2 − me]γ µ[/p1 + me]γν

)
Tr

(
[/p3 + mf]γµ[/p4 − mf]γν

)
.
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Since the trace of an odd number of gamma-matrices is zero, the two traces are:

Tr
(
[/p2 − me]γ µ[/p1 + me]γν

)
= Tr

(
/p2γ

µ
/p1γ

ν
)
− m2

eTr
(
γ µγν

)
= 4pµ1 pν2 − 4g µν(p1 ·p2) + 4pν1 pµ2 − 4m2

eg
µν ;

Tr
(
[/p3 + mf]γµ[/p4 − mf]γν

)
= Tr

(
/p3γµ/p4γν

)
− m2

f Tr
(
γµγν

)
= 4p3µp4ν − 4g µν(p3 ·p4) + 4p3νp4µ − 4m2

f g µν .

Therefore∑
spins

|M f i|2 =
16 Q2

f e4

q4

(
pµ1 pν2 − g µν(p1 ·p2) + pν1 pµ2 − m2

eg
µν

)
×(

p3µp4ν − g µν(p3 ·p4) + p3νp4µ − m2
f g µν

)
=

16 Q2
f e4

q4

[
+(p1 ·p4)(p2 ·p3) − (p1 ·p2)(p3 ·p4) + (p1 ·p3)(p2 ·p4) − m2

f (p1 ·p2)

− (p1 ·p2)(p3 ·p4) + 4(p1 ·p2)(p3 ·p4) − (p1 ·p2)(p3 ·p4) + 4m2
f (p1 ·p2)

+ (p1 ·p3)(p2 ·p4) − (p1 ·p2)(p3 ·p4) + (p1 ·p4)(p2 ·p3) − m2
f (p1 ·p2)

−m2
e(p3 ·p4) + 4m2

e(p3 ·p4) − m2
e(p3 ·p4) + 4m2

em2
f

]
,

where all sixteen terms are shown for completeness. From this expression, it fol-
lows that

〈|M f i|2〉 =
8Q2

f e4

(p1 + p2)4 ×
[

(p1 ·p4)(p2 ·p3) + (p1 ·p3)(p2 ·p4)

+m2
e(p3 ·p4) + m2

f (p1 ·p1) + 2m2
em2

f

]
.

The same result could have been obtained by applying crossing symmetry,

p1 → p1 , p2 → −p4 , p3 → −p2 and p4 → p3 .

to the corresponding t-channel matrix element of (6.67) in the main text.

6.11* Neglecting the electron mass term, verify that the matrix element for e−f → e−f
given in (6.67) can be obtained from the matrix element for e+e− → ff given in (6.63)
using crossing symmetry with the substitutions

p1 → p1 , p2 → −p3 , p3 → p4 and p4 → −p2 .

The spin averaged matrix element squared for the s-channel process e+e− → ff is
given in (6.63) of the main text:

〈|M f i|2〉s = 2
Q2

f e4

(p1 ·p2)2

[
(p1 ·p3)(p2 ·p4) + (p1 ·p4)(p2 ·p3) + m2

f (p1 ·p2)
]
.
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Making the replacements

p1 → p1 , p2 → −p3 , p3 → p4 and p4 → −p2 .

gives the corresponding matrix element for the t-channel scattering process:

〈|M f i|2〉t = 2
Q2

f e4

(−p1 ·p3)2

[
(p1 ·p4)(−p3 ·−p2) + (p1 ·−p2)(−p3 ·p4) + m2

f (p1 ·−p3)
]

= 2
Q2

f e4

(p1 ·p3)2

[
(p1 ·p4)(p2 ·p3) + (p1 ·p2)(p3 ·p4) − m2

f (p1 ·p3)
]
.

This can be compared to the matrix element for e−f → e−f calculated using the
trace formalism, i.e. equation (6.67) of the main text, taking me ≈ 0.

6.12* Write down the matrix elements,M1 andM2, for the two lowest-order Feyn-
man diagrams for the Compton scattering process e−γ → e−γ. From first principles,
express the spin-averaged matrix element 〈|M1 +M2|2〉 as a trace. You will need the
completeness relation for the photon polarisation states (see Appendix D).

The two lowest-order Feynman diagrams for the Compton scattering process e−(p)+
γ(k)→ e−p′+γ(k′) are shown below. In both diagrams the vertex with the incoming
photon is labelled µ.

p

k

k′
e

p + k

p′

e−

γ

γ

e−

µ ν

p

k

k′

e p − k

p′

e−

γ

γ

e−

ν

µ

From the QED Feynman rules, the matrix element for the s-channel diagram is
given by

−iMs = ε∗µ(k)εν(k′) u(p′)
[
ieγν i

qργρ + m

q2 − m2
e

ieγ µ
]

u(p)

Ms = −e2ε∗µ(k)εν(k′) u(p′)
[
γν

/p + /k + m

(p + k)2 − m2
e
γ µ

]
u(p) ,

where q = k + p and the slashed notation has been used. Similarly, the matrix
element for the second diagram is

Mt = −e2ε∗µ(k)εν(k′) u(p′)
[
γµ

/p − /k + m

(p − k)2 − m2
e
γν

]
u(p) .
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Therefore the total amplitude,M =Ms +Mt, is given by

M = −e2ε∗µ(k)εν(k′)
{

u(p′)
[
γν

/p + /k + m

(p + k)2 − m2
e
γ µ + γ µ

/p − /k + m

(p − k)2 − m2
e
γν

]
u(p)

}
.

The matrix element squared is given byMM† whereM† is given by

M† = −e2ερ(k)ε∗σ(k′)
{

u(p′)
[
γσ

/p + /k + m

(p + k)2 − m2
e
γ ρ + γ ρ

/p − /k + m

(p − k)2 − m2
e
γσ

]
u(p)

}†
.

Hence |M|2 =MM† is given by

|M|2 =MM† = e4 ελ∗µ (k)ελ
′
ν (k′)ελρ(k)ελ

′∗
σ (k′)

{ } { }†
,

where the photon polarisation states are now made explicit. There are two possible
initial-state photon polarisations and two possible spin states for the initial-state
electron. Hence the spin-averaged matrix element is give by

〈|M|2〉 =
1
4

∑
λ=1,2

∑
λ′=1,2

∑
r=1,2

∑
r′=1,2

e4 ελ∗µ (k)ελ
′
ν (k′)ελρ(k)ελ

′∗
σ (k′)

{ } { }†
,

where r and r′ are the intial- and final-state electron spins. From the completeness
relation for photons (see Appendix D),∑

λ=1,2

ελ∗µ (k)ελρ(k) = −gµρ ,

and thus

〈|M|2〉 =
e4

4
gµρgνσ

∑
r=1,2

∑
r′=1,2

{ } { }†
=

e4

4
gµρgνσ

∑
r=1,2

∑
r′=1,2

{
ur′(p′)

[
γν

/p + /k + m

(p + k)2 − m2
e
γ µ + γ µ

/p − /k + m

(p − k)2 − m2
e
γν

]
ur(p)

}

×
{

ur′(p′)
[
γσ

/p + /k + m

(p + k)2 − m2
e
γ ρ + γ ρ

/p − /k + m

(p − k)2 − m2
e
γσ

]
ur(p)

}†
=

e4

4

∑
r=1,2

∑
r′=1,2

{
ur′(p′)

[
γν

/p + /k + m

(p + k)2 − m2
e
γ µ + γ µ

/p − /k + m

(p − k)2 − m2
e
γν

]
ur(p)

}

×
{

ur′(p′)
[
γν

/p + /k + m

(p + k)2 − m2
e
γµ + γµ

/p − /k + m

(p − k)2 − m2
e
γν

]
ur(p)

}†
=

e4

4

∑
r=1,2

∑
r′=1,2

{
ur′(p′)

[
γν Γ+γ

µ + γ µ Γ−γν
]
ur(p)

} × {
ur′(p′)

[
γνΓ+γµ + γµ Γ−γν

]
ur(p)

}†
,

where

Γ± =
/p + /k + m

(p + k)2 − m2
e
.
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7 Electron-Proton Elastic Scattering

7.1 The derivation of (7.8) used the algebraic relation

(γ + 1)2(1 − κ2)2 = 4 ,

where

κ =
βγ

γ + 1
and (1 − β2)γ2 = 1 .

Show that this holds.

Using the expression for κ

(γ + 1)(1 − κ2) = (γ + 1) − β2γ2

(γ + 1)
,

and from the definition of the Lorentz factor,

β2γ2 = γ2 − 1 = (γ + 1)(γ − 1) ,

and therefore

(γ + 1)(1 − κ2) = (γ + 1) − (γ − 1) = 2 .

7.2 By considering momentum and energy conservation in e−p elastic scattering
from a proton at rest, find an expression for the fractional energy loss of the scattered
electron (E1 − E3)/E1 in terms of the scattering angle and the parameter

κ =
p

E1 + me
≡ βγ

γ + 1
.

This question should be ignored - finding a general solution is non-trivial and
involves a lot of uninteresting algebra.

The four-momentum of the initial-state proton in the laboratory frame is p2 =

(mp, 0, 0, 0) and from conservation of four-momentum and the four-momentum of

57
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the final-state proton is

p4 = (p1 + p2 − p3)

⇒ p2
4 = p2

1 + p2
2 + p2

3 + 2p1 ·p2 − 2p1 ·p3 − 2p2 ·p3

⇒ m2
p = 2m2

e + m2
p + 2mp(E1 − E3) − 2(E1E3 − p1p3 cos θ)

⇒ mp(E1 − E3) = (E1E3 − p1p3 cos θ) − m2
e

= E1E3(1 − β1β3 cos θ) − m2
e .

Assuming the electron is sufficiently relativistic that β1 ≈ β3 ≈ 1, then

mp(E1 − E3) ≈ E1E3(1 − cos θ)

⇒ E3 =
E1mp

mp + E1(1 − cos θ)

⇒ E1 − E3

E1
=

1 − cos θ
mp/E1 + (1 − cos θ)

.

7.3 In an e−p scattering experiment, the incident electron has energy E1 = 529.5 MeV
and the scattered electrons are detected at an angle of θ = 75◦ relative to the incoming
beam.
a) At this angle, almost all of the scattered electrons are measured to have an energy
of E3 ≈ 373 MeV. What can be concluded from this observation?

b) Find the corresponding value of Q2.

a) If the process corresponds to the elastic scatter of an electron from the proton
one would expect, (7.31),

E3 =
E1mp

mp + E1(1 − cos θ)
.

For E1 = 529.5 MeV and θ = 75◦, elastically scattered electrons would have an
energy of 373.3 GeV, consistent with the observed value. Hence the scattering is
predominantly elastic in nature.

b) For elastic scattering, Equation (7.32), gives

Q2 =
2mpE2

1(1 − cos θ)
mp + E1(1 − cos θ)

Q = 541.3 MeV .

7.4 For a spherically symmetric charge distribution ρ(r), where∫
ρ(r) d3r = 1 ,
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show that the form factor can be expressed as

F(q2) =
4π
q

∫ ∞

0
r sin(qr)ρ(r) dr ,

' 1 − 1
6

q2〈R2〉 + ... ,

where 〈R2〉 is the mean square charge radius. Hence show that

〈R2〉 = −6
[
dF(q2)

dq2

]
q2=0

.

Starting from the definition of the form factor and measuring the angle θ with
respect to the (arbitrary) z axis:

F(q2) =

∫
ρ(r)eiq·r d3r

=

∫ ∫ ∫
ρ(r))eiqr cos θ sin θ dθ dφ dr

= 2π
∫ ∞

r=0

1
iq

[
eiqr cos θ

]π
0

dr

= 2π
∫ ∞

r=0

r
iqr

[
e−iqr − e+iqr

]
dr

=
4π
q

∫ ∞

0
r sin(qr)ρ(r) dr .

Expanding the sine gives, sin qr ' qr − 1
3! (qr)3 + ..., and therefore

F(q2) =
4π
q

∫ ∞

0
r sin(qr)ρ(r) dr

=
4π
q

∫ ∞

0
qρ(r)

(
qr − 1

6
(qr)3 + ...

)
dr

= 1 − 1
6

q2〈R2〉 + ... ,

where the following relations were used∫
4πr2ρ(r) dr = 1 and

∫
4πr2r2ρ(r) dr = 〈R2〉 .

Differentiating with respect to q2 and noting that the higher order terms (higher
powers of q) vanish at q2 = 0 gives the desired result of

〈R2〉 = −6
[
dF(q2)

dq2

]
q2=0

.
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7.5 Using the answer to the previous question and the data in Figure 7.8a, estimate
the root-mean-squared charge radius of the proton.

From Figure 7.8a the gradient at Q2 = 0 is approximately,

〈R2〉 = 6/0.4 GeV−2

〈R2〉1
2 = 3.9 GeV−1 .

Converting into S.I. units using ~c = 0.197 GeV fm gives a value for the rms charge
radius of the proton of approximately 0.8 fm.

7.6 From the slope and intercept of the right plot of Figure 7.7, obtain values for
GM(0.292 GeV2) and GE(0.292 GeV2).

The form factors can be obtained from

m = 2τ
[
GM(Q2)

]2
and c =

[
GE(Q2)

]2
+ τ

[
GM(Q2)

]2

(1 + τ)
,

where τ = Q2/4m2
p = 0.083. Here the intercept and slope are c ' 0.38 and c ' 0.27

giving

GM(Q2 = 0.292 GeV2) = 1.26 and GE(Q2 = 0.292 GeV2) = 0.52 .

7.7 Use the data of Figure 7.7 to estimate GE(Q2) at Q2 = 0.500 GeV2.

This slightly fiddly data-analysis question illustrates how the measurements of the
electric and magnetic form factors are determined from the raw data. The exact an-
swers obtained will depend on how the interpolation between different data points
is performed. The cross section values corresponding to Q2 = 500 MeV2 can be
found from Equation (7.32) which can be rearranged to give a quadratic equation
in E1

2mp(1 − cos θ)E2
1 − Q1(1 − cos θ)E1 − mpQ2 = 0 .

Hence for each of the values of θ, shown in the plot, the corresponding value of
E1 for Q2 = 500 MeV2 can be obtained, enabling the cross sections to be read off

from the lines, these can then be compared to the expected Mott cross section for a
point-like charge. The numbers obtained should be close to those given in the table
below.

The plot of the ratio of the measured (interpolated) cross section to dσ/dΩ0 plotted
against tan2(θ/2) is approximately linear with an intercept of c = 0.27 and gradient
of m = 0.28. The form factors can be obtained from

m = 2τ
[
GM(Q2)

]2
and c =

[
GE(Q2)

]2
+ τ

[
GM(Q2)

]2

(1 + τ)
,
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θ E1/MeV dσ/dΩ dσ/dΩ0 ratio tan2(θ/2)

45◦ 1066 ∼ 4 × 10−32 cm2/sterad. 1.3 × 10−31 cm2/sterad. 0.29 0.17

60◦ 853 ∼ 2 × 10−32 cm2/sterad. 5.9 × 10−32 cm2/sterad. 0.34 0.33

75◦ 729 ∼ 1 × 10−32 cm2/sterad. 2.8 × 10−32 cm2/sterad. 0.36 0.59

90◦ 650 ∼ 8 × 10−33 cm2/sterad. 1.4 × 10−32 cm2/sterad. 0.55 0.99

120◦ 560 ∼ 4 × 10−33 cm2/sterad. 3.8 × 10−33 cm2/sterad. 1.04 2.99

135◦ 538 ∼ 3 × 10−33 cm2/sterad. 1.8 × 10−33 cm2/sterad. 1.65 5.99

where τ = Q2/4m2
p = 0.142. Using these values

GM(Q2 = 0.5 GeV2) = 0.99 and GE(Q2 = 0.5 GeV2) = 0.41 ,

roughly in the expected ratio of 2.79.

7.8 The experimental data of Figure 7.8 can be described by the form factor,

G(Q2) =
G(0)

(1 + Q2/Q2
0)2

,

with Q0 = 0.71 GeV. Taking Q2 ≈ q2, show that this implies that proton has an expo-
nential charge distribution of the form

ρ(r) = ρ0e−r/a ,

and find the value of a.

For the exponential charge distribution ρ(r) = ρ0e−λr:

G(q2) =
4πρ0

q

∫ ∞

0
re−λr sin(qr) dr

=
4πρ0

q
1
2i

∫ ∞

0
r
[
e−λr+iqr − e−λr−iqr

]
dr

Integration by parts gives ∫ ∞

0
re−αr dr =

1
α2

for any constant α, so that

G(q2) =
2πρ0

iq

[
1

(λ − iq)2 −
1

(λ + iq)2

]
=

8πλρ0

(λ2 + q2)2 =
8πρ0

λ3

1
(1 + q2/λ2)2 .

Thus the form factor is of the required “dipole” form:

G(q2) =
G(0)

(1 + |q2|/0.71)2
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with G(0) = 8πρ0/λ
3 and λ = Q0. Therefore

1/a = λ =
√

0.71 GeV2 = 0.84 GeV .
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8.1 Use the data in Figure 8.2 to estimate the lifetime of the ∆+ baryon.

The full-width-half-maximum height of the resonance (the total decay width) is (in
natural units) equivalent to the total decay rate, Γ. From the diagram, the ∆+ peak
has a FWHM of

Γ ≈ 1 GeV .

Hence the lifetime is

τ = 1/Γ ≈ 1 GeV−1 ≡ ~

1.6 × 10−10 s = 6.6 × 10−25 s .

8.2 In fixed-target electron-proton elastic scattering

Q2 = 2mp(E1 − E3) = 2mpE1y and Q2 = 4E1E3 sin2(θ/2) .

a) Use these relations to show that

sin2
(
θ

2

)
=

E1

E3

m2
p

Q2 y
2 and hence

E3

E1
cos2

(
θ

2

)
= 1 − y − m2

py
2

Q2 .

b) Assuming azimuthal symmetry and using equations (7.31) and (7.32), show that

dσ
dQ2 =

∣∣∣∣∣ dΩ

dQ2

∣∣∣∣∣ dσ
dΩ

=
π

E2
3

dσ
dΩ

.

c) Using the results of a) and b) show that the Rosenbluth equation,

dσ
dΩ

=
α2

4E2
1 sin4(θ/2)

E3

E1

G2
E + τG2

M

(1 + τ)
cos2 θ

2
+ 2τG2

M sin2 θ

2

 ,
can be written in the Lorentz invariant form

dσ
dQ2 =

4πα2

Q4

G2
E + τG2

M

(1 + τ)

1 − y − m2
py

2

Q2

 +
1
2
y2G2

M

 .

a) From second expression given at the start of the question

sin2(θ/2) =
E1

E3

Q2

4E2
1

,

63
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and from the first expression E1 = Q2/2mpy and this,

sin2(θ/2) =
E1

E3

m2
p

Q2 y
2 .

Therefore

cos2(θ/2) = 1 − sin2(θ/2) = 1 − E1

E3

m2
p

Q2 y
2 ,

or equivalently

E1

E3
cos2(θ/2) =

E1

E3
− m2

p

Q2 y
2 = 1 − y − m2

p

Q2 y
2 ,

which is the desired result.

b) Assuming azimuthal symmetry an element of solid angle (integrated in φ) is
just dΩ = 2πd(cos θ). Because there is only one independent variable in elastic
scattering, the differential cross sections in terms of dQ2 and dΩ are related by

dσ
dQ2 =

∣∣∣∣∣ dΩ

dQ2

∣∣∣∣∣ dσ
dΩ

= 2π
∣∣∣∣∣d(cos θ)

dQ2

∣∣∣∣∣ dσ
dΩ

.

Equation (7.32) gives the expression for Q2 in terms of the cos θ:

Q2 =
2mpE2

1(1 − cos θ)
mp + E1(1 − cos θ)

, (8.1)

which can be differentiated giving

dQ2

d(cos θ)
=

−2m2
pE2

1[
mp + E1(1 − cos θ)

]2 . (8.2)

and the denominator can be eliminated using (7.32), giving

dQ2

d(cos θ)
= −2E2

3 . (8.3)

Thus
dσ
dQ2 = 2π

∣∣∣∣∣d(cos θ)
dQ2

∣∣∣∣∣ dσ
dΩ

=
π

E2
3

dσ
dΩ

.

c) The Lorenz invariant form of the Rosenbluth equation can be obtained by sub-
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stituting the results from a) and b) into the original expression:

dσ
dQ2 =

π

E2
3

dσ
dΩ

=
π

E2
3

α2

4E2
1 sin4(θ/2)

E3

E1

G2
E + τG2

M

(1 + τ)
cos2 θ

2
+ 2τG2

M sin2 θ

2


=

π

E2
3

16E2
1E2

3α
2

4E2
1Q4

G2
E + τG2

M

(1 + τ)

1 − y − m2
py

2

Q2

 + 2τG2
M

m2
p

Q2 y
2


=

4πα2

Q4

G2
E + τG2

M

(1 + τ)

1 − y − m2
py

2

Q2

 +
1
2
y2G2

M

 .
8.3 In fixed-target electron-proton inelastic scattering:

a) show that the laboratory frame differential cross section for deep-inelastic scattering
is related to the Lorentz invariant differential cross section of equation (8) by

d2σ

dE3 dΩ
=

E1E3

π

d2σ

dE3 dQ2 =
E1E3

π

2mpx2

Q2

d2σ

dx dQ2 ,

where E1 and E3 are the energies of the incoming and outgoing electron.
b) Show that

2mpx2

Q2 · y
2

2
=

1
mp

E3

E1
sin2 θ

2
and 1 − y − m2

px2y2

Q2 =
E3

E1
cos2 θ

2
.

c) Hence, show that the Lorentz invariant cross section of equation (8) becomes

d2σ

dE3 dΩ
=

α2

4E2
1 sin4 θ/2

[
F2

ν
cos2 θ

2
+

2F1

mp
sin2 θ

2

]
.

d) A fixed-target ep scattering experiment consists of an electron beam of maximum en-
ergy 20 GeV and a variable angle spectrometer that can detect scattered electrons with
energies greater than 2 GeV. Find the range of values of θ over which deep-inelastic
scattering events can be studied at x = 0.2 and Q2 = 2 GeV2.

a) Changing variables from dΩ = 2πd(cos θ) to

Q2 = −q2 = 2E1E3(1 − cos θ)

gives

d2σ

dE3 dΩ
=

1
2π

d2σ

dE3 d(cos θ)
=

1
2π

∣∣∣∣∣∣ dQ2

d(cos θ)

∣∣∣∣∣∣ d2σ

dE3 dQ2 =
1

2π
2E1E3

d2σ

dE3 dQ2

and hence (remembering that E1 is the fixed initial-state electron energy)

d2σ

dE3 dΩ
=

E1E3

π

d2σ

dE3 dQ2 =
E1E3

π

d2σ

dν dQ2 . (8.4)
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To change variables from ν to x, use

x =
Q2

2mpν
⇒ ν =

Q2

2mpx

d2σ

dx dQ2 =

∣∣∣∣∣dνdx

∣∣∣∣∣ d2σ

dν dQ2

which gives directly

d2σ

dν dQ2 =
2mpx2

Q2

d2σ

dx dQ2

and thus
d2σ

dE3 dΩ
=

E1E3

π

d2σ

dE3 dQ2 =
E1E3

π

2mpx2

Q2

d2σ

dx dQ2 .

b) Since

Q2 = 4E1E3 sin2(θ/2)

and

y =
ν

E1

then
E3

E1
sin2(θ/2) =

Q2

4E2
1

=
Q2y2

4ν2 .

Furthermore, using ν = Q2/2Mx, one then obtains

2mpx2

Q2 · 1
2y

2 =
1

mp

E3

E1
sin2 θ

2
. (8.5)

Hence

1 − y − m2
px2y2

Q2 =
E3

E1
cos2 θ

2
. (8.6)

c) Starting from Equation (8).

d2σ

dx dQ2 =
4πα2

Q4

1 − y − m2
px2y2

Q2

 F2(x,Q2)
x

+ y2F1(x,Q2)

 ,
and using the result of part a) gives

d2σ

dE3 dΩ
=

E1E3

π

2mpx2

Q2

4πα2

Q4

1 − y − m2
px2y2

Q2

 F2(x,Q2)
x

+ y2F1(x,Q2)

 .
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Using the results from part c) leads to

d2σ

dE3 dΩ
=

8E1E3mpx2α2

Q6

(E3

E1
cos2 θ

2

)
F2(x,Q2)

x
+

 Q2

m2
px2

E3

E1
sin2 θ

2

 F1(x,Q2)


=
8E2

3mpα
2

Q4

( x
Q2 cos2 θ

2

)
F2(x,Q2) +

 1
m2

p
sin2 θ

2

 F1(x,Q2)
 .

But x/Q2 = 1/(2mpν) and Q2 = 4E1E3 sin2(θ/2) and therefore

d2σ

dE3 dΩ
=

mpα
2

2E2
1 sin4(θ/2)

 1
2mpν

cos2 θ

2
F2(x,Q2)

x
+

1
m2

p
sin2 θ

2
F1(x,Q2)


=

α2

4E2
1 sin4(θ/2)

[
1
ν

cos2 θ

2
F2(x,Q2)

x
+

2
mp

sin2 θ

2
F1(x,Q2)

]
,

as required.

d) This is a tricky question, but is informative. It very much follows on from the
previous discussion of the measurement of form factors in elastic scattering, except
here there is an additional kinematic degree of freedom. Given that we wish to
measure the structure functions at x = 0.2 and Q2 = 2 GeV2, the electron energies
E1 and E3 are constrained via

E1 − E3 =
Q2

2Mx
=

2 GeV2

2 × (0.938 GeV) × 0.2
= 5.33 GeV (8.7)

and

E1E3 =
Q2

4 sin2 θ/2
. (8.8)

The experimental limitations, E1 < 20 GeV and E3 > 2 GeV, then lead to con-
straints on the scattering angle θ. Here it helps to think in terms of graphical solu-
tions of Equations (8.7) and (8.8) on a plot of E3 versus E1. Equation (8.7) corre-
sponds to a straight line running at 45◦, while Equation (8.8) gives an infinite set
of hyperbolae, each hyperbola corresponding to a different possible value of θ.

The minimum possible value of θ corresponds to taking the maximum possible
beam energy E1 = 20 GeV:

sin2 θ/2 =
Q2

4E1E3
=

2
4 × 20 × (20 − 5.33)

= 1.70 × 10−3

which gives

θmin = 4.73◦ .
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The maximum possible value of θ is determined by the minimum detectable scat-
tered electron energy of E3 = 2 GeV:

sin2 θ/2 =
Q2

4E1E3
=

2
4 × (2 + 5.33) × 2

= 0.034

which gives

θmax = 21.3◦ .

Therefore, the experimental strategy is to choose several values of θ between ap-
proximately 5◦ and 20◦, and for each angle, measure the reduced cross section,

d2σ

dE3 dΩ
× 4E2

1 sin4 θ/2

α2 cos2 θ/2
=

[
F2

ν
+

2F1

mp
tan2 θ

2

]
,

and plot this versus tan2 θ/2. This should give a straight line (since ν is fixed here)
with slope 2F1/mp and intercept F2/ν.

Each θ value requires a different beam energy given by solving the quadratic equa-
tion

E1(E1 − 5.33) =
Q2

4 sin2 θ/2

This gives

2E1 = 5.33 +

√
(5.33)2 +

Q2

sin2 θ/2
,

and thus E1 = 19.1 GeV for θ = 5◦ and E1 = 7.5 GeV for θ = 20◦. Note that
y = (E1 − E3)/E1 varies between 0.28 and 0.71, giving a significant contribution
from F1 (which is necessary for it to be determined accurately).

8.4 If quarks were spin-0 particles, why would Fep
1 (x)/Fep

2 (x) be zero?

If quarks were spin-0 particles, there would be no magnetic contribution to this
QED scattering process. Consequently Fep

1 (x), which is associated with the sin2 θ/2
angular dependence, would be zero.

8.5 What is the expected value of
∫ 1

0 u(x) − u(x) dx for the proton?

Writing both u(x) and u(x) in terms of sea and valance contributions, u(x) = uV (x)+
uS (x) and u(x) = uS (x) and making the very reasonable assumption that the sea
contributions for quarks and antiquarks are the same,∫ 1

0
u(x) − u(x) dx =

∫ 1

0
uV (x) dx = 2 .
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8.6 Figure 8.1 shows the raw measurements of the structure function F2(x) in low-
energy electron-deuterium scattering. When combined with the measurements of Fig-
ure 8.11, it is found that ∫ 1

0 FeD
2 (x) dx∫ 1

0 Fep
2 (x) dx

' 0.84 .

Write down the quark-parton model prediction for this ratio and determine the relative
fraction of the momentum of proton carried by down/anti-down quarks compared to
that carried by the up/anti-up quarks, fd/ fu.

0 0.5 1

   
   

0

0.2

0.4

F
ed 2

(x
,Q

2 )

xtFig. 8.1 SLAC measurements of FeD
2 (x,Q2) in for 2 < Q2/GeV2 < 30.

The significance of this questions is that it relates to the actual early measurements
of structure functions where the target was usually either liquid Hydrogen or Liquid
Deuterium. From (8.27) and (8.28), which are written in terms of the PDFs of the
proton,

Fep
2 (x) = x

(
4
9

u(x) +
1
9

d(x) +
4
9

u(x) +
1
9

d(x)
)
,

Fen
2 (x) = x

(
4
9

d(x) +
1
9

u(x) +
4
9

d(x) +
1
9

u(x)
)
.

Therefore the structure function of the deuteron, with one proton and one neutrino,
is given by

FeD
2 (x) =

1
2

(
Fep

2 (x) + Fen
2 (x)

)
=

5
18

x
(
u(x) + d(x) + u(x) + d(x)

)
.

Hence the integrals of the measured F2 distributions give:∫ 1

0
Fep

2 (x) dx =
4
9

fu +
1
9

fd and
∫ 1

0
FeD

2 (x) dx =
5
18

( fd + fu) ,
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where fu and fd are defined by

fu =

∫ 1

0
[xu(x) + xu(x)] dx and fd =

∫ 1

0
[xd(x) + xd(x)] dx .

Hence the ratio ∫ 1
0 FeD

2 (x) dx∫ 1
0 Fep

2 (x) dx
= 0.84 =

5
2

fu + fd
4 fu + fd

,

and thus
fu + fd

4 fu + fd
' 0.336 .

From this relation is straightforward to show that

fd/ fu ' 0.52 ,

which is consistent with the result quoted in Chapter 8.

8.7 Including the contribution from strange quarks:
a) Show that Fep

2 (x) can be written

Fep
2 (x) =

4
9

x
[
u(x) + u(x)

]
+

1
9

x
[
d(x) + d(x) + s(x) + s(x)

]
,

where s(x) and s(x) are the strange quark parton distribution functions of the proton.
b) Find the corresponding expression for Fen

2 (x) and show that∫ 1

0

[
Fep

2 (x) − Fen
2 (x)

]
x

dx ≈ 1
3

+
2
3

∫ 1

0

[
u(x) − d(x)

]
dx ,

and interpret the measured value of 0.24 ± 0.03.

a) Since strange quarks have charge −1/3, they couple to the photon in the QED
deep inelastic scattering process in the same way as down quarks and therefore

Fep
2 (x) =

4
9

x
[
u(x) + u(x)

]
+

1
9

x
[
d(x) + d(x) + s(x) + s(x)

]
,

b) Remembering that the PDFs in the above expression refer to the PDFs for the
proton,

Fen
2 (x) =

4
9

x
[
un(x) + un(x)

]
+

1
9

x
[
dn(x) + d

n
(x) + sn(x) + sn(x)

]
.

Making the assumption that up = dn, this can be written in terms of the proton
PDFs as

Fen
2 (x) =

4
9

x
[
d(x) + d(x)

]
+

1
9

x
[
u(x) + u(x) + s(x) + s(x)

]
,

where it has been assumed that the strange quark PDFs from the proton and neutron
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are identical. This is a reasonable assumption since the strange quark content of the
nucleons are from the sea.

Using the above expressions∫ 1

0

[
Fep

2 (x) − Fen
2 (x)

]
x

dx =
1
3

∫ 1

0
(u(x) − d(x) + u(x) − d(x)) dx .

Writing the quark PDFs in terms of valence and sea contributions, and assuming
that the quark and antiquark sea contributions (which arise from gluon-splitting)
are the same, i.e. uS (x) = u(x) and dS (x) = d(x), then∫ 1

0

[
Fep

2 (x) − Fen
2 (x)

]
x

dx =
1
3

∫ 1

0
(uV (x) − dV (x) + uS (x) − dS (x) + u(x) − d(x)) dx

=
1
3

∫ 1

0
(uV (x) − dV (x) + 2u(x) − 2d(x)) dx

=
1
3

+
2
3

∫ 1

0
(u(x) − d(x)) dx ,

where the last step follows from there being two valance up quarks and one valence
down quark. The measured value can therefore be interpreted as∫ 1

0
(u(x) − d(x)) dx =

3
2

[0.24 − 0.33 ± 0.03] = −0.14 ± 0.05 ,

demonstrating that there is a deficit of u quarks relative to d quarks in the proton,
as can be seen in the global fit to a wide range of data shown in Figure 8.17.

8.8 At the HERA collider, electrons of energy E1 = 27.5 GeV collided with protons of
energy E2 = 820 GeV. In deep inelastic scattering events at HERA, show that Bjorken
x is given by

x =
E3

E2

[
1 − cos θ

2 − (E3/E1)(1 + cos θ)

]
,

where θ is the angle through which the electron has scattered and E3 is the energy of
the scattered electron. Estimate x and Q2 for the event shown in Figure 8.13 assuming
that the energy of the scattered electron is 250 GeV.

For e+p → e+X DIS at HERA, the masses of the electron and proton can be ne-
glected and thus the four-momenta can be written:

p1 = (E1, 0, 0, E1) , p2 = (E2, 0, 0,−E2) and p3 = (E3, E3 sin θ, 0, E3 cos θ) .

Using these four-momenta

q2 = −2p1.p3 = −2E1E3(1 − cos θ)
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and

p2.q = p2.p1 − p2.p3 = 2E1E2 − E2E3(1 + cos θ) .

Thus, the Bjorken scaling variable x, defined as

x ≡ −q2

2p2.q
,

can be written

x =
E3

E2

[
1 − cos θ

2 − (E3/E1)(1 + cos θ)

]
.

For the event shown in the text θ ≈ 150◦. Thus

Q2 = 2E1E3(1 − cos θ) = 2 · 27.5 · 250(1 − cos θ) ' 3 × 104 GeV2 .

Similarly

x =
250
820

[
1 − cos θ

2 − (250/27.5)(1 + cos θ)

]
' 0.7 .

Hence the DIS interaction shown is one of the highest Q2 DIS interactions observed
at HERA and has high x.
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9.1 By writing down the general term in the Binomial expansion of(
1 + i

1
n
α · Ĝ

)n

,

show that

Û(α) = lim
n→∞

(
1 + i

1
n
α · Ĝ

)n

= exp (iα ·G) .

For compactness, writing x = iα · Ĝ, the required expression can be written(
1 +

x
n

)n
= 1 + n

x
n

+
1
2!

n(n − 1)
( x
n

)2
+

1
3!

n(n − 1)(n − 2)
( x
n

)3
+ ...

Taking the limit as n→ ∞ terms such as n(n − 1)(n − 2)/n3 → 1 and thus

lim
n→∞

(
1 +

x
n

)n
= 1 + x +

x2

2!
+

x3

3!
+ ... = ex ,

and therefore

Û(α) = lim
n→∞

(
1 + i

1
n
α · Ĝ

)n

= exp (iα ·G) .

9.2 For an infinitesimal rotation about the z-axis through an angle ε show that

Û = 1 − iε Ĵz ,

where Ĵz is the angular momentum operator Ĵz = xp̂y − yp̂x.

Here we need to distinguish between active and passive rotations. As written, the
question refers to a rotation of the axes through a positive angle ε, it could be
interpreted as a rotation of all the coordinates in which case the corresponding
Unitary operator would be

(
1 + iε Ĵz

)
. For a infinitesimal rotation of the x and y

axes

x→ x′ = x cos ε + y sin ε ' x − εy
y→ y′ = y cos ε − x sin ε ' y + εx .

73
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Under this coordinate transformation, wavefunctions transform as

ψ(x, y, z)→ ψ′(x, y, z) = ψ(x + εy, y − εx, z)

= ψ(x, y, z) + yε
∂ψ

∂x
− xε

∂ψ

∂y
.

The partial derivatives are related to the quantum mechanical momentum operators
(in Natural Units) by

∂

∂x
= ip̂x and

∂

∂y
= ip̂y ,

and therefore

ψ(x, y, z)→ ψ′(x, y, z) = ψ(x, y, z) + yε
∂ψ

∂x
− xε

∂ψ

∂y

= ψ(x, y, z) + iε(y p̂x − xε p̂y)ψ(x, y, z)

=
(
1 − iε Ĵz

)
ψ .

Thus the corresponding Unitary operator for the transformation is

Û = 1 − iε Ĵz .

9.3 By considering the isospin states, show that the rates for the following strong
interaction decays occur in the ratios

Γ(∆− → π−n) : Γ(∆0 → π−p) : Γ(∆0 → π0n) : Γ(∆+ → π+n) :

Γ(∆+ → π0p) : Γ(∆++ → π+p) = 3 : 1 : 2 : 1 : 2 : 3 .

This is an interesting application of the use of isospin in strong interactions. We
have asserted that SU(2) flavour symmetry is an exact symmetry of the strong
interaction. One consequence is that isospin and the third component of isospin is
conserved in strong interactions. Furthermore, from the point of view of the strong
interaction the ∆−, ∆0, ∆− and ∆++ are indistinguishable. The amplitudes for the
above decays can be written as

M(∆→ πN) ∼ 〈πN|Ĥstrong|∆〉 ,
which in the case of an exact SU(2) light quark flavour symmetry can be written as

M(∆→ πN) ∼ A〈φ(πN)|φ(∆)〉 ,
where A is a constant and φ represents the isospin wavefunctions. Here 〈φ(πN)|φ(∆)〉
expresses conservation of isospin in the interaction. The question therefore boils
down to determining the isospin values for the states involved.
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Consider the decay ∆− → π−n, which in terms of isospin states corresponds to

φ
(

3
2 ,−3

2

)
→ φ (1,−1)φ

(
1
2 ,− 1

2

)
.

The decay rate will depend on the isospin of the combined π−n system. Since I3
is an additive quantum number the third component of the combined π−n system
is −3/2 and this implies that the total isospin must be at least 3/2. But since the
total isospin lies between |1− 1/2| < I < |1 + 1/2|, the isospin of the π−n system is
uniquely identified as

φ(π−n) = φ (1,−1)φ
(

1
2 ,−1

2

)
= φ

(
3
2 ,− 3

2

)
.

Consequently the amplitude for the decay is given by

M(∆− → π−n) ∼ A〈φ(π−n) | φ(∆−)〉 = A
〈
φ
(

3
2 ,− 3

2

)
|φ

(
3
2 ,− 3

2

)〉
= A .

Now consider the decays of the ∆0 which the isospin state

φ(∆−) = φ
(

3
2 ,−1

2

)
.

The decomposition of this state into the equivalent πN system (and isospin-1 state
combined with an isospin-1/2 state) can be achieved using isospin ladder operators.
Starting from the unique assignment

φ
(

3
2 ,−3

2

)
= φ (1,−1)φ

(
1
2 ,−1

2

)
,

the isospin raising operator gives

T̂+φ
(

3
2 ,− 3

2

)
=

(
T̂+φ (1,−1)

)
φ
(

1
2 ,−1

2

)
+ φ (1,−1)

(
T̂+φ

(
1
2 ,− 1

2

))
,

φ
(

3
2 ,− 3

2

)
=
√

2φ (1, 0)φ
(

1
2 ,− 1

2

)
+ φ (1,−1)φ

(
1
2 ,+

1
2

)
,

or equivalently

φ(∆0) =

√
2
3φ(π0n) +

√
1
3φ(π−p) .

Thus the decay amplitudes of the ∆0 can be written

M(∆0 → π0n) ∼ A
〈
φ(π0n) |

√
2
3φ(π0n) +

√
1
3φ(π−p)

〉
=

√
2
3 A ,

and

M(∆0 → π−p) ∼ A
〈
φ(π−p) |

√
2
3φ(π0n) +

√
1
3φ(π−p)

〉
=

√
1
3 A .

Since decay rates are proportional to the amplitude squared

Γ(∆− → π−n) : Γ(∆0 → π−p) : Γ(∆0 → π0n) = 3 : 1 : 2 .

The other ratios follow from the same arguments.

9.4 If quarks and antiquarks were spin-zero particles, what would be the multiplicity
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of the L = 0 multiplet(s). Remember that the overall wavefunction for bosons must be
symmetric under particle exchange.

Since the colour quantum numbers of the quarks has nothing to do with spin, the
colour singlet states are still

1√
3

(rr̄ + gḡ + bb̄) and
1√
6

(rgb − grb + gbr − bgr + brg − rbg) .

Hence, due to colour confinement, we still expect to see mesons containing a quark
and an antiquark and baryons containing three quarks.

Mesons: Since the flavour quantum numbers of the quarks remain unchanged, the
flavour wavefunctions for mesons retain their usual SU(3) form, and we would
expect to see the usual flavour nonets. Since there is no spin degree of freedom, the
would be a single nonet corresponding to each value of L. The overall parity of a
two particle system in a state with orbital angular momentum L is

P = P1.P2.(−1)L .

Spin 0 quarks would be bosons, and would have the same intrinsic parity, thus
P1 = P2. Hence, for a meson formed from spin-0 quarks:

P(qq) = (−1)L .

Consequently one would expect to see nonets (with the total angular momentum
equal to L) with

JP = 0+, 1−, 2+, 3−, . . . ,

which is in contradiction to the observed meson states.

Baryons: for baryons, regarded as being built up from three ”identical” spin-1/2
quarks, with appropriate colour, spin and flavour quantum numbers, the overall
wavefunction is

ψ = φflavour χspin ξcolour ηspace .

For spin-1/2 quarks, i.e. fermions, ψ must be totally antisymmetric under inter-
change of any pair of quarks within the baryon. For baryons made from spin-0
quarks, the wavefunction would become just

ψ = φflavour ξcolour ηspace .

and the overall wavefunction ψwould be totally symmetric under quark interchange
since quarks are now bosons. For spin-0 quarks, the colour wavefunction is the
usual SU(3) colour singlet, which is totally antisymmetric under interchange of
any pair of quarks within the baryon. Hence,

φ(flavour) η(space) must now be totally antisymmetric .
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For L = 0 baryons, ψ(space) is totally symmetric, so ψ(flavour) must be totally
antisymmetric. The only totally antisymmetric flavour wavefunction which can be
constructed out of the three flavours u, d and s is

η(space) =
1√
6

(uds − dus + dsu − sdu + sud − usd) .

Hence, for spin-0 quarks one would expect only a single L = 0 baryon state, with
the flavour content uds. This baryon would have parity P = +1.+1.+1.(−1)0 = +1
and total spin zero (since L = 0 and S = 0) giving a

JP = 0+ singlet

as the lightest baryon multiplet.

9.5 The neutral vector mesons can decay leptonically through a virtual photon, for
example by V(qq) → γ → e+e−. The matrix element for this decay is proportional to
〈ψ|Q̂q|ψ〉, where ψ is the meson flavour wavefunction and Q̂q is an operator that is
proportional to the quark charge. Neglecting the relatively small differences in phase
space, show that

Γ(ρ0 → e+e−) : Γ(ω→ e+e−) : Γ(φ→ e+e−) ≈ 9 : 1 : 2 .

The underlying process is the QED annihilation process qq → e+e−, where the
matrix element can be expressed as

M(qq→ e+e−) ∼ 〈e+e−|Q̂q|qq〉 = AQq ,

where A is assumed to be a constant and Qq is the charge of the annihilating quark-
pair. For the φ which is a pure ss state, the matrix element

M(φ→ e+e−) ∼ 〈e+e−|Q̂q|ss〉 = AQs = −1
3 A .

For the ρ0 with wavefunction
∣∣∣ρ0,=

〉
1√
2
(uu − dd), the phases of the two compo-

nents are important and the total amplitude depends on the coherent sum of the
contributions from the decays of the uu and dd. Here the matrix element can be
written

M(ρ0 → e+e−) ∼ 〈e+e−|Q̂q| 1√
2
(uu−dd)〉 = A 1√

2
(Qu − Qd) = A 1√

2

(
2
3 + 1

3

)
= 1√

2
A .

Similarly,

M(ω→ e+e−) ∼ 〈e+e−|Q̂q| 1√
2
(uu+dd)〉 = A 1√

2
(Qu − Qd) = A 1√

2

(
2
3 − 1

3

)
= 1

3
√

2
A .

Neglecting the relatively small differences in phase space, Γ ∝ M2 and thus

Γ(ρ0 → e+e−) : Γ(ω→ e+e−) : Γ(φ→ e+e−) ≈ 9 : 1 : 2 .
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9.6 Using the meson mass formulae of (9.37) and (9.38), obtain predictions for the
masses of the π±, π0, η, η′, ρ0, ρ±, ω and φ. Compare the values obtained to the
experimental values listed in Table 9.1.

This is a fairly straightforward question, using the meson mass formula

m(q1q2) = m1 + m2 +
A

m1m2
〈S1 · S2〉 , (9.1)

the masses of the pseudoscalar and vector mesons are given respectively by (9.37)
and (9.38):

Pseudoscalar mesons (s=0): mP = m1 + m2 − 3A
4m1m2

,

Vector mesons (s=1): mV = m1 + m2 +
A

4m1m2
,

where the constants can be taken to be

md = mu = 0.307 GeV , ms = 0.490 GeV and A = 0.06 GeV3 .

The only complication is how to handle states composed of more than one quark
type, for example the η with

|η〉 = 1√
6
(uu + dd − 2ss) .

As is often the case, it helps to think of this in terms of a meson mass operator for
a qq system, such that the expectation value of the mass operator is the mass of the
bound qq system

〈q1q2|M̂qq|q1q2〉 = m(q1q2) ,

where m(q1q2) is given by (9.1). Stating the problem in this manner, one can write
the mass of the η as

mη = 〈η|M̂qq|η〉
=

1
6
〈(uu + dd − 2ss)| M̂qq |(uu + dd − 2ss)〉

=
1
6

[
m(u, u) + m(d, d) + 4m(s, s)

]
.

Using the meson mass formula for the S = 0 pseudoscalar η:

mη =
1
6

2mu + 2md + 8ms − 3A
4m2

u
− 3A

4m2
d

− 4
3A
4m2

s

 = 573 MeV ,

in reasonable agreement with the observed mass of 548 MeV.

The meson mass formulae works well for all of the mesons in the question, with
the exception of the η′, where the prediction of approximately 350 MeV is very
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different from the measured mass of 958 MeV. However it should be noted that
the η′ is a flavour singlet state and in principle it could mix with flavourless purely
gluonic bound states and given the special nature of the η′, it is not surprising that
the simple mass formula does not work.

9.7 Compare the experimentally measured values of the masses of the JP = 3
2

+

baryons, given in Table 9.2, with the predictions of (9.41). You will need to consider the
combined spin of any two quarks in a spin- 3

2 baryon state.

Any two of quarks in a spin- 3
2 baryon, can be in a combined spin-0 or spin-1 qq

state. If they are in a spin-0 state, the additional third quark will always result in
a spin- 1

2 qqq state. Hence, any two quarks in a spin- 3
2 baryon must be in a spin-1

state. Consequently, for any two quarks

S = Si + S j

⇒ 2Si · S j = S2 − S2
1 − S2

2

⇒ 2〈Si · S j〉 = s(s + 1) − s1(s1 + 1) − s2(s2)

= 2 − 3
4 − 3

4

⇒ 〈Si · S j〉 =
1
4
.

Thus the baryon mass formula of (9.41), when applied to the spin- 3
2 decuplet be-

comes

m(q1q2q3) = m1 + m2 + m3 +
A
4

(
1

m1m2
+

1
m1m3

+
1

m2m3

)
.

Taking the mass of the u and d quarks to be equal, the predicted masses of the
decuplet baryons depend only on the number of strange quarks:

∆ : m = 3mu +
A
4

3
m2

u

Σ∗ : m = 2mu + ms +
A
4

(
1

m2
u

+
2

mums

)
Ξ∗ : m = mu + 2ms +

A
4

(
1

m2
s

+
2

mums

)
Ω : m = 3ms +

A
4

3
m2

s

Using

md = mu = 0.365 GeV , ms = 0.540 GeV and A′ = 0.026 GeV3 ,

the predicted masses are: m∆ = 1.241 GeV, mΣ∗ = 1.385 GeV, mΞ∗ = 1.533 GeV
and mΩ = 1.687 GeV, which are in good agreement with the measured values.
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9.8 a) Obtain the wavefunction for the Σ0 and therefore find the wavefunction for the

Λ.

b) Using (9.41), obtain predictions for the masses of the Σ0 and the Λ baryons and
compare these to the measured values.

a) This is a difficult question that requires some insight. If the SU(3) flavour sym-
metry were exact, the Λ(uds) and Σ0(uds) baryons would have the same mass –
they don’t. The situation is similar to the that of the neutral mesons, where the
quark flavour wavefunctions for the π0 and η can be obtained from the operation
of the ladder operators on the six states around the ”edges” of the octet. The phys-
ical states are linear combinations of these states. How treat this ambiguity is not
a priori obvious. Following the discussion of the light meson states, one expects
that the u and d quarks in the uds baryon wavefunction obey an exact SU(2) flavour
symmetry.

Starting from the wavefunction for the Σ−(dds), which has the same form as that of
the proton:

|Σ−↑〉 ∝ 2d↑d↑s↓−d↑d↓s↑−d↓d↑s↑+ cyclic combinatorics .

Note that in this wavefunction the d quarks appear in symmetric spin states. This
must be the case since the flavour wavefunction of the dd is always symmetric and
for the overall wavefunction to be antisymmetric under the interchange of the two
d quarks, they must be in a symmetric spin state (since the colour wavefunction is
anti-symmetric). Following the (almost) exact SU(2) light quark flavour symmetry,
the wavefunction for the Σ0 is expected to have the form:

|Σ0↑〉 ∝ 2d↑u↑s↓−d↑u↓s↑−u↓d↑s↑+ cyclic combinatorics .

The Λ wavefunction must be orthogonal to this state and satisfy the overall require-
ments of the approximate SU(3) flavour symmetry. We could construct this state
by applying ladder operators to the states around the edge of the baryon octet. Al-
ternatively, since in the Σ0 state identified above, the u and d quarks are in flavour
and spin symmetric states (sud = 1) and orthogonal state can be written down by
placing the u and d quarks in flavour and spin anti-symmetric states (sud = 0), in
this case:

|Λ↑〉 ∝ d↑u↓s↑−u↓d↑s↑+ cyclic combinatorics

b) Following the above arguments the total spin of the ud system assume that the
ud quarks in the Λ and Σ0 are either in a spin-0 or spin-1 state, sud = 0 or sud = 1.
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The total spin of the three quark system can be written:

S = Su + Sd + Ss

S2 = S2
u + S2

d + S2
s + 2Su · Sd + 2Ss · (Su + Sd)

〈S2〉 = 〈S2
u〉 + 〈S2

d〉 + 〈S2
s 〉 + 2〈Su · Sd〉 + 2〈Ss · (Su + Sd)〉

s(s + 1) = 3sq(sq + 1) + 2〈Su · Sd〉 + 2〈Ss · (Su + Sd)〉 .
Here the total angular momentum (”spin”) of the baryon is 1/2 and the above equa-
tion can be rearranged to give an expression for the term involving the s-quark
spins in terms of the total angular momentum of the ud system.

2〈Ss · (Su + Sd)〉 = − 3
2 − 2〈Su · Sd〉?? (9.2)

If the total spin of the ud system is Sud, then

Sud = Su + Sd

〈S2
ud〉 = 〈S2

u〉 + 〈S2
d〉 + 2〈Su · Sd〉

sud(sud + 1) = 3/2 + 2〈Su · Sd〉 .
Substituting this back into (??) gives

2〈Ss · (Su + Sd)〉 = − 3
2 + 3

2 − sud(sud + 1)

〈Ss · (Su + Sd)〉 = − 1
2 sud(sud + 1) .

Now, neglecting the differences in up and down quark masses, the baryon mass
formula for the uds system can be written:

m(uds) = 2mu + ms +
A′

m2
u
〈Su · Sd〉 + A′

mums
〈Ss · (Su + Sd)〉

= 2mu + ms +
A′

m2
u

(
1
2 sud(sud + 1) − 3

4

)
− A′

2mums
sud(sud + 1) .

Putting in the appropriate values for the quark masses and A′ gives the numerical
result:

m(uds)/GeV = 1.124 + 0.032sud(sud + 1) .

For the case when the ud quarks are in a anti-symmetric/symmetric spin state (sud =

0/sud = 1) the resulting masses are predicted to be

sud = 0 : m(Λ) = 1.124 GeV

sud = 1 : m(Σ0) = 1.187 GeV ,

In reasonable agreement with the observed values of m(Λ) = 1.116 GeV and
m(Σ0) = 1.193 GeV.
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9.9 Show that the quark model predictions for the magnetic moments of the Σ+, Σ−
and Ω− baryons are

µ(Σ+) = 1
3 (4µu − µs) , µ(Σ−) = 1

3 (4µd − µs) and µ(Ω−) = 3µs .

What values of the quark constituent masses are required to give the best agreement
with the measured values of

µ(Σ+) = (2.46± 0.01)µN , µ(Σ−) = (−1.16± 0.03)µN and µ(Ω−) = (−2.02± 0.06)µN .

Since the Σ+(uus) and Σ−(dds) are part of the same multiplet as the proton (uud),
the wavefunctions follow from that of the proton with the respective replacements
d→ s and d→ s/u→ d:

|Σ−↑〉 ∝ 2d↑d↑s↓−d↑d↓s↑−d↓d↑s↑+ cyclic combinatorics .

and

|Σ+↑〉 ∝ 2u↑u↑s↓−u↑u↓s↑−u↓u↑s↑+ cyclic combinatorics .

The derivations of the magnetic moments then follow exactly that for the proton in
the main text. Since

µp = 4
3µu − 1

3µd ,

it follows that

µ(Σ−) = 4
3µd − 1

3µs and µ(Σ−) = 4
3µu − 1

3µs .

The Ω−sss is part of the spin- 3
2 baryon decuplet. The wavefunction for the extreme

spin state (ms = +3/2) is simply:

|Ω−↑〉 = s↑s↑s↑,
and the magnetic moment is clearly just the sum of the magnetic moments of the
individual quarks:

µ(Ω−) = 3µs .

The simplest way to interpret the data is to use the measurement of the µ(Ω−) to
determine the magnetic moment of the s quark:

3µs = (−2.02 ± 0.06)µN ⇒ µs = (−0.673 ± 0.02)µN ,

and then to use the other two measurements to determine µu and µd:

4
3µd−1

3µs = µ(Σ−) = 4
3µd+0.224µN = (−1.16±0.03)µN ⇒ µd = (−1.04±0.02)µN ,

and

4
3µu−1

3µs = µ(Σ+) = 4
3µd+0.224µN = (2.46±0.01)µN ⇒ µu = (+1.68±0.01)µN ,
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All that remains is to determine the best values of the (effective) quark masses

µu = 〈u↑ | µ̂z | u↑〉 =
(
+2

3

) e
2mu

= +
2mp

3mu
µN ,

µd = 〈d↑ | µ̂z | d↑〉 =
(
−1

3

) e
2md

= − mp

3md
µN ,

µs = 〈s↑ | µ̂z | s↑〉 =
(
−1

3

) e
2ms

= − mp

3ms
µN .

Using the above measurements, one obtains:

µu = (+1.68 ± 0.01)µN = +
2mp

3mu
µN ⇒ mu = 0.39mp ' 370 MeV ,

µd = (−1.04 ± 0.02)µN = − mp

3md
µN ⇒ md = 0.32mp ' 300 MeV ,

µs = (−0.673 ± 0.02)µN = − mp

3ms
µN ⇒ ms = 0.50mp ' 465 MeV .

9.10 If the colour did not exist, baryon wavefunctions would be constructed from

ψ = φflavour χspin ηspace .

Taking L = 0 and using the flavour and spin wavefunctions derived in the text:
a) Show that it is still possible to construct a wavefunction for a spin-up proton for which
φflavour χspin is totally antisymmetric.
b) Predict the baryon multiplet structure for this model.
c) For this colourless model, show that µp is negative and that the ratio of the neutron
and proton magnetic moments would be

µn

µp
= −2 .

a) If the colour did not exist, baryon wavefunctions would be constructed from

ψ = φflavour χspin ηspace .

For the L = 0 baryons, the spatial wavefunction is symmetric and the requirement
that the overall wavefunction is anti-symmetric implies that the combination of
φflavour × χspin must be anti-symmetric under the interchange of any two quarks.
The linear combination

ψ = αφSχA + βφAχS

is clearly anti-symmetric under the interchange of quarks 1 ↔ 2 and for the right
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choice of α and β is anti-symmetric under the interchange of any two quarks. Using
the forms of the flavour and spin wavefunctions given in the main text,

ψ =
α√
12

(2u↑u↓d↑−2u↓u↑d↑−u↑d↓u↑+u↓d↑u↑−d↑u↓u↑+d↓u↑u↑) +

β√
12

(2u↑d↑u↓−2d↑u↑u↓−u↑d↓u↑+d↑u↓u↑−u↓d↑u↑+d↓u↑u↑) .

The relation between the coefficients α and β can be found by considering the
transformation properties under interchange of quarks 2↔ 3 (or 1↔ 3):

ψ′ = ψ2↔3

=
α√
12

(2u↑d↑u↓−2u↓d↑u↑−u↑u↑d↓+u↓u↑d↑−d↑u↑u↓+d↓u↑u↑) +

β√
12

(2u↑u↓d↑−2d↑u↓u↑−u↑u↑d↓+d↑u↑u↓−u↓u↑d↑+d↓u↑u↑) .

The requirement of overall anti-symmetry implies that ψ2↔3 = −ψ. For example
consider the uud parts of the above wavefunctions, the requirement of antisymme-
try implies:

2αu↑u↓d↑− 2αu↓u↑d↑=
αu↑u↑d↓−αu↓u↑d↑−2βu↑u↓d↑+βu↑u↑d↓+βu↓u↑d↑,

which is satisfied for β = −α and hence

ψ = 1√
2

(φSχA − φAχS ) .

With a little straightforward algebra it can then be shown that

ψ = 1√
6

(u↑u↓d↑−u↓u↑d↑+u↓d↑u↑−d↑u↓u↑−u↑d↑u↓+d↑u↑u↓) . (9.3)

b) Within the assumed SU(3) flavour symmetry, just as before, the combinations
of mixed symmetry flavour and spin states will give rise to a spin- 1

2 octet. In addi-
tion, it is is possible to construct a state where φflavour × χspin is anti-symmetric by
combining the totally anti-symmetric flavour singlet with a symmetric spin- 3

2 state.
Hence, in this model there would be an octet of spin- 1

2 baryons and a singlet spin- 3
2

uds state.

c) In this model the wavefunctions of the ”spin-up” proton and neutron are

|p↑〉 = 1√
6

(u↑u↓d↑−u↓u↑d↑+u↓d↑u↑−d↑u↓u↑−u↑d↑u↓+d↑u↑u↓) ,
and

|n↑〉 = 1√
6

(d↑d↓u↑−d↓d↑u↑+d↓u↑d↑−u↑d↓d↑−d↑u↑d↓+u↑d↑d↓) .
Since, for each term, the spins of the two like quarks are always opposite, they do
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not contribute to the overall magnetic moment, which is determined solely by the
magnetic moment of the other quark. Hence, taking mu ∼ md,

µn

µp
=
µu

µd
= −2 .

This colourless model, therefore, does not predict the observed ratio of magnetic
moments of the proton and neutron.



10 Quantum Chromodynamics (QCD)

10.1 By considering the symmetry of the wavefunction, explain why the existence
of the Ω−(sss) L = 0 baryon provides evidence for a degree of freedom in addition to
space × spin × flavour.

In the absence of colour, the overall wavefunction has the following degrees of
freedom:

ψ = φflavour χspin ηspace .

The overall wavefunction must be anti-symmetric under the interchange of any two
quarks (since they are fermions). For the a state with zero orbital angular momen-
tum (` = 0), the spatial wavefunction is symmetric. The flavour wavefunction sss
is clearly symmetric under the interchange of any two quarks. Therefore, the re-
quired overall anti-symmetric wavefunction would imply a totally anti-symmetric
spin wavefunction, however, there is no totally anti-symmetic spin wavefunction
for the combination of three spin-half particles (2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2). Hence,
without an additional degree of freedom, in this case colour, the Ω− would not
exist.

10.2 From the expression for the running of αS with N f = 3, determine the value of
q2 at which αS appears to become infinite. Comment on this result.

The strong coupling constant runs according to

αS (q2) =
αS (µ2)

1 + BαS (µ2) ln

q2

µ2


,

where B = (11Nc−2N f )/(12π). For Nc = 3 colours and N f = 3 (valid at low values
of |q2|),

B =
27

12π
.

The strong coupling constant appears to become infinite when

αS (µ2) ln
(
q2∞
µ2

)
= −12π

27
.

86
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At |q| = 10 GeV, αS ' 0.18, and therefore αS becomes infinite when

0.18 ln
(

q2∞
100

)
= −12π

27

⇒ q2∞
100

= 4.3 × 10−4

⇒ q∞ ≈ 200 MeV .

At this scale, known as ΛQCD, QCD is clearly non-perturbative.

10.3 Find the overall “colour factor” for qq → qq if QCD corresponded to a SU(2)
colour symmetry.

If QCD corresponded to an SU(2) rather than SU(3) ”colour” symmetry, the corre-
sponding vertex factor would be

− 1
2 igS λ

a
jiγ

µ → −1
2 igSσ

a
jiγ

µ ,

where the colour indices i, j=1,2 and σa with a = 1, 2, 3 are the three Pauli spin
matrices corresponding to the three ”gluons” in this model.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.

Following the arguments for SU(3) QQD, the colour factor for a particular qiqk →
q jql scattering process is

C(ik → jl) =
1
4

3∑
a=1

λa
jiλ

a
kl .

Denoting the colours as r and b, it is straightforward to obtain the following results

C(rr → rr) = C(bb→ bb) = 1
4 (1)(1) = 1

4 ,

C(rb→ rb) = C(br → br) = 1
4 (1)(−1) = −1

4 ,

C(rb→ br) = C(br → rb) = 1
4 [(1)(1) + (i)(−i)] = 1

2 ,

and all other combinations are zero. Hence the spin-averaged colour factor (av-
eraging over the four possible initial colour combinations of the two initial-state
quarks) is

〈|C|2〉 =
1
4

2∑
i, j,k,l=1

|C(i j→ kl)|2

=
1
4

2 × (
1
4

)2

+ 2 ×
(
1
4

)2

+ 2 ×
(
1
2

)2
=

3
16

.
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10.4 Calculate the non-relativistic QCD potential between quarks q1 and q2 in a
q1q2q3 baryon with colour wavefunction

ψ =
1√
6

(rgb − grb + gbr − bgr + brg − rbg) .

The NRQCD potential between two quarks can be expressed as

Vqq(r) = +C
αS

r
,

where C is the appropriate colour factor. Consequently, the expectation value of the
NRQCD potential between quarks 1 and 2 an a baryon with colour wavefunction
ψ

〈V12
qq 〉 = 〈ψ|Vqq|ψ〉

= 1
6 〈(rg − gr + gb − bg + br − rb)|Vqq|(rg − gr + gb − bg + br − rb)〉

= +
αS

6r
[
6C(rg→ rg) − 6C(rg→ rg)

]
= +

αS

6r

[
6
(
− 1

6

)
− 6

(
+ 1

2

)]
,

and thus

〈V12
qq 〉 = −2αS

3r
.

Hence, in the non-relativistic limit, the QCD potential between any two quarks in
a baryon is attractive.
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10.5 Draw the lowest-order QCD Feynman diagrams for the process pp→ 2 jets+ X,
where X represents the remnants of the colliding hadrons.

There are diagrams involving: i) the scattering of quarks and antiquarks, ii) the
scattering of a quark/antiquark and a gluon and iii) the scattering of gluons, where
the anti-quarks/quarks can either be from the valance or sea content of the proton
and antiproton.
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10.6 The observed events in the process pp → 2 jets at the LHC can be described
in terms of the jet pT and the jet rapidities y3 and y4.
a) Assuming that the jets are massless, E2 = p2

T + p2
z , show that the four-momenta of

the final-state jets can be written as

p3 = (pT cosh y3,+pT sin φ,+pT cos φ, pT sinh y3) ,
p4 = (pT cosh y4,−pT sin φ,−pT cos φ, pT sinh y4) .

b) By writing the four-momenta of the colliding partons in a pp collision as

p1 =

√
s

2
(x1, 0, 0, x1) and p2 =

√
s

2
(x2, 0, 0,−x1) ,

show that conservation of energy and momentum implies

x1 =
pT√

s
(e+y3 + e+y4 ) and x2 =

pT√
s

(e−y3 + e−y4 ) .

c) Hence show that

Q2 = p2
T(1 + ey4−y3 ) .

a) From the definition of rapidity

2y = ln
(

E + pz

E − pz

)
⇒ e2y =

E + pz

E − pz
,

which can be rearranged to give

E(e2y − 1) = pz(e2y + 1)

⇒ E
pz

=
e2y + 1
e2y − 1

=
ey + e−y

ey − e−y
=

cosh y
sinh y

.

In the massless limit, the jet energy is the sum of the squares of the transverse and
longitudinal momentum components E2 = p2

T + p2
z and thus,

E2 − p2 = p2
T

E2
1 − p2

z

E2

 = p2
T

⇒ E2
(
1 − sinh2 y

cosh2 y

)
= p2

T

⇒ E2 = p2
T cosh2 y ,

from which it follows that p2
z = E2 − p2

T = p2
T sinh2 y. Therefore the jet four-

momentum can be written in terms of y, pT and the azimuthal angle,

p = (pT cosh y, pT sin φ, pT cos φ, pT sinh y) ,



91 Quantum Chromodynamics (QCD)

and since the two jets here are produced back-to-back in the transverse plane:

p3 = (pT cosh y3,+pT sin φ,+pT cos φ, pT sinh y3) ,

p4 = (pT cosh y4,−pT sin φ,−pT cos φ, pT sinh y4) .

First recall that

cosh y + sinh y = 1
2
(
ey + e−y

)
+ 1

2
(
ey − e−y

)
= ey (10.1)

cosh y − sinh y = 1
2
(
ey + e−y

) − 1
2
(
ey − e−y

)
= e−y . (10.2)

Here conservation of energy and momentum imply
√

s
2

(x1 + x2) = pT(cosh y3 + cosh y4)

and
√

s
2

(x1 − x2) = pT(sinh y3 + sinh y4) .

Taking the sum and difference of these two relations and using the identities of
(10.1) and (10.2) gives

√
sx1 = pT(cosh y3 + cosh y4 + sinh y3 + sinh y4) = pT(ey3 + ey4)

and
√

sx2 = pT(cosh y3 + cosh y4 − sinh y3 − sinh y4) = pT(e−y3 + e−y4) ,

and, as required,

x1 =
pT√

s
(e+y3 + e+y4) and x2 =

pT√
s
(e−y3 + e−y4) .

In the massless limit (p2
1 = p2

3 = 0), the four-momentum transfer

Q2 = −q2 = −(p1 − p3)2 = 2p1 ·p3

= 2
√

s
2

(x1, 0, 0, x1)·(pT cosh y3,+pT sin φ,+pT cos φ, pT sinh y3)

= pT
√

sx1(cosh y3 − sinh y3)

= pT
√

sx1e−y3 .

Using the result for x1 from part b) above,

Q2 = pT
√

sx1e−y3

= p2
T(ey3 + ey4)e−y3

= p2
T(1 + ey4−y3) .

It is worth recalling that rapidly differences are invariant under boosts along the z-
direction, and therefore the result for (the Lorentz invariant) quantity Q2 is invariant
under boosts along the z-direction (as it must be).
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10.7 Using the results of the previous question show that the Jacobian

∂(y3, y4, p2
T)

∂(x1, x2, q2)
=

1
x1x2

.

The transformation from {y3, y4,Q2} to {x1, x2, pT} is defined by the relations

x1 =
pT√

s
(e+y3 + e+y4) ,

x2 =
pT√

s
(e−y3 + e−y4) ,

Q2 = p2
T(1 + ey4−y3) ,

and the differential elements are related

dy3dy3dp2
T =

∣∣∣∣∣∣∣ ∂(y3, y4, p2
T)

∂(x1, x2,Q2)

∣∣∣∣∣∣∣ dx1dx2dQ2 .

Since we already have {x1, x2, pT} expressed in terms of {y3, y4,Q2}, it is simpler
to calculate

∂(x1, x2,Q2)
∂(y3, y4, p2

T)
and use

∂(y3, y4, p2
T)

∂(x1, x2,Q2)
=

∂(x1, x2,Q2)
∂(y3, y4, p2

T)

−1

.

The actual calculation requires care but is fairly straightforward. Here, the Jacobian
(it terms of pT rather than p2

T) is

J =
∂(x1, x2,Q2)
∂(y3, y4, pT)

=

∣∣∣∣∣∣∣∣∣∣
∂x1
∂y3

∂x1
∂y4

∂x1
∂pT

∂x2
∂y4

∂x2
∂y4

∂x2
∂pT

∂Q2

∂y3

∂Q2

∂y4

∂Q2

∂pT

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
pT√

s ey3 pT√
s ey4 1√

s (ey3 + ey4)
− pT√

s e−y3 − pT√
s e−y4 1√

s (e−y3 + e−y4)
−p2

Tey4−y3 p2
Tey4−y3 2pT(1 + ey4−y3)

∣∣∣∣∣∣∣∣∣∣
=

p3
T

s

∣∣∣∣∣∣∣∣∣
ey3 ey4 ey3 + ey4

−e−y3 −e−y4 e−y3 + e−y4

−ey4−y3 ey4−y3 2(1 + ey4−y3)

∣∣∣∣∣∣∣∣∣
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Multiplying out the terms in the determinant leads to

J =
p3

T

s

{
ey3

[−2(e−y4 + e−y3) − ey4−y3(e−y3 + e−y4)
]

− ey4
[−e−y3(1 + ey4−y3) + ey4−y3(e−y3 + e−y4)

]
+ (ey3 + ey4)

[
−ey4−2y3 − e−y3

] }
= − p3

T

s

[
2ey3−y4 + 2 + ey4−y3 + 1 − 2ey4−y3 − 2e2y4−2y3 + e2y4−2y3

+ey4−y3 + ey4−y3 + 1 + e2y4−2y3 + ey4−y3
]

= − p3
T

s
[2 + ey4−y3 + ey3−y4

= −2pTx1x2 .

The next step is to transform from Q2 → q2 = −Q2 and from pT → p2
T giving

∂(x1, x2, q2)
∂(y3, y4, p2

T)
= − 1

2pT

∂(x1, x2,Q2)
∂(y3, y4, p2

T)

= x1x2 ,

and from the reciprocity properties of the Jacobian J, the require result is obtained:

∂(y3, y4, p2
T)

∂(x1, x2, q2)
=

1
x1x2

.

10.8 The total cross section for the Drell-Yan process pp→ µ+µ−X was shown to be

σDY =
4πα2

81s

∫ 1

0

∫ 1

0

1
x1x2

[
4u(x1)u(x2) + 4u(x1)u(x2) + d(x1)d(x2) + d(x1)d(x2)

]
dx1dx2 .

a) Express this cross section in terms of the valence quark PDFs and a single PDF for
the sea contribution, where S (x) = u(x) = d(x).

b) Obtain the corresponding expression for pp→ µ+µ−X.

c) Sketch the region in the x1-x2 plane corresponding sqq > s/4. Comment on the
expected ratio of the Drell-Yan cross sections in pp and pp collisions (at the same
centre-of-mass energy) for the two cases: i) ŝ � s and ii) ŝ > s/4, where ŝ is the
centre-of-mass energy of the colliding partons.
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a) Writing u(x) = uV (x) + S (x) and d(x) = dV (x) + S (x),

d2σ
pp
DY =

4πα2

81sx1x2
{4[uV (x1) + S (x1)][uV (x2) + S (x2)] + 4S (x1)S (x2)+

[dV (x1) + S (x1)][dV (x2) + S (x2)] + S (x1)S (x2)}dx1dx2

=
4πα2

81sx1x2
{4uV (x1)uV (x2) + 4uV (x1)S (x2) + 4S (x1)uV (x2) + 10S (x1)S (x2)+

dV (x1)dV (x2) + dV (x1)S (x2) + S (x1)dV (x2)}dx1dx2

If we also assume that uV (x) = 2dV (x) then

d2σ
pp
DY =

4πα2

81sx1x2
{17dV (x1)dV (x2)+

9dV (x1)S (x2) + 9S (x1)dV (x2) + 10S (x1)S (x2)}dx1dx2 .

b) For pp collisions, the Drell-Yan cross section is

d2σ
pp
DY =

4πα2

81sx1x2
{4u(x1)u(x2) + 4u(x1)u(x2)+

d(x1)d(x2) + d(x1)d(x2)}dx1dx2

This can be expressed in terms of sea and valance quark pdfs:

d2σ
pp
DY =

4πα2

81sx1x2
{4uV (x1)S (x2) + 4S (x1)uV (x2)+

dV (x1)S (x2) + S (x1)dV (x2) + 10S (x1)S (x2)}dx1dx2

If we again assume that uV (x) = 2dV (x) then

d2σ
pp
DY =

4πα2

81sx1x2
{9dV (x1)S (x2) + 9S (x1)dV (x2) + 10S (x1)S (x2)}dx1dx2

c) Since ŝ = x1x2s, lines of constant ŝ define hyperbolae in the {x1, x2} plane.
For ŝ � s both x1 and x2 will usually be small, and in this region the Drell-
Yen cross section will be dominated the sea quarks and, from the above results,
d2σ

pp
DY ∼ σ

pp
DY. Consequently the cross section for the Drell-Yan production of

low-mass µ+µ−-pairs will be approximately the same for pp and pp collisions. In
contrasts for ŝ > s/4, both x1 and x2 will be greater than 0.5 and the valance quark
contributions will dominate over the sea. In this case d2σ

pp
DY � σ

pp
DY, and the cross

section for the production of high-mass µ+µ−-pairs will be much greater for pp
collisions.

10.9 Drell-Yan production of µ+µ−-pairs with an invariant mass Q2 has been studied
in π± interactions with Carbon (which has equal numbers of protons and neutrons).
Explain why the ratio

σ(π+C→ µ+µ−X)
σ(π−C→ µ+µ−X)
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tends to unity for small Q2 and tends to 1
4 as Q2 approaches s.

The PDFs for the π+(ud) can be written in terms of valance and sea quark distribu-
tions:

uπ
+

(x) = uπ
+

V (x) + S π
+

(x) ≡ uπV (x) + S π(x)

d
π+

(x) = d
π+

V (x) + S π
+

(x) ≡ d
π

V (x) + S π(x)

dπ
+

(x) = S π
+

(x) ≡ S π(x)

uπ
+

(x) = S π
+

(x) ≡ S π(x) ,

where the symbols with a superscript π implicitly refer to the PDFs for the π+. As-
suming isospin symmetry, e.g. the down-quark PDF in the π−(du) will be identical
to the up-quark PDF in the π+, the PDFs for the π− are

uπ
−
(x) = S π

−
(x) ≡ S π(x)

d
π−

(x) = S π
−
(x) ≡ S π(x)

dπ
−
(x) = dπ

−
V (x) + S π

−
(x) ≡ uπV (x) + S π(x)

uπ
−
(x) = uπ

−
V (x) + S π

−
(x) ≡ d

π

V (x) + S π(x) .

For low Q2 Drell-Yan production annihilation of sea quarks will dominate and
therefore

σ(π+C→ µ+µ−X)
σ(π−C→ µ+µ−X)

→ 1 as Q2 → 0 .

As Q2 → s, both x1 and x2 tend to unity and the annihilation of valance quarks will

dominate. Since d
π+

(x) = uπ
−
(x) and carbon contains an equal number of valance

up- and down-quarks

σ(π+C→ µ+µ−X)
σ(π−C→ µ+µ−X)

→ Q2
dd
π+

(1)dC(1)

Q2
uuπ

−
(1)uC(1)

→ 1
4

as = Q2 → s .



11 The Weak Interaction

11.1 Explain why the strong decay ρ0 → π−π+ is observed, but the strong decay
ρ0 → π0π0 is not.

Hint: you will need to consider conservation of angular momentum, parity and the sym-
metry of the π0π0 wavefunction.

The spins and parities of the particles involved are:

π− , π0 , π+ : JP = 0−

ρ0 : JP = 1− .

Conservation of angular momentum implies that the two pions in the final state
must be produced with one unit of orbital angular momentum, ` = 1. Conservation
of parity in this strong decay requires that

P0
ρ = Pπ · Pπ · (−1)`

(−1) = (−1) · (−1) · (−1) = −1 X

and therefore angular momentum and parity are conserved in the decay, explaining
why ρ0 → π−π+ is observed. In the decay ρ0 → π0π0, the final state consists of
two identical boson that must be produced in an overall symmetric wavefunction,
which is not the case, since the orbital angular momentum ` = 1 stare is anti-
symmetric under the interchange of the two π0s.

11.2 When π− mesons are stopped in a deuterium target they can form a bound
(π− − D) state with zero orbital angular momentum, ` = 0. The bound state decays by
the strong interaction

π−D→ nn .

By considering the possible spin and orbital angular momentum states of the nn sys-
tem, and the required symmetry of the wavefunction, show that the pion has negative
intrinsic parity.

Note: the deuteron has JP = 1+ and the pion is a spin-0 particle.

This is an example of how the parity of particles can be inferred from their decays.
Writing the spin (total angular momentum) and parity of the pion as JP

π = 0Pπ and
the total orbital angular momentum in the final state as L, conservation of parity in

96
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the strong interaction implies that parity of the initial state is equal to the parity of
the final state:

Pπ · PD · (−1)`i = Pn · Pn · (−1)L

Pπ · (+1) · (+1) = P2
n(−1)L

Pπ = (−1)L .

Conservation of angular momentum implies that

JD + Jπ + ` = L + Snn

1 = L + Snn (11.1)

where Snn = 0 or 1, is the total spin of the neutron-neutron system. Since the final
state consists of identical fermions the overall wavefunction of the neutron-neutron
system must be anti-symmetric:

ψspace × ψspin : anti-symmetric .

If the neutrons are produced in the anti-symmetric spin-0 final state, this implies
that L must be even, i.e. L = 0, 2, 4, .., however in this case, it is impossible to sat-
isfy (11.1). Consequently in can be inferred that S nn = 1. In this case, the spin part
of the wavefunction is symmetric and thus the spatial part must be anti-symmetric:
L is odd. If L = 1, then the condition for conservation of angular momentum (11.1)
becomes:

1 = 1 + 1 .

Remembering that total angular momentum sums as a vector and therefore 1 +

1 = 0, 1 or 2, and therefore it is possible to satisfy both the overall symmetry
requirement on the nn system and conservation of angular momentum with (and
ono;y with) L = 1. Thus the intrinsic parity of the pion is negative since Pπ =

(−1)L.

11.3 Classify the following quantities as either scalars (S), pseudoscalars (P), vectors
(V) or axial-vectors (A):

a) mechanical power, P = F · v ;
b) force, F ;
c) torque, G = r × F ;
d) vorticity, Ω = ∇ × v ;
e) magnetic flux, φ =

∫
B · dS ;

f) divergence of the electric field strength, ∇ · E .

Classify the following quantities as either scalars (S), pseudoscalars (P), vectors
(V) or axial-vectors (A):

a) P = F · v : scalar - scalar product of two vectors ;
b) F : vector;
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c) G = r × F: axial-vector - cross product of two vectors ;
d) Ω = ∇ × v : axial-vector - cross product of two vectors (even if one is a

vector operator) ;
e) magnetic flux, φ =

∫
B · dS : pseudo-scalar - scalar product an axial vector

(B) with a vector ;
f) divergence of the electric field strength, ∇ · E : scalar - scalar product of

two vectors .

11.4 In the annihilation process e+e− → qq, the QED vector interaction leads to non-
zero matrix elements only for the chiral combinations LR → LR, LR → RL, RL → RL,
RL→ LR. What are the corresponding allowed chiral combinations for S , P and S − P
interactions.

First consider a scalar interaction at the e+e− vertex for the LR chiral combination
vLuR:

vLuR = v†Lγ
0uR

= (PRvL)†γ0PRuR ,

where the appropriate chiral project operators have been inserted (remembering
that for antiparticles, vL = PRv). Hence

vLuR = v†LP†Rγ
0PRuR

= v†L
1
2 (1 + γ5)†γ0 1

2 (1 + γ5)uR

= 1
4v
†
L(1 + γ5)γ0(1 + γ5)uR (using γ5 = γ5†)

= 1
4v
†
Lγ

0(1 − γ5)(1 + γ5)uR (using γ5γ0 = γ0γ5)

= 0 (since (γ5)2 = 1)

In the same way it is straightforward to show that the RL combination yields zero,
but the LL and RR are non-zero. Hence for a scalar interaction, the chiral combina-
tions that contribute to the annihilation process are LL→ LL, LL→ RR, RR→ LL
and RR→ RR.

For a pseudoscalar interaction of the form vLγ
5uR:

vLγ
5uR = v†LP†Rγ

0γ5PRuR

= v†L
1
2 (1 + γ5)†γ0γ5 1

2 (1 + γ5)uR

= 1
4v
†
L(1 + γ5)γ0γ5(1 + γ5)uR (using γ5 = γ5†)

= 1
4v
†
Lγ

0(1 − γ5)γ5(1 + γ5)uR (using γ5γ0 = γ0γ5)

= 1
4v
†
Lγ

0γ5(1 − γ5)(1 + γ5)uR

= 0 , (since (γ5)2 = 1)
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and thus for a pseudoscalar interaction, the chiral combinations that contribute to
the annihilation process are LL→ LL, LL→ RR, RR→ LL and RR→ RR.

For an S − P interaction, the e+e− vertex has a factor v(1 − γ5)u, and the 1 − γ5

factor projects out LH chiral particle states and therefore the only chiral combina-
tion in the initial state is LL. The qq vertex factor is u(1 − γ5)v. Here the 1 − γ5

factor projects out RH chiral antiparticle states. Hence, for an S − P interaction the
annihilation process, the only non-zero contribution to the amplitude comes from
RR→ LL.

11.5 Consider the decay at rest τ− → π−ντ, where the spin of the tau is in the
positive z-direction and the ντ and π− travel in the ± z-directions. Sketch the allowed
spin configurations assuming that the form of the weak charged-current interaction is
i) V − A and ii) V + A.

i) Here the V − A for of the interaction projects out LH particle states and RH
antiparticle states. Hence in the decay τ− → π−ντ, the neutrino is produced in a LH
chiral state. Since the neutrino is almost massless, it is highly relativistic and the
chiral and helicity states are the same. Hence the neutrino must be produced in a
LH helicity state and the allowed spin combination is:

⌧�

⇡�⌫⌧

ii) Here the V + A for of the interaction projects out RH particle states and LH
antiparticle states. Hence in the decay τ− → π−ντ, the neutrino would now be
produced in a RH chiral state:

⌧�

⇡� ⌫⌧

11.6 Repeat the pion decay calculation for a pure scalar interaction and show that
the predicted ratio of decay rates is

Γ(π− → e−νe)
Γ(π− → µ−νµ)

≈ 5.5 .

Consider the π− → `−ν` decay in its rest frame, where the direction of the charged
lepton defines the z-axis, as shown below. In this case, the four-momenta of the π−,
`− and ν` are respectively,

pπ = (mπ, 0, 0, 0) , p` = p3 = (E`, 0, 0, p) and pν = p4 = (p, 0, 0,−p) ,
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where p is the magnitude of the momentum of both the charged lepton and an-
tineutrino in the centre-of-mass frame. Here it is assumed that the interaction is
mediated by a massive scalar particle X.

pπ

p4

q
X

p3

π−

`−

ν`

fπ π−
z

The scalar quantity associated with the `−ν` vertex, with coupling gZ , is

j` = gXu(p3)v(p4) .

Because the pion is a bound qq state, the corresponding hadronic ”current” cannot
be expressed in terms of free particle Dirac spinors. For the overall amplitude to be
a Lorentz invariant quantity (i.e. a scalar), the hadronic vertex has to be described
by a scalar quantity (just as was the case of the leptonic vertex). The only scalar
quantity available is the mass of the pion, hence, the most general expression for
the pion current is obtained by replacing vu with fπmπ, where fπ is a constant
associated with the decay. The matrix element for the decay π− → `−ν` therefore
can be written as

M f i =
[
gX fπmπ

] ×  1
m2

X

 × [
gXu(p3)v(p4)

]
= GX fπmπu(p3)v(p4) ,

where the propagator has been approximated by a Fermi-like contact interaction
(assuming q2 = m2

π � m2
X) and GX is analogous to the Fermi constant.

In the Standard Model, there are only LH neutrinos and RH antineutrinos, and we
will assume this is the case here (this assumption doesn’t affect the final result).
Thus, the antineutrino is produced in a RH chiral (and helicity) state. To conserve
angular momentum, the lepton must also be right-handed. Thus

M f i = GX fπmπu†↑(p3)γ0v↑(p4) ,

with

u↑(p3) =
√

E` + m`


1
0
p

E`+m`

0

 and v↑(p4) =
√

p


1
0
−1
0

 .
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Hence

M f i = GX fπmπu†↑(p3)γ0v↑(p4)

= GX fπmπ

√
E` + m`

√
p
(
1 +

p
E` + m`

)
M2

f i = G2
X f 2
πm2

π(E` + m`)p
(
1 +

p
E` + m`

)2

.

The above expression can be can be simplified using the expressions for E` and p
given in (11.19) of the main text, such that

M2
f i = G2

X f 2
πm2

π(E` + m`)p
(
1 +

p
E` + m`

)2

= G2
X f 2
πm2

πp
(
mπ + m`

2mπ

)2 4m2
π

(mπ + m`)2

= G2
X f 2
πm2

πp .

Since the pion is a spin-0 particle, there is no need to average over the initial-state
spins and matrix element squared is given by

〈|M f i|2〉 ≡ |M f i|2 = G2
X f 2
πm2

πp .

Finally, the decay rate can be determined from the expression for the two-body
decay rate given by (3.49), where the integral over solid angle introduces a factor
of 4π as there is no angular dependence in 〈|M f i|2〉. Hence

Γ =
4π

32π2m2
π

p 〈|M f i|2〉 =
G2

X f 2
π

8π
p2 .

Therefore, to lowest order, the predicted ratio of the π− → e−νe to π− → µ−νµ
decay rates is

Γ(π− → e−νe)
Γ(π− → µ−νµ)

=
p2

e

p2
µ

=

 (m2
π − m2

e)
(m2

π − m2
µ)

2

= 5.49 .

11.7 Predict the ratio of the K− → e−νe and K− → µ−νµ weak interaction decay rates
and compare your answer to the measured value of

Γ(K− → e−νe)
Γ(K− → µ−νµ)

= (2.488 ± 0.012) × 10−5 .

From the result derived in the text for pion decay, the predicted ratio of the two
leptonic decays of the charged kaon is

Γ(K− → e−νe)
Γ(K− → µ−νµ)

=

me(m2
K − m2

e)

mµ(m2
K − m2

µ)

2

= 2.55 × 10−5 ,
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which is in reasonable agreement with the observed ratio; given the calculation
is only to lowest-order, perfect agreement is not expected. Note that the decay to
electrons is even more suppressed relative to π− → e−νe. This is because the final-
state electron is more relativistic and, therefore, the helicity states correspond more
closely to pure chiral states.

11.8 Charged kaons have several weak interaction decay modes, the largest of which
are

K+(us)→ µ+νµ , K+ → π+π0 and K+ → π+π+π− .

a) Draw the Feynman diagrams for these three weak decays.

b) Using the measured branching ratio

Br(K+ → µ+νµ) = 63.55 ± 0.11 % ,

estimate the lifetime of the charged kaon.

Note: charged pions decay almost 100 % of the time by the weak interaction π+ → µ+νµ
and have a lifetime of (2.6033 ± 0.0005) × 10−8 s.

a) The lowest-order quark-level Feynman diagrams are:

u

s

W
K+

νµ

µ+

W
K+

u

d

π0

π+

u

s

u

u

WK+

π+

π+

π−

u
d

u
d

d
u

s

u

In the final diagram the dd pair are produced from a gluon in the hadronisation
process.

b) From the derivation in the main text

1/τπ− = Γ+
π = Γ(π+ → µ+νµ) =

G2
F

8πm3
π

f 2
π

[
m`(m2

π − m2
` )
]2
,

and the total K+ decay width is related to the partial decay width Γ(K+ → µ−νµ)
by

BR(K+ → µ+νµ) =
Γ(K+ → µ+νµ)

ΓK+
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Hence
τK+

τπ+

=
Γπ+

ΓK+

=
Γ(π+ → µ+νµ)
Γ(K+ → µ+νµ)

× BR(K+ → µ+νµ)

=
m3

K

m3
π

f 2
π

[
(m2

π − m2
µ)

]2

f 2
K

[
(m2

K − m2
µ)

]2 .

Making the brave assumption that fK ≈ fπ (both are pseudo scalar mesons) and
putting in the numbers

τK+ ≈ 0.05τπ+

= 1.3 × 10−9 s

This is a factor 10 shorter than the measured value of τK+ = 1.2×10−8 s because the
K+ decay rate is suppressed by a factor of tan2 θC = 0.053 (see Chapter 14) relative
to the π+ decay rate; in charged kaon decay the weak decay vertex is s → u,
whereas for pion decay it is d→ u.

11.9 From the prediction of (11.25) and the above measured value of the charged
pion lifetime, obtain a value for fπ.

From the derivation in the main text

Γ(π+ → µ+νµ) =
G2

F

8πm3
π

f 2
π

[
mµ(m2

π − m2
µ)

]2
.

Assuming the π+ decays almost entirely by π+ → µ+νµ, the decay rate is given by:

Γ(π+ → µ+νµ) ≈ Γπ+ =
~

τπ+

= 2.54 × 10−17 GeV .

Putting in the numerical values,

fπ ≈ 0.135 GeV .

It should be noted that fπ ∼ mπ.

11.10 Calculate the partial decay width for the decay τ− → π−ντ in the following
steps:
a) Draw the Feynman diagram and show that the corresponding matrix element is

M ≈
√

2GF fπu(pν)γ µ 1
2 (1 − γ5)u(pτ)gµνpνπ .

b) Taking the τ− spin to be in the z-direction and the four-momentum of the neutrino to
be

pν = p∗(1, sin θ, 0, cos θ) ,
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show that the leptonic current is

j µ =
√

2mτp∗ (−s,−c,−ic, s) ,

where s = sin
(
θ
2

)
and c = cos

(
θ
2

)
. Note that for this configuration, the spinor for the τ−

can be taken to be u1 for a particle at rest.

c) Write down the four-momentum of the π− and show that

|M|2 = 4G2
F f 2
πm3

τp
∗ sin2

(
θ
2

)
.

d) Hence show that

Γ(τ− → π−ντ) =
G2

F f 2
π

16π
m3
τ

(
m2
τ − m2

π

m2
τ

)2

.

e) Using the value of fπ obtained in the previous problem, find a numerical value for
Γ(τ− → π−ντ) .

f) Given that the lifetime of the τ-lepton is measured to be ττ = 2.906 × 10−13 s, find an
approximate value for the τ− → π−ντ branching ratio.

a) The Feynman diagram for the τ− → π−ντ decay is Following the arguments for

pτ

W

q

pν

W

qτ−

ντ

u

π−

d

π decay, the interaction at the pion weak vertex is described by fπpνπ and therefore
the matrix element for τ− → π−ντ can be written as

M = −
[
gW√

2
u(pν) 1

2γ
µ(1 − γ5)u(pτ)

]
×

 g µν

q2 − m2
W

 × [
gW√

2
1
2 fπpνπ

]
.

Making the good approximation that q2 � m2
W this becomes

M =
g2

W
4m2

W
fπu(pν) 1

2γ
µ(1 − γ5)u(pτ) g µν pνπ

=
√

2GF fπ u(pν) 1
2γ

µ(1 − γ5)u(pτ) g µν .pνπ

b) For the tau-lepton, with spin in the +z-direction, the appropriate spinor is u1 for
a particle at rest and the factor 1

2 (1 − γ5) projects out the left-handed chiral state
of the neutrino, which is equivalent to the left-handed helicity state. Hence, the
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leptonic current associated with the above matrix element is

j µ = u(pν) 1
2γ

µ(1 − γ5)u(pτ)

= u†↓(pν)γ0γ µu1(pτ)

=
√

p∗ (−s, c, s,−c) γ0γ µ
√

2mτ


1
0
0
0


Using the explicit forms for the γ-matrices, it is straightforward to show

j µ =
√

2p∗mτ (−s,−c,−ic, s) ,

where s = sin (θ/2) and c = cos (θ/2).

c) The four-momentum of the pion is

pνπ = (Eπ,−p∗ sin θ, 0,−p∗ cos θ) ,

and

M =
√

2GF
√

2mτp∗ fπ × ( j · p)

= 2GF
√

mτp∗ fπ
(
−Eπ sin θ

2 − p∗ sin θ cos θ
2 + p∗ cos θ sin θ

2

)
= 2GF

√
mτp∗ fπ

(
−Eπ sin θ

2 − p∗ sin θ
2

)
= 2GF

√
mτp∗ fπmτ sin θ

2 ,

where the last step follows from conservation of energy mτ = Eπ + Eν = Eπ + p∗,
which gives the desired result:

|M|2 = 4G2
F f 2
πm3

τp
∗ sin2 θ

2 .

d) The general expression for the decay rate for a→ 1 + 2 is

Γ =
p∗

32π2m2
a

∫
|M|2 dΩ .

Note there is no need to average over the initial spin states, it is perfectly reasonable
to consider the decay rate from a particular spin configuration. Here The general
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expression for the decay rate for a→ 1 + 2 is

Γ =
p∗

32π2m2
τ

× 4G2
F f 2
πm3

τp
∗ ×

∫ +1

−1

∫ 2π

φ=0
sin2 θ

2 d(cos θ) dφ

=
p∗2G2

F f 2
πmτ

8π2 × 2π
∫ +1

−1

1
2 (1 − cos θ) d(cos θ)

=
p∗2G2

F f 2
πmτ

8π
×

∫ +1

−1
(1 − x) dx

=
p∗2G2

F f 2
πmτ

4π
.

It is straightforward to show that

p∗ =
m2
τ − m2

π

2mτ
,

and therefore

Γ(τ− → π−ντ) =
G2

F f 2
π

16π
mτ

(
m2
τ − m2

π

mτ

)2

=
G2

F f 2
π

16π
m3
τ

(
m2
τ − m2

π

m2
τ

)2

.

e) Taking fπ = mπ the expression for Γ(τ− → π−ντ) gives:

Γ(τ− → π−ντ) = 2.93 × 10−13 GeV .

f) From the observed value of ττ = 2.906 × 10−13, the total decay width of the tau
lepton is:

Γτ =
~

ττ
= 2.28 × 10−12 GeV .

Using this and the calculated value of Γ(τ− → π−ντ) = 2.93 × 10−13 GeV,

BR(τ− → π−ντ) =
Γ(τ− → π−ντ)

Γτ
= 11.9 % ,

which is in fair agreement with the measured value of 10.83 ± 0.06 %.



12 The Weak Interactions of Leptons

12.1 Explain why the tau lepton branching ratios are observed to be approximately

Br(τ− → e−ντνe) : Br(τ− → e−ντνµ) : Br(τ− → ντ + hadrons) ≈ 1 : 1 : 3 .

The Feynman diagrams for the main decay modes are shown below: In the case

τ−

ντ

νe

e−
τ−

ντ

νµ

µ−
τ−

ντ

u

d

of the hadronic decays the du system can form a π− with JP = 0−, a ρ− with
JP = 1−, or system of light mesons produced through an intermediate mesonic state
or through the hadronisation of the du system. Assuming a universal strength for
the weak interaction vertex (i.e. putting aside the discussion of the CKM matrix for
now), the amplitudes for the three decays shown would be expected to be roughly
equal. Thus, remembering that the diagram with quarks is repeated for the three
separate colour combinations rr, bb and gg one would expect

Br(τ− → e−ντνe) : Br(τ− → e−ντνµ) : Br(τ− → ντ + hadrons) ≈ 1 : 1 : 3 .

In reality, the branching ratios are:

Br(τ− → e−ντνe) : Br(τ− → e−ντνµ) : Br(τ− → ντ + hadrons)

≈ 17.83 % : 17.41 % : 62.65 % ,

with the additional 2 % being due to τ− → e−ντνeγ and τ− → µ−ντνµγ. The BR to
muons is slightly lower than that to electrons, due to mass of the muon reducing
the available phase space. Furthermore, the branching ratio to hadrons is slightly
higher than the naive prediction do to enhancements from QCD corrections (for
example the diagram with an additional gluon in the final state).

12.2 Assuming that the process νee− → e−νe only occurs by the weak charged-
current interaction (i.e. ignoring the Z-exchange neutral-current process), show that

σνee−
CC ≈

2meEνG2
F

π
,

107
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where Eν is neutrino energy in the laboratory frame in which the struck e− is at rest.
The Feynman diagram for the CC νee− → e−νe process is shown below. Ne-

p2

p1 p3

p4

Wq

e−

νe

νe

e−

µ

ν

glecting the q2 dependence of the propagator, the corresponding matrix element
is

−iM f i =

[
−i
gW√

2
u(p3)γ µ 1

2 (1 − γ5)u(p1)
]

igµν
m2

W

[
−i
gW√

2
u(p4)γν 1

2 (1 − γ5)u(p2)
]

M f i =
g2

W

2m2
W

gµν
[
u(p3)γ µ 1

2 (1 − γ5)u(p1)
] [

u(p4)γν 1
2 (1 − γ5)u(p2)

]
=

g2
W

2m2
W

gµν
[
u↓(p3)γ µu↓(p1)

] [
u↓(p4)γνu↓(p2)

]
,

with the spinors,

u↓(p1) =
√

E


0
1
0
−1

 , u↓(p2) =
√

E


−1
0
1
0

 , u↓(p3) =
√

E


−s
c
s
−c

 u↓(p4) =
√

E


−c
−s
c
s

 ,
where c = cos θ∗

2 and s = sin θ∗
2 . If this were the only Feynman diagram contribut-

ing to the process νee− → νee−, the following the derivation of Chapter 12.2.1, one
would obtain

σCC(νee− → νee−) =
G2

Fs
π

.

It should be noted that this neglects the NC Z-exchange diagram and that M →
MCC +MNC , which has the effect to reduce the νee− → νee− cross section through
negative interference. Carrying on regardless, the centre-of-mass energy is

s = (p1 + p2)2 = (Eν + me)2 − E2
ν = 2meEν + m2

e ≈ 2meEν ,

and therefore

σCC(νee− → νee−) =
2meEνG2

F

π
.

12.3 Using the above result, estimate the probability that a 10 MeV Solar νe will
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undergo a charged-current weak interaction with an electron in the Earth if it travels
along a trajectory passing through the centre of the Earth.
Take the Earth to be a sphere of radius 6400 km and uniform density ρ = 5520 kg m−3.

From the previous question the ”CC cross section” for a 10 MeV electron neutrino
is given by

σCC(νee− → νee−) =
2meEνG2

F

π
= 1.3 × 10−48 cm2 .

A neutrino traversing the Earth passes through 12800 km of rock. Consider a cylin-
der of this length and area 1 cm2. The number of nucleons contained in this cylinder
will be:

nN =
ρV
mN

=
5520 · 1 × 10−4 · 12.8 × 106

6.67 × 10−27 ' 1.1 × 1033 .

Assuming half the nucleons are protons (for which there will be an equal number
of electrons), the number of electrons is therefore

ne ' 5 × 1032 cm−2 .

Hence the probability of an interaction is

P = σCC(νee− → νee−)[cm2] × ne[cm−2] < 10−15 .

12.4 By equating the powers of y in (12.34) with those in the parton model prediction
of (12.20), show that the structure functions can be expressed as

Fνp
2 = 2xFνp

1 = 2x
[
d(x) + u(x)

]
and xFνp

3 = 2x
[
d(x) − u(x)

]
.

Equating (12.34) and (12.20) gives

G2
F

π
sx

[
d(x) + (1 − y)2u(x)

]
=

G2
F

2π
s
[
(1 − y)Fνp

2 + xy2Fνp
1 + xy

(
1 − y

2

)
Fνp

3

]
2xd(x) + 2x(1 − y)2u(x) = (1 − y)Fνp

2 + xy2Fνp
1 + xy

(
1 − y

2

)
Fνp

3

2x(d(x) + u(x)) − 4xyu(x) + 2xy2u(x) = Fνp
2 + y(xFνp

3 − Fνp
2 ) + y2(xFνp

1 )

Equating powers of y0 gives:

Fνp
2 = 2x(d(x) + u(x)) .

Equating powers of y1 gives:

4xu(x) = Fνp
2 − xFνp

3

= 2x(d(x) + u(x)) − xFνp
3

⇒ Fνp
3 = 2(d(x) − u(x)) .
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Finally, equating powers of y2 gives:

Fνp
1 = 1

2 Fνp
3 + 2u(x)

= d(x) − u(x) + 2u(x)

= d(x) + u(x) ,

and therefore

Fνp
2 = 2xFνp

1 = 2x
[
d(x) + u(x)

]
and xFνp

3 = 2x
[
d(x) − u(x)

]
.

12.5 In the quark-parton model, show that FeN
2 = 1

2 (Q2
u + Q2

d)FνN
2 .

Hence show that the measured value of

FeN
2 /FνN

2 = 0.29 ± 0.02 ,

is consistent with the up and down quarks having respective charges of +2/3 and −1/3.

From the previous question,

Fνp
2 = 2x

[
d(x) + u(x)

]
.

Similarly, assuming isospin symmetry (and remembering that PDFs without super-
scripts refer to the proton):

Fνn
2 = 2x

[
dn(x) + un(x)

]
= 2x

[
u(x) + d(x)

]
.

Hence

FνN
2 = 1

2 (Fνp
2 + Fνn

2 ) = x
[
u(x) + d(x) + u(x) + d(x)

]
.

From the discussion of deep inelastic electron-nucleon scattering in Chapter 8, the
corresponding expressions for F2, given by (8.27) and (8.28), are

Fep
2 (x) = x

(
Q2

uu(x) + Q2
dd(x) + Q2

uu(x) + Q2
dd(x)

)
,

Fen
2 (x) = x

(
Q2

ud(x) + Q2
du(x) + Q2

ud(x) + Q2
du(x)

)
,

and thus

FeN
2 = 1

2

[
Fep

2 (x) + Fen
2 (x)

]
= 1

2 (Q2
u + Q2

d)x
[
u(x) + d(x) + u(x) + d(x)

]
= 1

2 (Q2
u + Q2

d)FνN
2

For Qu = +2/3 and Qd = −1/3 the parton model predicts:

FeN
2 /FνN

2 = 1
2 (Q2

u + Q2
d) = 5

18 = 0.278,

consistent with the measured value of 0.29 ± 0.02.
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12.6 Including the contributions from strange quarks, the neutrino-nucleon scattering
structure functions can be expressed as

Fνp
2 = 2x[d(x) + s(x) + u(x)] and Fνn

2 = 2x[u(x) + d(x) + s(x)] ,

where s(x) and s(x) are respectively the strange and anti-strange quark PDFs of the
nucleon. Assuming s(x) = s(x), obtain an expression for xs(x) in terms of the structure
functions for neutrino-nucleon and electron-nucleon scattering

FνN
2 = 1

2

(
Fνp

2 (x) + Fνn
2 (x)

)
and FeN

2 = 1
2

(
Fep

2 (x) + Fen
2 (x)

)
.

Including the strange quark contribution

FνN
2 = 1

2

(
Fνp

2 (x) + Fνn
2 (x)

)
= x

[
u(x) + d(x) + u(x) + d(x)

]
+ x

[
s(x) + s(x)

]
. (12.1)

Including the strange quark contribution (which is assumed to be the same for the
proton and neutron)

Fep
2 (x) = x

(
Q2

uu(x) + Q2
dd(x) + Q2

s s(x) + Q2
uu(x) + Q2

dd(x) + Q2
s s(x)

)
,

Fen
2 (x) = x

(
Q2

ud(x) + Q2
du(x) + Q2

s s(x)Q2
ud(x) + Q2

du(x) + Q2
s s(x)

)
,

and therefore

FeN
2 = 1

2

(
Fep

2 (x) + Fen
2 (x)

)
= 1

2 x(Q2
u + Q2

d)
[
u(x) + d(x) + u(x) + d(x)

]
+ xQ2

s (s(x) + s(x))

= 5
18 x

[
u(x) + d(x) + u(x) + d(x)

]
+ 1

9 x(s(x) + s(x)) .

Combining with the corresponding result for FνN
2 given in (12.1), leads to

5
18 FνN

2 − FeN
2 =

[
5
18 − 1

9

]
x(s(x) + s(x))

= 3
18 x(s(x) + s(x)) .

Assuming s(x) = s(x),
5
18 FνN

2 − FeN
2 = 6

18 xs(x)

⇒ xs(x) = 5
6 FνN

2 − 3FeN
2 .

12.7 The H1 and ZEUS experiments at HERA measured the cross sections for the
charged-current processes e−p→ νeX and e+p→ νeX for different degrees of electron
longitudinal polarisation. For example, the ZEUS measurements of the total e+p→ νeX
cross section at

√
s = 318 GeV and Q2 > 200 GeV2 for positron polarisations of Pe =

-36 %, 0 % and +33 % are:

σ(−0.36) = 22.9 ± 1.1 pb , σ(0) = 34.8 ± 1.34 pb and σ(+0.33) = 48.0 ± 1.8 pb ,

see Abramowicz et al. (2010) and references therein. Plot these data and predict the
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corresponding cross section for Pe = −1.0, i.e. when the positrons are all left-handed.
What does this tell you about the nature of the weak charged-current interaction?

The data are plotted in the figure below, along with a linear fit (χ2-minimization).
The linear fit has χ2 = 0.48 for one degree of freedom, and therefore the data are
consistent with the hypothesis that he cross section depends linearly on the degree
of positron polarisation. The fit results indicate that the cross section is expected
to be zero for P(e+) = −1 when the positrons are all left-handed. Consequently
the data support the hypothesis that the weak charged current only couples to RH
antiparticles and thus has the form V − A. Add the weak charged current been of
the form V + A a negative slope with intercept at P(e+) = +1 would have been
observed.

Positron polarisation
-1 0 1

/p
b

σ

0

20

40

60

80



13 Neutrinos and Neutrino Oscillations

13.1 By writing p1 = βE1 and p2 = βE2, and assuming β1 = β2 = β, show that
equation (13.13) reduces to (13.12), i.e.

∆φ12 = (E1 − E2)
[
T −

(
E1 + E2

p1 + p2

)
L
]

+

m2
1 − m2

2

p1 + p2

 L ≈ m2
1 − m2

2

2p
L ,

where p = p1 ≈ p2 and it is assumed that p1 � m1 and p2 � m2.

Assuming the mass eigenstates propagate with equal velocity, β1 = β2 = β, and
T = L/β, the expression for the phase difference of equation (13.13) can be written

∆φ12 = (E1 − E2)
[
T −

(
E1 + E2

p1 + p2

)
L
]

+

m2
1 − m2

2

p1 + p2

 L

= (E1 − E2)
[
L
β
−

(
E1 + E2

βE1 + βE2

)
L
]

+

m2
1 − m2

2

p1 + p2

 L

=

m2
1 − m2

2

p1 + p2

 L

≈ m2
1 − m2

2

2p
L .

13.2 Show that when L is given in km and ∆m2 is given in eV2, the two-flavour
oscillation probability expressed in natural units becomes

sin2(2θ) sin2
(
∆m2[GeV2]L[GeV−1]

4Eν[GeV]

)
→ sin2(2θ) sin2

(
1.27

∆m2[eV2]L[km]
Eν[GeV]

)
.

First note that

∆m2[GeV2] = 10−18∆m2[eV2] and L[m] = 103L[km] .

To convert from natural units L[GeV−1] to SI units L[m] the expression in brackets
needs to be multiplied by the factor

GeV
~c

,

113
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Hence

sin2(2θ) sin2
(
∆m2[GeV2]L[GeV−1]

4Eν[GeV]

)
→ sin2(2θ)×

sin2
(
103 · 10−18 · 1.6 × 10−10

1.06 × 10−34 · 3 × 108

∆m2[eV2]L[km]
4Eν[GeV]

)
→ sin2(2θ) × sin2

(
1.27

∆m2[eV2]L[km]
Eν[GeV]

)
.

13.3 From equation (13.24) and the unitarity relation of (13.18), show that

P(νe → νe) = 1 + 2|Ue1|2|Ue2|2 Re{[e−i(φ1−φ2) − 1]}
+ 2|Ue1|2|Ue3|2 Re{[e−i(φ1−φ3) − 1]}
+ 2|Ue2|2|Ue3|2 Re{[e−i(φ2−φ3) − 1]} .

The expression for P(νe → νe) can be obtained from equation (13.24) by making
the replacing in the sub-scripts µ→ e:

P(νe → νe) =|U∗e1Ue1|2 + |U∗e2Ue2|2 + |U∗e3Ue3|2 + 2Re{U∗e1Ue1Ue2U∗e2e−i(φ1−φ2)}
+ 2Re{U∗e1Ue1Ue3U∗e3e−i(φ1−φ3)} + 2Re{U∗e2Ue2Ue3U∗e3e−i(φ2−φ3)} .

Applying the identity

|z1 + z2 + z3|2 ≡ |z1|2 + |z2|2 + |z3|2 + 2Re{z1z∗2 + z1z∗3 + z2z∗3} ,
to the unitarity relation of (13.18),

Ue1U∗e1 + Ue2U∗e2 + Ue3U∗e3 = 1 ,

namely |Ue1U∗e1 + Ue2U∗e2 + Ue3U∗e3|2 = 12 implies that

|Ue1U∗e1|2 + |Ue2U∗e2|2 + |Ue3U∗e3|2 = 1 − 2Re{Ue1U∗e1U∗e2Ue2}
− 2Re{Ue1U∗e1U∗e3Ue3} − 2Re{Ue2U∗e2U∗e3Ue3} .

Substituting this into the above expression for P(νe → νe) gives

P(νe → νe) = 1 + 2Re{U∗e1Ue1Ue2U∗e2

[
e−i(φ1−φ2) − 1

]
} + ...

= 1 + 2|Ue1|2|Ue2|22Re{[e−i(φ1−φ2) − 1]} + ... ,

as required.

13.4 Derive equation (13.30) in the following three steps:
a) By writing the oscillation probability P(νe → νµ) as

P(νe → νµ) = 2
∑
i< j

Re
{
U∗eiUµiUe jU∗µ j

[
ei(φ j−φi) − 1

]}
,
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and writing ∆i j = (φi − φ j)/2, show that

P(νe → νµ) = −4
∑
i< j

Re{U∗eiUµiUe jU∗µ j} sin2 ∆i j + 2
∑
i< j

Im{U∗eiUµiUe jU∗µ j} sin 2∆i j .

b) Defining −J ≡ Im{U∗e1Uµ1Ue3U∗
µ3}, use the unitarity of the PMNS matrix to show that

Im{U∗e1Uµ1Ue3U∗µ3} = −Im{U∗e2Uµ2Ue3U∗µ3} = −Im{U∗e1Uµ1Ue2U∗µ2} = −J .

c) Hence, using the identity

sin A + sin B − sin(A + B) = 4 sin
(A

2

)
sin

(B
2

)
sin

(A + B
2

)
,

show that

P(νe → νµ) = −4
∑
i< j

Re{U∗eiUµiUe jU∗µ j} sin2 ∆i j + 8J sin ∆12 sin ∆13 sin ∆23 .

d) Hence show that

P(νe → νµ) − P(νe → νµ) = 16Im{U∗e1Uµ1Ue2U∗µ2} sin ∆12 sin ∆13 sin ∆23 .

e) Finally, using the current knowledge of the PMNS matrix determine the maximum
possible value of P(νe → νµ) − P(νe → νµ).

This is a fairly long and technical derivation, but the result is important as it predicts
the scale of CP violation for neutrinos propagating in the vacuum.
a) First expand the exponential into cosine and sine terms

P(νe → νµ) = 2
∑
i< j

Re
{
U∗eiUµiUe jU∗µ j

[
ei(φ j−φi) − 1

]}
= 2

∑
i< j

Re
{
U∗eiUµiUe jU∗µ j

[
cos(φ j − φi) − 1 + i sin(φ j − φi)

]}
= 2

∑
i< j

Re
{
U∗eiUµiUe jU∗µ j

[
cos(φ j − φi) − 1

]}
− 2

∑
i< j

Im
{
U∗eiUµiUe jU∗µ j

[
sin(φ j − φi)

]}
= −4

∑
i< j

Re

{
U∗eiUµiUe jU∗µ j

[
sin2 (φ j − φi)

2

]}
+ 2

∑
i< j

Im
{
U∗eiUµiUe jU∗µ j

[
sin(φi − φ j)

]}
= −4

∑
i< j

Re{U∗eiUµiUe jU∗µ j} sin2 ∆i j + 2
∑
i< j

Im{U∗eiUµiUe jU∗µ j} sin 2∆i j ,

(13.1)

as required.
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b) The relevant Unitarity relations are:

U∗e1Uµ1 + U∗e2Uµ2 + U∗e3Uµ3 = 0 ,

and Ue1U∗µ1 + Ue2U∗µ2 + Ue3U∗µ3 = 0 .

Using these relations

Im{U∗e1Uµ1Ue3U∗µ3} = Im{U∗e1Uµ1(−Ue1U∗µ1 − Ue2U∗µ2)} = −Im{U∗e1Uµ1Ue2U∗µ2}
Im{U∗e2Uµ2Ue3U∗µ3} = Im{(−U∗e1Uµ1 − U∗e3Uµ3)Ue3U∗µ3} = −Im{U∗e1Uµ1Ue3U∗µ3}
Defining −J ≡ Im{U∗e1Uµ1Ue3U∗

µ3}, these relations can be written as

Im{U∗e1Uµ1Ue3U∗µ3} = −Im{U∗e2Uµ2Ue3U∗µ3} = −Im{U∗e1Uµ1Ue2U∗µ2} = −J .

c) Using J defined above, the second term in (13.1) can be written:

P = 2
∑
i< j

Im{U∗eiUµiUe jU∗µ j} sin 2∆i j

= 2Im{U∗e1Uµ1U∗e2Uµ2} sin 2∆12 + 2Im{U∗e1Uµ1U∗e3Uµ3} sin 2∆13

+ 2Im{U∗e2Uµ2U∗e3Uµ3} sin 2∆23

= 2J(sin 2∆12 − sin 2∆13 + sin 2∆23) .

But ∆13 = ∆12 + ∆23, thus

P = 2J(sin 2∆12 + sin 2∆23 − sin 2(∆12 + ∆23)) ,

which has the form sin A + sin B − sin(A + B) with A = ∆12 and B = ∆23. Hence,
using the identity,

sin A + sin B − sin(A + B) = 4 sin
(A

2

)
sin

(B
2

)
sin

(A + B
2

)
,

this can be rewritten as

P = 8J sin ∆12 sin ∆13 sin ∆23 ,

and finally

P(νe → νµ) = −4
∑
i< j

Re{U∗eiUµiUe jU∗µ j} sin2 ∆i j + 8J sin ∆12 sin ∆13 sin ∆23 .

d) The corresponding expression for P(νe → νµ) is obtained by interchanging
Uαi ↔ U∗αi and therefore:

P(νe → νµ) = −4
∑
i< j

Re{UeiU∗µiU
∗
e jUµ j} sin2 ∆i j + 8J sin ∆12 sin ∆13 sin ∆23 ,
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where −J ≡ Im{U∗e1Uµ1Ue3U∗
µ3} and −J = Im{Ue1U∗

µ1U∗e3Uµ3}. Since Im{z} =

−Im{z∗}, J = −J. Similarly, since Re{z{= Re{z∗},
Re{UeiU∗µiU

∗
e jUµ j} = Re{U∗eiUµiUe jU∗µ j} .

Hence

P(νe → νµ) − P(νe → νµ) = 16J sin ∆12 sin ∆13 sin ∆23

= 16Im{U∗e1Uµ1Ue2U∗µ2} sin ∆12 sin ∆13 sin ∆23 .

e) Finally, J can be expressed in terms of the elements of the PMNS matrix using, Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 .
Since Ue1 and Ue2 are real

J = Ue1Ue2 Im{Uµ1U∗µ2}
= c12c2

13s12 Im
{[
−s12c23 − c12s23s13eiδ

] [
c12c23 − s12s23s13e−iδ

]}
= c12c2

13s12 [−s12c23s12s23s13 sin δ − c12c23c12s23s13 sin δ]

= −c12c2
13s12c23s23s13 sin δ

= − 1
8 cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 sin δ .

Hence the difference in the P(νe → νµ) − P(νe → νµ) oscillation probability is:

∆P = 2 cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 sin δ sin ∆12 sin ∆13 sin ∆23 .

Using θ12 ≈ 35◦, θ23 ≈ 45◦ and θ13 ≈ 10◦,

∆P = 0.63 sin δ sin ∆12 sin ∆13 sin ∆23 .

Since ∆13 ≈ ∆23, this can be approximated as

∆P = 0.63 sin δ sin ∆12 sin ∆23 .

The maximum difference occurs for | sin δ| = 1, in which case

∆P = 0.63 sin ∆12 sin ∆23 .

For a terrestrial experiment the issue is that the sin ∆12 term results in oscillations
over very large distances. Consider a beam neutrino experiment, similar to MINOS
with a peak beam energy of 3 GeV. The first oscillation maximum from the ∆23
term will occur at

∆23 =
π

2
⇒ L = 1500 km .
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But at this distance

∆12

∆23
=

∆m2
12

∆m2
32

≈ 0.033

⇒ ∆12 = 0.033
π

2
= 0.05

⇒ sin ∆12 ≈ 0.05 .

Consequently, at this baseline, P(νe → νµ) − P(νe → νµ) ≈ 0.03.

It should be noted that the above treatment uses the vacuum oscillation formula
and neglects ”matter effects”.

13.5 The general unitary transformation between mass and weak eigenstates for two
flavours can be written as(

νe
νµ

)
=

 cos θ exp (iδ1) sin θ exp
(
i
[
δ1+δ2

2 − δ
])

− sin θ exp
(
i
[
δ1+δ2

2 + δ
])

cos θ exp (iδ2)

 ( ν1

ν2

)
.

a) Show that the matrix in the above expression is indeed unitary.
b) Show that the three complex phases δ1, δ2 and δ can be eliminated from the above
expression by the transformation

`α → `αei(θe+θ
′
α) , νk → νkei(θe+θ

′
k) and Uαk → Uαkei(θ′α−θ′k) ,

without changing the physical form of the two-flavour weak charged current

−i
gW√

2
( e, µ) γ µ 1

2 (1 − γ5)
(

Ue1 Ue2

Uµ1 Uµ2

) (
ν1

ν2

)
.

a) A Unitary matrix satisfies UU† = 1. Here

U =

 cos θ exp (iδ1) sin θ exp
(
i
[
δ1+δ2

2 − δ
])

− sin θ exp
(
i
[
δ1+δ2

2 + δ
])

cos θ exp (iδ2)

 ,
⇒ U† =

 cos θ exp (−iδ1) − sin θ exp
(
−i

[
δ1+δ2

2 + δ
])

sin θ exp
(
−i

[
δ1+δ2

2 − δ
])

cos θ exp (−iδ2)

 ,
and thus

UU† =

 cos2 θ + sin2 θ (sin θ cos θ − sin θ cos θ)e
iδ1
2 e

iδ2
2 e−iδ

(sin θ cos θ − sin θ cos θ)e
iδ1
2 e
−iδ2

2 eiδ cos2 θ + sin2 θ

 ,
= 1 .

Therefore U, which depends on four independent real parameters, is one possible
representation of a general 2 × 2 unitary matrix.
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b) Under the above redefinition of the phases of the fermion fields:

U →
 cos θei(δ1+θ′e−θ′1) sin θe

i
(
δ1+δ2

2 −δ+θ′e−θ′2
)

− sin θe
i
(
δ1+δ2

2 +δ+θ′µ−θ′1
)

cos θei
(
δ2+θ′µ−θ′2

)
 .

All complex phases can be eliminated if the following four conditions are satisfied

θ′1 − θ′e = δ1 and θ′2 − θ′e =
δ1 + δ2

2
− δ , (13.2)

θ′1 − θ′µ =
δ1 + δ2

2
+ δ and θ′2 − θ′µ = δ2 . (13.3)

Choosing θ′e = 0, which is equivalent to writing all the phases relative to the phase
of the electron, then the two equations of (13.2) become

θ′1 = δ1 and θ′2 =
δ1 + δ2

2
− δ .

The two equations of (13.3) then give a consistent solution for θ′µ:

θ′µ = θ′1 −
δ1 + δ2

2
− δ = δ1 − δ1 + δ2

2
− δ =

δ1 − δ2

2
− δ

θ′µ = θ′2 − δ2 =
δ1 + δ2

2
− δ − δ2 =

δ1 − δ2

2
− δ .

Therefore, by redefining the phases of the fields using:

θ′e = φ ,

θ′µ = φ +
δ1 − δ2

2
− δ ,

θ′1 = φ + δ1 ,

θ′2 = φ +
δ1 + δ2

2
− δ ,

all complex phases can be removed from the 2 × 2 analogue of the PMNS matrix,
where the φ fixes the overall phase of (for example) the electron field. Therefore,
for two generations, all complex phases in the analogue of the PMNS matrix can
be absorbed into the definitions of the phases of the fields, without any physical
consequences: the weak interaction vertices νk

1
2γ

µ(1 − γ5)`α are identical and,
consequently, the two flavour phenomenology for neutrino oscillations is the same.

13.6 The derivations of (13.37) and (13.38) used the trigonometric relations

1 − 1
2 sin2(2θ13) = cos4(θ13) + sin4(θ13) ,

and

4 sin2 θ23 cos2 θ13(1 − sin2 θ23 cos2 θ13) = (sin2 2θ23 cos4 θ13 + sin2 2θ13 sin2 θ23) .

Convince yourself these relations hold.
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In both cases the double angle formula sin 2θ = 2 sin θ cos θ is used. The first iden-
tify follows from

1 − 1
2 sin2 2θ13 = 1 − 1

2 4 sin2 θ13 cos2 θ13

= cos2 θ13 + sin2 θ13 − 2 sin2 θ13 cos2 θ13

= cos2 θ13 − sin2 θ13 cos2 θ13 + sin2 θ13 − sin2 θ13 cos2 θ13

= cos2 θ13(1 − sin2 θ13) + sin2 θ13(1 − cos2 θ13)

= cos4 θ13 + sin4 θ13 .

For the second identify, it is easiest to start from

sin2 2θ23 cos4 θ13 + sin2 2θ13 sin2 θ23 = 4 sin2 θ23 cos2 θ23 cos4 θ13 + 4 sin2 θ13 cos2 θ13 sin2 θ23

= 4 sin2 θ23 cos2 θ13
[
cos2 θ23 cos2 θ13 + sin2 θ13

]
= 4 sin2 θ23 cos2 θ13

[
(1 − sin2 θ23) cos2 θ13 + sin2 θ13

]
= 4 sin2 θ23 cos2 θ13

[
1 − sin2 θ23 cos2 θ13

]
.

13.7 Use the data of Figure 13.20 to obtain estimates of sin2(2θ12) and |∆m2
21|.

In Figure 13.20 the distance L0 in L0/Eνe , is the average distance to many reactors
weighted by expected flux. The variety of actual distances, smears out the calcu-
lated form of the oscillation probability, with the smearing becoming more notable
at small values of E, or equivalently large values of L0/Eνe . The first oscillation
minimum occurs at L/E < 30 km but is not clearly resolved. The second oscilla-
tion minimum is clearly defined at

L0/Eνe ≈ 50 km MeV−1 = 50000 km GeV−1 .

In S.I. units, the survival probability is

P(νe → νe) = cos4 θ13

1 − sin2(2θ12) sin2

1.27
∆m2

21[eV2] L[km]
E[GeV]

 ,
and the second oscillation minimum occurs at

1.27
∆m2

21[eV2] L[km]
E[GeV]

=
3π
2

⇒ ∆m2
21[eV2] =

3π
2 · 1.27 · 50000

= 7.4 × 10−5 eV2 .

Determining the angle θ12 requires care. The amplitude of the oscillations (esti-
mated from the difference between the amplitudes of the first oscillation maximum



121 Neutrinos and Neutrino Oscillations

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

�P
(ν

e
→
ν

e)
�

L0/Eνe [km MeV−1]tFig. 13.1 KamLAND data showing the measured mean survival probability as a function of the mea-
sured neutrino energy divided by the flux-weighted mean distance to the reactors, L0. The
histogram shows the expected distribution for the oscillation parameters that best describe
the data.

and the well-resolved second oscillation minimum) is about 0.4. Without exper-
imental effects this would be equal to cos4 θ13 sin2 2θ12. However, the sharpness
of the oscillation structure is smeared out due to the reactors being at a variety of
distances from the experiment. The effect of this smearing can be estimated. Ac-
cording to the survival probability formula, the peak at L/E = π should correspond
to a survival probability of cos4 θ13 ' 0.95. The measured survival probability is
about 0.75, due to the smearing out of the peak due to the ranges of L to the dif-
ferent reactors. If the range of L values had been very large, then the peak would
have been smeared out to an average value of 0.95/2 = 0.475. Hence the effect of
the smearing has been to reduce the peak from the expected value of 0.95 (which
is 0.475 above the totally smeared case) to 0.75 (which is 0.275 above the totally
smeared case). The net effect of the smearing in L is to reduce the height of the
oscillation maximum by a factor 0.275/0.475 = 0.58, giving the naive estimate of

cos4 θ13 sin2 2θ12 ≈ 0.4
0.58

⇒ sin2 2θ12 ≈ 0.4
0.58 · 0.95

= 0.73 .

A more accurate estimate could be obtained with a more sophisticated treatment of
the data.

13.8 Use the data of Figure 13.22 to obtain estimates of sin2(2θ23) and |∆m2
32|.

The interpretation of the MINOS data is relatively straightforward as the distance
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from the source of the beam to the far detector is fixed, L = 735 km and the energy
of the neutrino is relatively well measured. From the figure, the first oscillation
minimum occurs at Eν ' 1.4 GeV (the second oscillation minimum at lower ener-
gies is not observed due to the nearly negligible flux).

1.27
∆m2

32[eV2] L[km]
E[GeV]

=
π

2

⇒ ∆m2
32[eV2] =

π

2
1.4

1.27 · 735
= 2.3 × 10−3 eV2 .

The measured the survival probability at the oscillation minimum is Pmeas. ≈ 0.1,
but it without additional knowledge of the experimental resolution, which will con-
tribute to the observed depth of the minimum, all that can be stated for certain is:

P(νµ → νµ) < 0.1 ⇒ sin2(2θ23) > 0.9 .

13.9 The T2K experiment uses an off-axis νµ beam produced from π+ → µ+νµ de-
cays. Consider the case where the pion has velocity β along the z-direction in the
laboratory frame and a neutrino with energy E∗ is produced at an angle θ∗ with respect
to the z′-axis in the π+ rest frame.
a) Show that the neutrino energy in the pion rest frame is p∗ = (m2

π − m2
µ)/2mπ .

b) Using a Lorentz transformation, show that the energy E and angle of production θ
of the neutrino in the laboratory frame are

E = γE∗(1 + β cos θ∗) and E cos θ = γE∗(cos θ∗ + β) ,
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where γ = Eπ/mπ.

c) Using the expressions for E∗ and θ∗ in terms of E and θ, show that

γ2(1 − β cos θ)(1 + β cos θ∗) = 1 .

d) In the limit θ � 1, show that

E ≈ 0.43Eπ
1

1 + βγ2θ2 ,

and therefore on-axis (θ = 0) the neutrino energy spectrum follows that of the pions.

e) Assuming that the pions have a flat energy spectrum in the range 1 − 5 GeV, sketch
the form of the resulting neutrino energy spectrum at the T2K far detector (Super-
Kamiokande), which is off-axis at θ = 2.5◦. Given that the Super-Kamiokande detector
is 295 km from the beam, explain why this angle was chosen.

a) From conservation of energy

Eµ = mπ − Eν = mπ − p∗

⇒ E2
µ = m2

µ + p∗ = m2
π − 2mπp∗ + (p∗)2

⇒ p∗ =
m2
π − m2

µ

2mπ
.

b) In the pion rest frame (Σ′) the four-momentum of the neutrino is:

p′ν = (E∗, 0, p∗ sin θ∗, p∗, cos θ∗) = E∗(1, 0, sin θ∗, cos θ∗) ,

where the neutrino mass has been neglected: E∗ ' p∗. The laboratory frame four-
momentum is

E
px

py
pz

 =


γ 0 0 +γβ

0 1 0 0
0 0 1 0

+γβ 0 0 γ

 E∗


1
0

sin θ∗

cos θ∗

 = E∗


γ + γβ cos θ∗

0
sin θ∗

γβ + γ cos θ∗

 .
Hence the laboratory from neutrino energy is

E = γE∗(1 + β cos θ∗) ,

where γ is determined by the boost of the pion, γ = Eπ/mπ. In the laboratory frame
(where for the almost massless neutrino p ' E), the polar angle with respect to the
z-axis is given by

cos θ =
pz

p
=

pz

E
=
γE∗(β + cos θ∗)

E
⇒ E cos θ = γE∗(β + γ cos θ∗) .
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c) By flipping the sign of β, the Lorentz transformation from the laboratory frame
to the pion rest frame gives

E∗ = γE(1 − β cos θ) and E∗ cos θ∗ = γE(cos θ − β) ,

where it should be remembered that γ = Eπ/mπ. Taken the product of this expres-
sion for E∗ and the expression for E in part b) for the question,

E∗E = γE(1 − β cos θ)γE∗(1 + β cos θ∗)

⇒ 1 = γ2(1 − β cos θ)(1 + β cos θ∗) .

d) The lab. frame energy of the neutrino produced from pions of laboratory frame
energy Eπ and a decay angle θ∗ in the pion rest frame is given in by the expression
in part a):

Eν = γE∗(1 + β cos θ∗)

=
Eπ
mπ

γE∗(1 + β cos θ∗)

=
Eπ
mπ

m2
π − m2

µ

2mπ
(1 + β cos θ∗)

= 1
2 Eπ

m2
π − m2

µ

m2
π

(1 + β cos θ∗) .

Using the result from part c) this can be expressed in terms of the laboratory frame
angle:

Eν = 1
2 Eπ

m2
π − m2

µ

m2
π

(1 + β cos θ∗)

= 1
2 Eπ

m2
π − m2

µ

m2
π

1
γ2(1 − β cos θ)

. (13.4)

In the small angle limit, the denominator can be approximated by

γ2(1 − β cos θ) ≈ γ2
[
1 − β

(
1 − θ

2

2

)]
= γ2(1 − β) +

γ2θ2β

2
. (13.5)

Assuming the Eν � mπ such that γ � 1,

β =

(
1 − 1

γ2

) 1
2 ≈ 1 − 1

2γ2 ,
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and hence (13.5) becomes

γ2(1 − β cos θ) ≈ γ2(1 − β) +
γ2θ2β

2

≈ 1
2 +

γ2θ2β

2
= 1

2 (1 + γ2θ2β) .

Inserting this expression in (13.4) leads to

Eν = Eπ
m2
π − m2

µ

m2
π

1
1 + βγ2θ2

= 0.43Eπ
1

1 + βγ2θ2 .

Hence, along the beam-axis (θ ≈ 0) the neutrino energy distribution follows that of
the pions creating the beam.

e) The neutrino energies for a set of pion beam energies are tabulated below for
θ = 0◦ and θ = 2.5◦: The effect of going away from the beam axis is to produce

Eπ Eν at θ = 0◦ Eν at θ = 2.5◦

1.0 GeV 0.43 GeV 0.39 GeV
1.5 GeV 0.65 GeV 0.53 GeV
2.0 GeV 0.86 GeV 0.62 GeV
2.5 GeV 1.08 GeV 0.67 GeV
3.0 GeV 1.29 GeV 0.68 GeV
3.5 GeV 1.50 GeV 0.68 GeV
4.0 GeV 1.72 GeV 0.67 GeV
4.5 GeV 1.93 GeV 0.65 GeV
5.0 GeV 2.15 GeV 0.62 GeV

a “narrow-band” beam, where most the neutrino energy depends only very weakly
on the energy of the decaying pion producing the neutrino. This is in contrast to
an on-axis “wide-band” beam where the neutrino energy is proportional to the the
decaying pion energy. The oscillation probability (corresponding to ∆m32) depends
on

P ∝ sin2

1.27
∆m2

32[eV2]L[km]
Eν[GeV]

 .
For ∆m32 = 2.3 × 10−3 eV2 and L = 295 km, the first oscillation maximum occurs
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at

1.27
∆m2

32[eV2]L[km]
Eν[GeV]

=
π

2

⇒ Eν =
2.54
π

∆m2
32[eV2]L[km] GeV

= 0.55 GeV .

Hence the off-axis angle was chosen such that the peak of narrow-band neutrino
beam energy is close to the first oscillation maximum.



14 CP Violation and Weak Hadronic
Interactions

14.1 Draw the lowest-order Feynman diagrams for the decays

K0 → π+π− , K0 → π0 π0 , K0 → π+π− and K0 → π0 π0 ,

and state how the corresponding matrix elements depend on the Cabibbo angle θc.

The two lowest-order Feynman diagrams for the K0 → π+π− and K0 → π0 π0

decays are:

K0

π+

π−

d

u

s u

d d

V∗us

Vud

K0
Vud

u

d

π0

π0

d

V∗us
s

u

d

In the two flavour approximation, the matrix element for both diagrams is propor-
tional to

M ∝ |Vus| |Vud| ≈ sin θC cos θC .

The two corresponding lowest-order Feynman diagrams for the K0 → π+π− and
K0 → π0 π0 decays are: Again, for both diagrams:

K0

π−

π+

d

u

s u

d d

Vus

V∗ud

K0
V∗ud

u

d

π0

π0

d

Vus
s

u

d

M ∝ |Vus| |Vud| ≈ sin θC cos θC .

14.2 Draw the lowest-order Feynman diagrams for the decays

B0 → D− π+ , B0 → π+ π− and B0 → J/ψK0 ,

and place them in order of decreasing decay rate.

127
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The flavour content of the above mesons is B0(db), D−(dc), J/ψ(cc) and K0(ds) .

The lowest-order Feynman diagrams for the given decays are:

B0

π+

D−

d

u

b c

d d

V∗cb

Vud

B0

π+

π−

d

u

b u

d d

V∗ub

Vud

B0
Vcs

c

s

J/ψ

K0

d

V∗cb
b

c

d

From consideration of the CKM elements alone the matrix elements scale as

M(B0 → D− π+) :M(B0 → π+ π−) : M(B0 → J/ψK0)

= |Vcb||Vud| : |Vub||Vud| : |Vcb||Vcs| .

To first order the CKM matrix elements depend on the number of generations
changed at the vertex. Thus the matrix elements for the decays B0 → D− π+ and
M(B0 → J/ψK0), which both have one vertex at which there is no change of gen-
eration and one vertex where there is one change of generation b → c, will be
larger than that forM(B0 → π+ π−), which has one vertex at which there are two
changes of generation b → u. Being more quantitative, from consideration of the
CKM matrix alone,

Br(B0 → D− π+) : Br(B0 → π+ π−) : Br(B0 → J/ψK0)

= |Vcb|2|Vud|2 : |Vub|2|Vud|2 : |Vcb|2|Vcs|2
= 1.6 × 10−3 : 1.5 × 10−5 : 1.6 × 10−3 .

From consideration of the CKM matrix alone, one would expect the Br(B0 →
π+ π−) to be about 100 times smaller than for the other two decays.

Brobs(B0 → D− π+) : Brobs(B0 → π+ π−) : Brobs(B0 → J/ψK0)

= 2.7 × 10−3 : 5.1 × 10−6 : 8.7 × 10−4 ,

in reasonable agreement with the dependence from CKM matrix elements alone. A
more sophisticated estimate of the BRs would account for the differences in phase
space for the decays, where

Γ ∝ p∗ ∝
{[

m2
B − (m1 + m2)2

] [
m2

B − (m1 − m2)2
]} 1

2 .

Taking account the different phase space factors and scaling to the observed BR for
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(B0 → D− π+:

Br(B0 → D− π+) : Br(B0 → π+ π−) : Br(B0 → J/ψK0)

= |Vcb|2|Vud|2 p∗ : |Vub|2|Vud|2 p∗ : |Vcb|2|Vcs|2 p∗

= 2.7 × 10−3 : 2.9 × 10−5 : 2.0 × 10−3 .

The remaining differences, compared to the observed values, can be attributed to
other differences in the matrix element, which includes factors accounting for the
formation of the final-state mesons.

14.3 Draw the lowest-order Feynman diagrams for the weak decays

D0(cu)→ K−(su) + π+(ud) and D0(cu)→ K+(us) + π−(du) ,

and explain the observation that

Γ(D0 → K+π−)
Γ(D0 → K−π+)

≈ 4 × 10−3 .

The lowest-order Feynman diagrams for the given decays are:

D0

π+

K−

u

d

c s

u u

V∗cs

Vud

D0

K+

π−

u

s

c d

u u

V∗cd

Vus

On the basis of the CKM matrix alone, one would expect

Γ(D0 → K+π−)
Γ(D0 → K−π+)

≈ |Vcd|2|Vus|2
|Vud|2|Vcs|2

=
0.2252 · 0.2252

0.9742 · 0.9732 = 3 × 10−3 ,

explaining most of the difference in the observed decay rates.

14.4 A hypothetical T0(tu) meson decays by the weak charged-current decay chain,

T0 → Wπ→ (Xπ)π → (Yπ)ππ→ (Zπ)πππ .

Suggest the most likely identification of the W, X, Y and Z mesons and state why this
decay chain would be preferred over the direct decay T0 → Z π.

In each case the decay of the quark paired with the u decays according to the largest
CKM matrix element, in this case

t→ b→ c→ s→ u ,

and mesons can be identified as

W = B−(bu) , X = D0(cu) , Y = K−(su) and Z = π0(uu) .
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The direct decay to π0π0 final state would involve a t→ d decay with the the CKM
element |Vtd|2 ∼ 10−4.

14.5 For the cases of two, three and four generations, state:
a) the number of free parameters in the corresponding n × n unitary matrix relating the
quark flavour and weak states;
b) how many of these parameters are real and how many are complex phases;
c) how many of the complex phases can be absorbed into the definitions of phases of
the fermions without any physical consequences;
d) whether CP violation can be accommodated in quark mixing.

a) An n× n matrix has n2 complex elements and therefore has 2n2 free parameters.
The condition U†U = 1 gives n×n equations that the elements must satisfy, leaving
n × n free parameters:

Nfree
2 = 4 , Nfree

3 = 9 and Nfree
4 = 16 .

b) The real parameters correspond to rotations around different axes. In the case of
a 2×2 matrix, there is just one rotation angle θ12, in the case of a 2×2 matrix, there
are three rotation angles θ12, θ13 and θ23. For a 4 × 4 matrix, there are six rotation
angles θ12, θ13, θ14, θ23, θ24 and θ34. Thus

Nreal
2 = 1 : Nphase

2 = 3 , Nreal
3 = 3 : Nphase

3 = 6 and Nreal
4 = 6 : Nphase

4 = 10 .

c) An n × n matrix expresses the copings between 2n fermions. Hence there it is
possible to define 2n phases for the individual fermions, but there is always one
overall phase that can be defined without any physical consequences so all phases
can be defined with respect to one of the fermions. Hence 2n−1 phases of the n×n
unitary matrix can be absorbed into the definitions of the phases of the fermions,
leaving

Nreal
2 = 1 : Nphase

2 = 0 , Nreal
3 = 3 : Nphase

3 = 1 and Nreal
4 = 6 : Nphase

4 = 3 .

d) CP violation arises from at least one complex phase in the mixing matrix, and
therefore CP violation can arise in quark mixing for three or more generations, but
not for two generations.
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14.6 Draw the lowest-order Feynman diagrams for the strong interaction processes

pp→ K−π+K0 and pp→ K+π−K0 .

The quark content of the particles involved are:

p(uud) p(uud)→ K−(su)π+(ud) K0(ds) : uuduud→ suudds ,

and

p(uud) p(uud)→ K+(us)π−(du) K0(sd) : uuduud→ suudds .

In both cases the flavour change is uu → ss and the (rather messy) Feynman dia-
grams involve the annihilation of a uu → g → ss and subsequent arrangement of
the final-state quarks into the mesons given.

14.7 In the neutral kaon system, time-reversal violation can be expressed in terms of
the asymmetry

AT =
Γ(K0 → K0) − Γ(K0 → K0)

Γ(K0 → K0) + Γ(K0 → K0)
.

Show that this is equivalent to

AT =
Γ(K0

t=0 → π−e+νe) − Γ(K0
t=0 → π+e−νe)

Γ(K0
t=0 → π−e+νe) + Γ(K0

t=0 → π+e−νe)
,

and therefore

AT ≈ 4|ε| cos φ .

To measure the time reversal symmetry it is necessary to tag the decays of the
flavour states K0(ds) and K0(sd) through their weak leptonic decays, s → u`−ν`
and s → u`+ν`. For example, the rate of K0 → K0 is measured from the `+ decay
rate from tagged K0 production. Consequently,

AT =
Γ(K0 → K0) − Γ(K0 → K0)

Γ(K0 → K0) + Γ(K0 → K0)
=

Γ(K0
t=0 → π−e+νe) − Γ(K0

t=0 → π+e−νe)

Γ(K0
t=0 → π−e+νe) + Γ(K0

t=0 → π+e−νe)
.

The mass eigenstates expressed in terms of the flavour eigenstates are

|KS 〉 =
1√

2(1 + |ε|2)

[
(1 + ε)|K0〉 + (1 − ε)|K0〉

]
,

|KL〉 =
1√

2(1 + |ε|2)

[
(1 + ε)|K0〉 − (1 − ε)|K0〉

]
,
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and therefore

|K0〉 =

√
(1 + |ε|2)

2
1

1 + ε
[|KS 〉 + |KL〉] ,

|K0〉 =

√
(1 + |ε|2)

2
1

1 − ε [|KS 〉 − |KL〉] .

Hence the neutral kaon state initially produced as a K0 evolves as

|K0
t=0(t)〉 =

√
(1 + |ε|2)

2
1

1 + ε
[θS (t)|KS 〉 + θL(t)|KL〉]

=

√
(1 + |ε|2)

2
1

1 + ε
× 1√

2(1 + |ε|2)
×[

θS (t)(1 + ε)|K0〉 + θS (t)(1 − ε)|K0〉 + θL(t)(1 + ε)|K0〉 − θL(t)(1 − ε)|K0〉
]

= 1
2 (θS (t) + θL(t)) |K0〉 + 1

2

(
1 − ε
1 + ε

)
(θS (t) − θL(t)) |K0〉 .

Consequently,

Γ(K0
t=0 → K0) = 1

4 |θS + θL|2 ,

Γ(K0
t=0 → K0) = 1

4

∣∣∣∣∣1 − ε1 + ε

∣∣∣∣∣2 |θS − θL|2 .

Since ε is small ∣∣∣∣∣1 − ε1 + ε

∣∣∣∣∣2 =
(1 − ε)(1 − ε∗)
(1 + ε)(1 + ε∗)

≈ 1 − 2Re {ε}
1 + 2Re {ε}

≈ 1 − 4Re {ε}
= 1 − 4|ε| cos φ ,

and thus

Γ(K0
t=0 → K0) = 1

4 |θS + θL|2 ,
Γ(K0

t=0 → K0) = 1
4
[
1 − 4|ε| cos φ

] |θS − θL|2 .

Working through the same algebra for an initial K0 gives

Γ(K0
t=0 → K0) = 1

4 |θS + θL|2 ,

Γ(K0
t=0 → K0) = 1

4

∣∣∣∣∣1 + ε

1 − ε
∣∣∣∣∣2 |θS − θL|2

= 1
4
[
1 + 4|ε| cos φ

] |θS − θL|2 .
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Using the rates derived above

AT =
Γ(K0 → K0) − Γ(K0 → K0)

Γ(K0 → K0) + Γ(K0 → K0)

=
8|ε| cos φ |θS − θL|2

2|θS − θL|2
= 4|ε| cos φ ,

and it is worth noting that the time reversal asymmetry is independent of time.

14.8 The KS –KL mass difference can be expressed as

∆m = m(KL) − m(KS ) ≈
∑
q,q′

G2
F

3π2 f 2
KmK|VqdV∗qsVq′dV∗q′s|mqmq′ ,

where q and q′ are the quark flavours appearing in the box diagram. Using the values
for the CKM matrix elements given in (14.8), obtain expressions for the relative contri-
butions to ∆m arising from the different combinations of quarks in the box diagrams.

u u

s

K0

d

d

K0

s
Vud V∗us

VudV∗us

u

u
s

K0

d

d

K0

s
Vud V∗us

VudV∗us

The relative importance of the contributions from the u, c and t quarks in the box
diagram depends on VqdV∗qsmq. Taking mu ≈ 0.3 GeV , mc ≈ 1.5 GeV and mt ≈
175 GeV the relative contributions are in the ratio:

VudVusmu : : VcdVcsmc : VtdVtsmt = 0.07 GeV : 0.33 GeV : 0.06 GeV ,

and, therefore, the largest contribution to the mass difference comes from the box
diagrams with two charm quarks. Taking fK ∼ 0.1 GeV, the numerically value for
the contribution from the diagrams involving the charm quarks alone is

∆m = m(KL) − m(KS ) =
G2

F

3π2 f 2
KmK|Vcd|2|Vcs|2m2

c = 2.3 × 10−15 GeV ,

which is not too far from the measured value of ∆m = 3.5 × 10−15 GeV.

14.9 Indirect CP violation in the neutral kaon system is expressed in terms of ε =
|ε|eiφ. Writing

ξ =
1 − ε
1 + ε

≈ 1 − 2ε =

 M∗12 − i
2 Γ∗12

M12 − i
2 Γ12

 1
2

,
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show that

ε ≈ 1
2
×

 (Im {M12} − i
2 Im {Γ12})

M12 − i
2 Γ12

 1
2

≈ Im {M12} − iIm {Γ12/2}
∆m − i∆Γ/2

.

Using the knowledge that φ ≈ 45◦ and the measurements of ∆m and ∆Γ, deduce that
Im {M12} � Im {Γ12} and therefore

|ε| ∼ 1√
2

Im {M12}
∆m

.

The first part of the problem is more obvious if one starts from the required solu-
tion. Recalling that the differences in mass and decay width of the physical kaon
mass eigenstates can be expressed as

∆m − i
2∆Γ = λ+ − λ− =

[
(M12 − i

2Γ12)(M∗12 − i
2Γ∗12)

]1
2

then

Im {M12} − iIm {Γ12/2}
∆m − i∆Γ/2

=
Im {M12} − i

2 Im {Γ12}[
M12 − i

2Γ12
]1/2 [

M∗12 − i
2Γ∗12

]1/2

=
1
2

M12 − M∗12 − i
2 (Γ12 − Γ∗12)[

M12 − i
2Γ12

]1/2 [
M∗12 − i

2Γ∗12

]1/2

=
1
2

(M12 − i
2Γ12) − (M∗12 − i

2Γ∗12)[
M12 − i

2Γ12
]1/2 [

M∗12 − i
2Γ∗12

]1/2

=
1
2


 M12 − i

2Γ12

M∗12 − i
2Γ∗12


1
2

−
 M∗12 − i

2Γ∗12

M12 − i
2Γ12


1
2


≈ 1
2

[
(1 − 2ε)−1/2 − (1 − 2ε)+1/2

]
=

1
2

[(1 + ε) − (1 − ε)]

= ε .

The second part of the question uses the measured properties of the neutral kaon
system to extract information about the effective Hamiltonian. The measured value
of ∆m is

∆m = (3.483 ± 0.006) × 10−15 GeV .
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From the measured KS and KL lifetimes:

∆Γ = ΓS − ΓL

=
~

τS
− ~
τL

=
~

8.95 × 10−11 −
~

5.12 × 10−8

= (7.36 × 10−15 − 1.29 × 10−17) GeV

= 7.34 × 10−15 GeV

⇒ ∆Γ/2 = 3.67 × 10−15 .

From these experimental measurements it is found that ∆m ∼ ∆Γ/2. The angle φ,
defined by ε = |ε|eiφ, was measured by CPLEAR

φ = arg ε = (43.19 ± 0.73)◦ .

From the expression for ε derived previously,

ε =
Im {M12} − iIm {Γ12/2}

∆m − i∆Γ/2
=

(Im {M12} − iIm {Γ12/2})(∆m + i∆Γ/2)
∆m2 + ∆Γ2/4

.

But since ∆m ∼ ∆Γ/2,

ε ≈ Im {M12} − iIm {Γ12/2}
∆m − i∆Γ/2

=
(Im {M12} − iIm {Γ12/2})∆meiπ/4

∆m2 + ∆Γ2/4
,

and given arg ε ≈ π/4, this implies that Im {M12} � Im {Γ12}, and consequently

ε ≈ Im {M12}
∆m − i∆Γ/2

≈ Im {M12}
∆m(1 − i)

⇒ |ε| = 1√
2

Im {M12}
∆m

.

as required. Thus the measured value of |ε| ∼ 2.3 × 10−3 implies that

Im {M12} ≈ 1 × 10−17 GeV .

14.10 Using (14.53) and the explicit form of Wolfenstein parametrisation of the CKM
matrix, show that

|ε| ∝ η(1 − ρ + constant) .

Equation (14.53) gives the relation

|ε| ∝ Aut Im (VudV∗usVtdV∗ts) +Act Im (VcdV∗csVtdV∗ts) +Att Im (VtdV∗tsVtdV∗ts) ,
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where the A are real constants. In the Wolfenstein parameterisation of the CKM
matrix:

VudV∗usVtdV∗ts = (1 − λ2/2) · λ · Aλ3(1 − ρ − iη) · (−Aλ2)

= −A2λ6(1 − λ2/2)(1 − ρ − iη)

VcdV∗csVtdV∗ts = (−λ) · (1 − λ2/2) · Aλ3(1 − ρ − iη) · (−Aλ2)

= A2λ6(1 − λ2/2)(1 − ρ − iη)

VtdV∗tsVtdV∗ts =
[
Aλ3(1 − ρ − iη) · (−Aλ2)

]2

= A4λ10
[
(1 − ρ)2 − η2 − 2iη(1 − ρ)

]
.

Hence

|ε| ∝ Aut Im (VudV∗usVtdV∗ts) +Act Im (VcdV∗csVtdV∗ts) +Att Im (VtdV∗tsVtdV∗ts)
= aη + bη + cη(1 − ρ)

= aη(1 − ρ + b + c) ,

where a, b and c are just real constants. Hence a measurement of |ε| gives

|ε| = aη(1 − ρ + b + c)

⇒ η(1 − ρ + constant) = constant ,

which is the equation of a hyperbola in the (ρ, η) plane.

14.11 Show that the B0–B0 mass difference is dominated by the exchange of two top
quarks in the box diagram.

From question 8, the mass difference of the BH and BL mass eigenstates can be
expressed as

∆m = m(BH) − m(BL) ≈
∑
q,q′

G2
F

3π2 f 2
BmB|VqdV∗qbVq′dV∗q′b|mqmq′ ,

where q and q′ are the quark flavours appearing in the box diagram. Taking mu ≈
0.3 GeV , mc ≈ 1.5 GeV and mt ≈ 175 GeV the relative contributions are in the
ratio:

VudVubmu : : VcdVcbmc : VtdVtbmt = 0.001 GeV : 0.014 GeV : 1.57 GeV ,

and the contributions from the top quarks in the box diagrams clearly dominate.

14.12 Calculate the velocities of the B-mesons produced in the decay at rest of the
Υ(4S )→ B0B0.
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The masses of the particles are

m(Υ(4S )) = 10.579 GeV and m(B0) = m(B0) = 5.279 GeV ,

and for the decay at rest, conservation of energy gives

E(B0)∗ = E(B0)∗ = m(Υ(4S ))/2 = 5.289 GeV .

The momenta of the daughter particles are

p∗ = (E∗2 − m2)1/2 = 0.333 GeV ,

and thus the velocities are

β∗ =
p∗

E∗
≡ γmβ

γm
= 0.063 .

14.13 Given the lifetimes of the neutral B-mesons are τ = 1.53 ps, calculate the
mean distance they travel when produced at the KEKB collider in collisions of 8 GeV
electrons and 3.5 GeV positrons.

The electron and positron energies are chosen such that
√

s = m(Υ4S ) and here the
Υ(4S ) is produced with momentum 4.5 GeVin the laboratory frame, corresponding
to velocity of

βΥ =
pΥ

EΥ

=
4.5
11.5

= 0.39 ⇒ γΥ = 1.086 .

In the laboratory frame, the energy of the boosted decay B0 is given by

E′ = γΥE∗ + γΥβΥp∗ cos θ∗ ,

where θ∗ is the polar angle of the B0 relative to the z-axis along the direction of the
boost and p∗ and E∗ are the rest frame decay momentum and energy, calculated in
the previous question. Since p∗ = β∗E∗ = 0.063, the energy of the decay B0 in the
laboratory frame

E′ = γΥE∗(1 + βΥβ
∗ cos θ∗) = γΥE∗(1 + 0.024 cos θ∗) ,

does not depend strongly on the decay angle. Taking into account time dilation, the
mean distance the B0 will travel is

d = γτβc =
p′

m
τc .

Taking E′ ≈ γΥE∗ = 5.74 GeV, the momentum of the B0 is approximately p′ =

2.23, and therefore βγ = p′/m = 0.43. The mean distance the B0 travels in the
laboratory frame is:

d =
p′

m
τc = 197 µm .
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14.14 From the measured values

|Vud| = 0.97425 ± 0.00022 and |Vub| = (4.15 ± 0.49) × 10−3 ,

|Vcd| = 0.230 ± 0.011 and |Vcb| = 0.041 ± 0.001 ,

calculate the length of the corresponding side of the unitarity triangle in Figure 14.25
and its uncertainty. By sketching this constraint and that from the measured value of β,
obtain approximate constraints on the values of ρ and η.

The length of the shortest side of the unitarity triangle shown Figure 14.25 is

x =

∣∣∣∣∣ V∗ub |Vud|
|Vcd| |V∗cb|

∣∣∣∣∣ =
|Vub| |Vud|
|Vcd| |Vcb| = 0.43 ± 0.06 ,

where the fractional uncertainty is given by the sum in quadrature of the fractional
errors on the CKM matrix elements involved. As can be seen from the figure below,
due to the relatively large uncertainty, the length of this side of this unitarity triangle
does not significantly constrain the values of ρ and η. For example, at one standard
the side length is consistent with roughly the range −0.2 < ρ < 0.4.

ρ
0 0.5 1

η

0

0.5

1



15 Electroweak Unification

15.1 Draw all possible lowest-order Feynman diagrams for the processes:

e+e− → µ+µ− , e+e− → νµνµ , νµe− → νµe− and νee− → νee− .

In all cases the Higgs exchange diagrams will give negligible contributions and are
ignored. The two possible lowest-order diagrams for e+e− → µ+µ− are

γ

e+

e−

µ+

µ−

e e
Z

e+

e−

µ+

µ−

gZ gZ

Since neutrinos are neutral, there is no QED diagram for e+e− → νµνµ but a the
Z-exchange diagram is still present.

Z

e+

e−

νµ

νµ

gZ gZ

For νµe− → νµe− only the neutral current weak interaction contributes at lowest
order.

Z

e−

νµ

e−

νµ

gZ

gZ

139
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Finally, for νee− → νee− there are weak charged-current and weak neutral current
diagrams.

Z

e−

νe

e−

νe

gZ

gZ

W

e−

νe

e−

νe

gW gW

15.2 Draw the lowest-order Feynman diagram for the decay π0 → νµνµ and explain
why this decay is effectively forbidden.

The lowest-order Feynman diagram is show below. The general form of the neu-
tral current vertex, γ µ(cV − cAγ

5), reduces to a V − A form for the coupling at
Zνµνµ vertex, and thus neutrino is produced in a LH chiral state and anti-neutrino
is produced in a RH chiral state. Because neutrinos are almost massless (E � m)
the chiral states effectively correspond to helicity states and thus the decay would
result in a J = 1 final state, violating conservation of angular momentum.

u

u
Z

π0

νµ

νµ

15.3 Starting from the matrix element, work through the calculation of the Z→ ff par-
tial decay rate, expressing the answer in terms of the vector and axial-vector couplings
of Z. Taking sin2 θW = 0.2315, show that

Rµ =
Γ(Z→ µ+µ−)

Γ(Z→ hadrons)
≈ 1

20
.

The matrix element for the Z→ ff decay, shown below is

M f i = gZ ε
λ
µ (p1) u(p3)γ µ 1

2 (cV − cAγ
5)v(p4) ,

p1

p4

p3

Z

f

f
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or equivalently

M f i = gZ ε
λ
µ (p1) u(p3)γ µ

[
cL

1
2 (1 − γ5) + cR

1
2 (1 + γ5)

]
v(p4) ,

where cV = cL + cR and cA = cL − cR. Written in this form it should be clear
that only two chiral combinations give non-zero matrix elements, and in the limit
where the final-state fermions are ultra-relativistic, only two helicity combinations
give non-zero matrix elements:

MLR = gZ cL ε
λ
µ (p1) u↓(p3)γ µv↑(p4) and MRL = gZ cR ε

λ
µ (p1) u↑(p3)γ µv↓(p4) .

The leptonic currents are given by (6.17) and (6.16) with E = mZ/2,

j µLR = mZ(0,− cos θ,−i, sin θ) and j µRL = mZ(0,− cos θ,+i, sin θ) .

Without loss of generality, we are free to choose the polarisation state of the Z.
Here take the Z to be at rest and to be longitudinally polarised, such that

εµ = ε
µ
L = (0, 0, 0, 1) .

In this case, the matrix elements reduce to

MLR = −gZ cL j3LR = −gZ cLmZ sin θ and MRL = −gZ cR j3RL = −gZ cRmZ sin θ .

The total decay rate is determined by the summed matrix element squared (no need
to average since we have chosen a particular initial state polarisation)〈

|M|2
〉

= |MLR|2 + |MRL|2 = g2
Zm2

Z(c2
L + c2

R) sin2 θ .

Substituting this into the decay rate formula of (3.49),

Γ(Z→ ff) =
p∗

32π2m2
Z

∫
〈|M|2〉 dΩ∗

=
2πp∗

32π2m2
Z

g2
Zm2

Z(c2
L + c2

R)
∫ +1

−1
sin2 θ d(cos θ)

=
p∗

16π2 g
2
Z(c2

L + c2
R)

∫ +1

−1
(1 − x2) d(x)

=
p∗

24π
g2

Z(c2
L + c2

R) ,

where p∗ is the momentum of the final state fermion in the centre-of-mass frame.
If the masses of the final-state particles are neglected, p∗ = mZ/2, and therefore the
Z→ ff decay rate is given by

Γ(Z→ ff) =
g2

ZmZ

24π
(c2

L + c2
R) =

g2
ZmZ

48π
(c2

V + c2
A) .

The partial decay widths therefore depend on the sum of the squares of the vector
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and axial-vector couplings of the Z to the fermions. Taking into account the three
colours and that the Z cannot decay to top quarks, the ratio

Rµ =
Γ(Z→ µ+µ−)

Γ(Z→ hadrons)

=
ΓZ→µ+µ−

9Γ(Z→ dd) + 6Γ(Z→ uu)
.

The individual partial decay widths are proportional to:

µ : c2
V + c2

A = 0.2516 , d : c2
V + c2

A = 0.3725 and u : c2
V + c2

A = 0.2861 ,

and therefore

Rµ =
Γ(Z→ µ+µ−)

Γ(Z→ hadrons)

=
0.2516

9 · 0.3725 + 6 · 0.2861
= 0.496 ≈ 1

20
.

15.4 Consider the purely neutral-current (NC) process νµe− → νµe−.
a) Show that in the limit where the electron mass can be neglected, the spin-averaged
matrix element for νµe− → νµe− can be written

〈|M|2〉 =
1
2

(∣∣∣MNC
LL

∣∣∣2 +
∣∣∣MNC

LR

∣∣∣2) ,
where

MNC
LL = 2c(ν)

L c(e)
L

g2
Zs

m2
Z

and MNC
LR = 2c(ν)

L c(e)
R

g2
Zs

m2
Z

1
2 (1 + cos θ∗) ,

and θ∗ is the angle between the directions of the incoming and scattered neutrino in
the centre-of-mass frame.
b) Hence find an expression for the νµe− neutral-current cross section in terms of the
laboratory-frame neutrino energy.

a) The lowest-order Feynman diagram for the NC process νµe− → νµe− is shown
below.

p2

p1 p4

p3

Z

e−

νµ

e−

νµ

gZ

gZ

In this t-channel process, q2 � m2
Z and the Z propagator can be approximated by
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(a Fermi-like contact interaction),

−igµν
q2 − m2

Z

→ igµν
m2

Z

,

and the matrix element is

−iM f i =
[
−igZu(p3)γ µ 1

2 (cνV − cνAγ
5)u(p1)

] igµν
m2

Z

[
−igZu(p4)γν 1

2 (ce
V − ce

Aγ
5)u(p2)

]
M f i =

g2
Z

m2
Z

gµν
[
u(p3)γ µ 1

2 (cνV − cνAγ
5)u(p1)

] [
u(p4)γν 1

2 (ce
V − ce

Aγ
5)u(p2)

]
=

g2
Z

2m2
Z

gµν
[
u(p3)γ µ 1

2 (1 − γ5)u(p1)
] [

u(p4)γν
{
ce

L
1
2 (1 − γ5) + ce

R
1
2 (1 + γ5)

}
u(p2)

]
=
g2

Z

m2
Z

gµν
[
cνLu↓(p3)γ µu↓(p1)

] [
u(p4)γν

{
ce

L
1
2 (1 − γ5) + ce

R
1
2 (1 + γ5)

}
u(p2)

]
,

where it should be noted that because cνV=cνA= 1
2 , only left-handed neutrinos couple

to the Z. Consequently, in the ultra-relativistic limit, there are two non-zero matrix
elements:

MLL =
g2

Z

m2
Z

gµνcνLce
L
[
u↓(p3)γ µu↓(p1)

] [
u↓(p4)γνu↓(p2)

]
,

MLR =
g2

Z

m2
Z

gµνcνLce
R
[
u↓(p3)γ µu↓(p1)

] [
u↑(p4)γνu↑(p2)

]
.

The matrix elements are most easily evaluated in the centre-of-mass frame. Taking
the initial neutrino direction to define the z-axis and θ∗ to be the polar angle of the
final-state neutrino, then the spherical polar angles of the four particles, as indicated
in Figure 12.4, are

(θ1, φ1) = (0, 0) , (θ2, φ2) = (π, π) , (θ3, φ3) = (θ∗, 0) and (θ4, φ4) = (π − θ∗, π) .

The corresponding LH spinors are given by (4.65),

u↓(p1) =
√

E


0
1
0
−1

 , u↓(p3) =
√

E


−s
c
s
−c

 u↓(p2) =
√

E


−1
0
1
0

 , u↓(p4) =
√

E


−c
−s
c
s

 ,

u↑(p2) =
√

E


0
−1
0
−1

 , u↑(p4) =
√

E


s
−c
s
−c

 ,
where c = cos θ∗

2 , s = sin θ∗
2 and E is the energy of each of the four particles in the



144 Electroweak Unification

centre-of-mass frame. The corresponding currents are:

j µν = u↓(p3)γ µu↓(p1) = 2E(c, s,−is, c) ,

jνeL = u↓(p4)γνu↓(p2) = 2E(c,−s,−is,−c) ,

jνeR = u↑(p4)γνu↑(p2) = 2E(c,−s,+is,−c) ,

and hence

ν · jνeL = 4E2(c2 + s2 + s2 + c2) = 8E2 = 2s

ν · jνeR = 4E2(c2 + s2 − s2 + s2) = 8E2c2 = 2s 1
2 (1 + cos θ) .

Finally, putting all the pieces together:

MNC
LL = 2cνLce

L

g2
Zs

m2
Z

and MNC
LR = 2cνLce

R

g2
Zs

m2
Z

1
2 (1 + cos θ∗) ,

where θ∗ is the angle between the directions of the incoming and scattered neutrino
in the centre-of-mass frame.

b) The spin-averaged matrix element squared (averaging over the two spin states
of the electron since the neutrino is left-handed) for the NC scattering process is

〈|M f i|2〉 =
1
2
g4

Zs2

m4
Z

[
4(cνL)2(ce

L)2 + 4(cνL)2(ce
R)2 1

4 (1 + cos θ∗)2
]

=
1
2
g4

Zs2

m4
Z

[
(ce

L)2 + (ce
R)2 1

4 (1 + cos θ∗)2
]
.

The differential cross section can be obtained from the expression

dσ
dΩ∗

=
1

64π2s
〈|M f i|2〉 =

s
128π2

g4
Z

m4
Z

[
(ce

L)2 + (ce
R)2 1

4 (1 + cos θ∗)2
]
.

Using GF =
√

2g2
W/8m2

W =
√

2g2
Z/8m2

Z, this can be written as

dσ
dΩ∗

=
s

4π2 G2
F

[
(ce

L)2 + (ce
R)2 1

4 (1 + cos θ∗)2
]
.

Finally, writing s = 2meEν and integrating

σ =
meEνG2

F

π

∫ +1

−1

[
(ce

L)2 + (ce
R)2 1

4 (1 + 2x + x2)
]

dx

=
2meEνG2

F

π

[
(ce

L)2 + 1
3 (ce

R)2
]

=
2meEνG2

F

π

[
(−0.27)2 + 1

3 (0.23)2
]

≈ 2meEνG2
F

π
× 0.09 .
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15.5 The two lowest-order Feynman diagrams for νee− → νee− are shown in Fig-
ure 13.5. Because both diagrams produce the same final state, the amplitudes have to
be added before the matrix element is squared. The matrix element for the charged-
current (CC) process is

MCC
LL =

g2
Ws

m2
W

.

a) In the limit where the lepton masses and the q2 term in the W-boson propagator
can be neglected, write down expressions for spin-averaged matrix elements for the
processes

νµe− → νµe− , νee− → νee− and νµe− → νeµ
− .

b) Using the relation gZ/mZ = gW/mW, show that

σ(νµe− → νµe−) : σ(νee− → νee−) : σ(νµe− → νeµ
−) = c2

L + 1
3 c2

R : (1 + cL)2 + 1
3 c2

R : 1 ,

where cL and cR refer to the couplings of the left- and right-handed charged leptons to
the Z.

c) Find numerical values for these ratios of NC+CC : NC : CC cross sections and
comment on the sign of the interference between the NC and CC diagrams.

a) From the previous question, the spin-averaged matrix element for νµe− → νµe−

〈|M|2NC〉 =
1
2

[
(MNC

LL )2 + (MNC
LR )2

]
=

1
2
g4

Ws2

m4
W

[
c2

L + c2
R

1
4 (1 + cos θ∗)2

]
.

where the relation gZ/mZ = gW/mW has been used. The spin-averaged matrix
element for the pure CC weak interaction νµe− → νeµ

− is

〈|M|2CC〉 =
1
2

(MCC
LL )2

=
1
2
g4

Ws2

m4
W

.

In the process σ(νee− → νee−), both charged-current and neutral-current diagrams
contribute and can interfere.

Z

e−

νe

e−

νe

gZ

gZ

W

e−

νe

νe

e−

gW

gW
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Consequently the spin-averaged matrix element for this mixed NC and CC weak
interaction is

〈|M|2NC+CC〉 =
1
2

[
(MCC

LL +MNC
LL )2 + (MNC

LR )2
]

=
1
2
g4

Ws2

m4
W

[
(1 + cL)2 + 1

4 c2
R(1 + cos θ∗)2

]
,

where the relation gZ/mZ = gW/mW has been used again.

b) When the spin-averaged matrix elements are integrate over solid angle, the inte-
grals over the angular distributions of the LL and RR contributions give respectively∫ +1

−1
d cos θ∗ = 2 and

∫ +1

−1

1
4 (1 + cos θ)2 d cos θ∗ = 2

3 ,

and from part a) it immediately follows that

σ(νµe− → νµe−) : σ(νee− → νee−) : σ(νµe− → νeµ
−) = c2

L+1
3 c2

R : (1+cL)2+ 1
3 c2

R : 1 .

c) Putting in the couplings of the left- and right-handed leptons to the Z, cL = −0.27
and cR = 0.23 gives

σ(νµe− → νµe−) : σ(νee− → νee−) : σ(νµe− → νeµ
−) = c2

L + 1
3 c2

R : (1 + cL)2 + 1
3 c2

R : 1

= 0.09 : 0.55 : 1 .

The pure neutral-current scattering process has a cross section that is about an
order of magnitude smaller than the pure charged-current process. The effect of the
NC diagram in the process νee− → νee− is to reduce the cross section compared
to having just the CC diagram; because cL = −0.27, the neutral current diagram
interferes negatively with the charged current diagram.
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16.1 After correcting for QED effects, including initial-state radiation, the measured
e+e− → µ+µ− and e+e− → hadrons cross sections at the peak of the Z resonance give

σ0(e+e− → Z→ µ+µ−) = 1.9993 nb and σ0(e+e− → Z→ hadrons) = 41.476 nb .

a) Assuming lepton universality, determine Γ`` and Γhadrons.

b) Hence, using the measured value of ΓZ = 2.4952 ± 0.0023 GeV and the theoretical
value of Γνν given by equation (15.41), obtain an estimate of the number of light neutrino
flavours.

a) The cross section at
√

s = mZ is given by (16.17):

σ0
ff =

12π
m2

Z

ΓeeΓff

Γ2
Z

,

which can be inverted to give

ΓeeΓff =
σ0

ff
Γ2

Zm2
Z

12π
.

Assuming lepton universality, whereby Γµµ = Γ``,

Γ2
ee =

σ0
µµΓ

2
Zm2

Z

12π
.

Converting the measured peak cross section ofσ0(e+e− → Z→ µ+µ−) = 1.9993 nb
into natural units gives

σ0(e+e− → Z→ µ+µ−) = 1.9993 × 10−37 m2 · (~c)−2

= 1.9993 × 10−37 m2 1
(0.197 GeV × 10−15 m)2

= 5.152 × 10−6 GeV−2 .

147
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Using mZ = 91.1875 GeV

Γ2
ee =

σ0
µµΓ

2
Zm2

Z

12π

=
5.152 × 10−6 · 91.18752

12π
Γ2

Z

= 1.136 × 10−3Γ2
Z

⇒ Γee = 0.03371ΓZ .

Similarly,

ΓeeΓhadrons =
σ0

hadΓ2
Zm2

Z

12π

=
106.88 × 10−6 · 91.18752

12π
Γ2

Z

= 2.357 × 10−2Γ2
Z

⇒ 0.03371ΓZΓhadrons = 2.357 × 10−2Γ2
Z

⇒ Γhadrons = 0.6992 ΓZ

b) The total width of the Z is given by:

ΓZ = 3Γ`` + Γhadrons + NνΓνν .

From the results of part a):

NνΓνν = ΓZ − 3Γ`` − Γhadrons

= 0.1997 ΓZ

= 498 MeV .

In Chapter 15, the partial decay width for Z→ νeνe was calculated to be 167 MeV,
and the above measurements therefore imply

Nν =
498
167

= 2.98 ,

consistent with the claim that there are three light neutrino generations.

16.2 Show that the e+e− → Z→ µ+µ− differential cross section can be written as

dσ
dΩ
∝ (1 + cos2 θ) + 8

3 AFB cos θ .

From equation (16.25) the e+e− → Z→ ff differential cross section can be written
as

dσ
dΩ

= κ
[
a(1 + cos2 θ) + 2b cos θ

]
,
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where a and b are constants related to the couplings to the Z, and κ is a normali-
sation factor. Writing cos θ = x, then dΩ = 2π d(cos θ) = 2πdx and the number of
events produced in the forward and backwards hemispheres can be written:

NF = 2πκ
∫ 1

0
a(1 + x2) + 2bx dx

= 2π
[

4
3 a + b

]
,

NB = 2πκ
∫ 0

−1
a(1 + x2) + 2bx dx

= 2π
[

4
3 a − b

]
.

Therefore the toward-backward asymmetry is

AFB =
NF − NB

NF + NB
=

3b
4a
⇒ b =

4aAFB

3
.

Substituting this back into the original equation gives:

dσ
dΩ

= κ
[
a(1 + cos2 θ) + 8

3 aAFB cos θ
]

∝ (1 + cos2 θ) + 8
3 AFB cos θ .

16.3 From the measurement of the muon asymmetry parameter,

Aµ = 0.1456 ± 0.0091 ,

determine the corresponding value of sin2 θW.

The muon asymmetry parameter is related to the couplings of the Z to muons by

Aµ =
(cµL)2 − (cµR)2

(cµL)2 + (cµR)2
≡ 2cµVcµA

(cµV )2 + (cµA)2

=
2cµV/c

µ

A

(cµV/c
µ

A)2 + 1

=
2x

x2 + 1
,

where x = cµV/c
µ

A. Hence the measured value gives the quadratic equation

(0.1456 ± 0.0091) =
2x

x2 + 1
⇒ x2 − (13.74 ± 0.85)x + 1 = 0 ,

⇒ x = 0.0732 ± 0.0046 or x = 13.7 ± 0.8 .



150 Tests of the Standard Model

In the Standard Model

x =
cµV
cµA

= 1 − 4 sin2 θW ,

and therefore the measurement can be interpreted as

1 − 4 sin2 θW = 0.0732 ± 0.0046

4 sin2 θW = 0.9268 ± 0.0046

sin2 θW = 0.2317 ± 0.0012 .

16.4 The e+e− Stanford Linear Collider (SLC), operated at
√

s = mZ with left- and
right-handed longitudinally polarised beams. This enabled the e+e− → Z → ff cross
section to be measured separately for left-handed and right-handed electrons.
Assuming that the electron beam is 100 % polarised and that the positron beam is
unpolarised, show that the left-right asymmetry ALR is given by

ALR =
σL − σR

σL + σR
=

(ce
L)2 − (ce

R)2

(ce
L)2 + (ce

R)2 = Ae ,

where σL and σR are respectively the measured cross sections at the Z resonance for
LH and RH electron beams.

This is a relatively straight forward question. The matrix-elements for the differ-
ent helicity combinations in the process e+e− → Z → µ+µ− are given by equa-
tions (16.9)- (16.12)

|MRL→RL|2 = |PZ(s)|2 g4
Zs2(ce

R)2(cµR)2(1 + cos θ)2 ,

|MRL→LR|2 = |PZ(s)|2 g4
Zs2(ce

R)2(cµL)2(1 − cos θ)2 ,

|MLR→RL|2 = |PZ(s)|2 g4
Zs2(ce

L)2(cµR)2(1 − cos θ)2 ,

|MLR→LR|2 = |PZ(s)|2 g4
Zs2(ce

L)2(cµL)2(1 + cos θ)2 ,

where |PZ(s)|2 = 1/[(s−m2
Z)2 + m2

ZΓ2
Z] and RL→ LR refers to a e−Re+

L → µ−Lµ
+
R. For

the case where the electrons are 100 % left-handed, P(e−) = −1, the spin-averaged
matrix element (averaging over the positron helicity states) is

〈|ML|2〉 =
1
2

[
|MLR→RL|2 + |MLR→LR|2

]
=

1
2
|PZ(s)|2 g4

Zs2(ce
L)2 ×

[
(cµR)2(1 − cos θ)2 + (cµL)2(1 + cos θ)2

]
.

Similarly

〈|MR|2〉 =
1
2

[
|MRL→RL|2 + |MRL→LR|2

]
=

1
2
|PZ(s)|2 g4

Zs2(ce
R)2 ×

[
(cµR)2(1 + cos θ)2 + (cµL)2(1 − cos θ)2

]
.
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The left-right asymmetry is then given by

ALR =
σL − σR

σL + σR
=

∫ +1
−1 〈|ML|2〉 d(cos θ) −

∫ +1
−1 〈|MR|2〉 d(cos θ)∫ +1

−1 〈|ML|2〉 d(cos θ) +
∫ +1
−1 〈|MR|2〉 d(cos θ)

,

Since the integral over cos θ is the same for four terms,∫ +1

−1
(1 ± cos θ)2 d(cos θ) =

∫ +1

−1
(1 ± x)2 dx =

[
x ± x2 +

x3

3

]+1

−1
=

8
3
,

the left-right asymmetry becomes

ALR =
(ce

L)2
[
(cµR)2 + (cµL)2

]
− (ce

R)2
[
(cµR)2 + (cµL)2

]
(ce

L)2
[
(cµR)2 + (cµL)2

]
+ (ce

R)2
[
(cµR)2 + (cµL)2

]
=

(ce
L)2 − (ce

R)2

(ce
L)2 + (ce

R)2

≡ Ae .

Hence the polarised left-right asymmetry provides a direct measurement ofAe.

16.5 From the expressions for the matrix elements given in (16.8), show that:

a) the average polarisation of the tau leptons produced in the process e+e− → Z →
τ+τ− is

〈Pτ−〉 =
N↑ − N↓
N↑ + N↓

= −Aτ ,

where N↑ and N↓ are the respective numbers of τ− produced in RH and LH helicity
states;

b) the tau polarisation where the τ− is produced at an angle θ with respect to the initial-
state e− is

Pτ− (cos θ) =
N↑(cos θ) − N↓(cos θ)
N↑(cos θ) + N↓(cos θ)

= −Aτ(1 + cos2 θ) + 2Ae cos θ
(1 + cos2 θ) + 8

3 AFB cos θ
.

a) In the limit
√

s � mτ, the matrix-elements for the different helicity combinations
in the process e+e− → Z→ τ+τ− are given by equations (16.9)- (16.12)

|MRL→RL|2 = |PZ(s)|2 g4
Zs2(ce

R)2(cτR)2(1 + cos θ)2 ,

|MRL→LR|2 = |PZ(s)|2 g4
Zs2(ce

R)2(cτL)2(1 − cos θ)2 ,

|MLR→RL|2 = |PZ(s)|2 g4
Zs2(ce

L)2(cτR)2(1 − cos θ)2 ,

|MLR→LR|2 = |PZ(s)|2 g4
Zs2(ce

L)2(cτL)2(1 + cos θ)2 ,

where |PZ(s)|2 = 1/[(s−m2
Z)2 + m2

ZΓ2
Z] and RL→ LR refers to a e−Re+

L → τ−Lτ
+
R. The
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number of events where the τ− is produced in a left-handed/right-handed helicity
state at an angle cos θ will be proportional to

dN↑(cos θ) ∝ |MRL→RL|2 + |MLR→RL|2
∝ (ce

R)2(cτR)2(1 + cos θ)2 + (ce
L)2(cτR)2(1 − cos θ)2 ,

∝ (cτR)2
[
(ce

R)2(1 + cos θ)2 + (ce
L)2(1 − cos θ)2

]
dN↓(cos θ) ∝ |MRL→LR|2 + |MLR→LR|2

∝ (ce
R)2(cτL)2(1 − cos θ)2 + (ce

L)2(cτL)2(1 + cos θ)2

∝ (cτL)2
[
(ce

R)2(1 − cos θ)2 + (ce
L)2(1 + cos θ)2

]
.

As in the previous, integrating over cos θ leads to the same factor in all terms and
thus

N↑ ∝ (cτR)2
[
(ce

R)2 + (ce
L)2

]
,

N↓ ∝ (cτL)2
[
(ce

R)2 + (ce
L)2

]
.

Hence the mean tau polarisation is given by:

〈Pτ−〉 =
N↑ − N↓
N↑ + N↓

=
(cτR)2 − (cτL)2

(cτR)2 + (cτL)2

≡ −Aτ .

b) In part a) the mean tau polarisation averaged over all solid angle was determined.
However, the degree of tau polarisation is a function of cos θ. This can be measured
by determining the numbers of LH and RH tau leptons for the case where the τ− is
detected in a (small) range of cos θ. In this case

Pτ−(cos θ) =
dN↑(cos θ) − dN↓(cos θ)
dN↑(cos θ) + dN↓(cos θ)

.

Using the expressions derived in part a) and writing cos θ = x,

Pτ−(cos θ) =
dN↑(cos θ) − dN↓(cos θ)
dN↑(cos θ) + dN↓(cos θ)

=
(cτR)2

[
(ce

R)2(1 + x)2 + (ce
L)2(1 − x)2

]
− (cτL)2

[
(ce

R)2(1 − x)2 + (ce
L)2(1 + x)2

]
(cτR)2

[
(ce

R)2(1 + x)2 + (ce
L)2(1 − x)2

]
+ (cτL)2

[
(ce

R)2(1 − x)2 + (ce
L)2(1 + x)2

]
=

[
(cτR)2 − (cτL)2

] [
(ce

R)2 + (ce
R)2

]
(1 + x2) + 2x

[
(ce

R)2 − (ce
L)2

] [
(cτR)2 + (cτL)2

][
(cτR)2 + (cτL)2

] [
(ce

R)2 + (ce
R)2

]
(1 + x2) + 2x

[
(ce

R)2 − (ce
L)2

] [
(cτR)2 − (cτL)2

] .
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Dividing each term by
[
(cτR)2 + (cτL)2

] [
(ce

R)2 + (ce
R)2

]
and remembering that

A =
c2

L − c2
R

c2
L + c2

R

,

gives

Pτ−(cos θ) =
−Aτ(1 + x2) − 2xAe

1 + x2 + 2xAτAe
.

This expression can be simplified using

AτFB =
3
4
AeAτ ,

thus

Pτ−(cos θ) = −Aτ(1 + cos2 θ) + 2Ae cos θ
(1 + cos2 θ) + 8

3 AτFB cos θ
,

as required.

16.6 The average tau polarisation in the process e+e− → Z → τ+τ− can be deter-
mined from the energy distribution of π− in the decay τ− → π−ντ. In the τ− rest frame,
the π− four-momentum can be written p = (E∗, p∗ sin θ∗, 0, p∗ cos θ∗) where θ∗ is the
angle with respect to the τ− spin, and the differential partial decay width is

dΓ

d cos θ∗
∝ (p∗)2

mτ

(1 + cos θ∗) .

a) Without explicit calculation, explain this angular dependence.
b) For the case where the τ− is right-handed, show that the observed energy distribu-
tion of the π− in the laboratory frame is

dΓτ−↑

dEπ−
∝ x ,

where x = Eπ/Eτ.
c) What is the corresponding π− energy distribution for the decay of a LH helicity τ−.
d) If the observed pion energy distribution is consistent with

dΓ

dx
= 1.14 − 0.28x ≡ 0.86x + 1.14(1 − x) ,

determine Aτ and the corresponding value of sin2 θW.
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⇡�

p⌧✓⇤

⌧�R

⇡�

p⌧✓⇤

⌧�L

⌫⌧ ⌫⌧

a) Consider the decay in the tau rest frame with the angle θ∗ defined with respect
to the spin of the τ−, as shown in the left-hand plot above. Since the neutrino will
be left-handed, conservation of angular moment (just spin-half here) implies

dN
d(cos θ∗)

∝ cos2
(
θ∗

2

)
∝ 1 + cos θ∗ .

b) Consider decay of a RH-helicity τ− as shown in the left-hand plot above. With

dΓ

d cos θ∗
∝ (p∗)2

mτ
(1 + cos θ∗) .

In the laboratory frame the system will be boosted along the direction of the τ−

momentum and the laboratory-frame energy of the π− will be

Eπ = γτE∗ + γτβτp∗z
= γτE∗ + γτβτp∗ cos θ∗ .

The energy distribution of the pion in the laboratory frame is related to the angular
distribution in the tau rest frame by

dΓ

dEπ
=

dΓ

d cos θ∗
d cos θ∗

dEπ

∝ (p∗)2

mτ
(1 + cos θ∗) · 1

γτβτp∗

∝ p∗

βτEτ
(1 + cos θ∗) .

This can be expressed in terms of the pion energy using

Eπ = γτE∗ + γτβτp∗ cos θ∗ ,

⇒ cos θ∗ =
Eπ − γτE∗
γτβτp∗

,

thus
dΓ

dEπ
∝ 1
β2
τγτEτ

(Eπ + γτβτp∗ − γτE∗) . (16.1)



155 Tests of the Standard Model

In the laboratory frame the energy of the τ− is just mZ/2 and therefore γτ =

mZ/2mτ = 25.7 and βτ = 0.9992. The momentum of the pion in the tau rest frame
is easily shown to be

p∗ =
m2
τ − m2

π

2mτ
= 0.88 GeV ≈ mτ/2

⇒ E∗ = 0.89 GeV ≈ mτ/2 .

Consequently βτp∗ − E∗ < 0.02 GeV and to a good approximation (16.1) can be
approximated as

dΓ

dEπ
∝ 1
β2
τγτEτ

(Eπ + γτβτp∗ − γτE∗)

≈ 1
β2
τγτ

Eπ
Eτ

.

c) The case of the decay of a LH-helicity τ− (as shown on the right in the above
plot), the decay distribution in the tau rest frame can be obtained by replacing θ∗ in
the original decay distribution by π − θ∗

dΓ

d cos θ∗
∝ (p∗)2

mτ
(1 + cos[π − θ∗])

=
(p∗)2

mτ
(1 − cos θ∗) .

Following the previous calculation the energy distribution of the decay pion will
be

dΓ

dEπ
=

dΓ

d cos θ∗
d cos θ∗

dEπ

∝ p∗

βτEτ
(1 − cos θ∗) .

where, as before, cos θ∗ is given by

Eπ = γτE∗ + γτβτp∗ cos θ∗ ,

⇒ cos θ∗ =
Eπ − γτE∗
γτβτp∗

,

and this
dΓ

dEπ
∝ 1
β2
τγτEτ

(γτβτp∗ + γτE∗ − Eπ)

≈ 1
β2
τγτEτ

γτ(mτ/2 + mτ/)2 − Eπ

∝ 1
β2
τγτ

(
1 − Eπ

Eτ

)
,
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where the following relations were used βτp∗ ≈ E∗ ≈ mτ/2 and γτmτ = Eτ.

d) From parts b) and c) the τ− → π−ντ decays of RH and LH tau leptons give very
different pion energy distributions, reflecting the different angular distributions of
the decay relative to the tau line of flight:

dΓR

dEπ
∝ x and

dΓR

dEπ
∝ (1 − x) .

where x = Eπ/Eτ = 2Eπ/mZ. If the average τ− polarisation is

Pτ =
N↑ − N↓
N↑ + N↓

,

and there are a total of N = N↑ + N↓ decays, then

N↑ = (1 + Pτ)N/2 and N↑ = (1 − Pτ)N/2 .

The corresponding pion energy distribution, which is correctly normalised, will be

dN
dx

= 2N↑x + 2N↓(1 − x)

= N(1 + Pτ)x + N(1 − Pτ)(1 − x)

= N [(1 − Pτ) + 2Pτx]

x = E⇡/E⌧

dN
dx

The observed distribution (shown schematically above) of

dΓ

dx
∝ 1.14 − 0.28x ≡ 0.86x + 1.14(1 − x) ,

has contributions from LH and RH τ− → π−ντ decays and implies that Pτ = −0.14
and therefore (from the previous question)

Aτ = −Pτ = 0.14 .
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The tau asymmetry parameter is related to the couplings of the Z to tau leptons by

Aτ =
(cτL)2 − (cτR)2

(cτL)2 + (cτR)2 ≡
2cτVcτA

(cτV )2 + (cτA)2

=
2cτV/c

τ
A

(cτV/c
τ
A)2 + 1

=
2x

x2 + 1
,

where x = cτV/c
τ
A. Hence the measured value gives the quadratic equation

0.14 =
2x

x2 + 1
⇒ x2 − 14.28x + 1 = 0 ,

⇒ x = 0.067 .

In the Standard Model

x =
cτV
cτA

= 1 − 4 sin2 θW ,

and therefore the measurement can be interpreted as

1 − 4 sin2 θW = 0.067

4 sin2 θW = 0..933

sin2 θW = 0.233 .
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16.7 There are ten possible lowest-order Feynman diagrams for the process e+e− →
µ−νµud, of which only three involve a W+W− intermediate state. Draw the other seven
diagrams (they are all s-channel processes involving a single virtual W).

The first three diagrams (CC03) involve the production of two W bosons, either
through the s-channel production of a Z or γ, or through the t-channel exchange of
a neutrino.

Z/γ
W+

W−

e−

e+

u

d

µ−

νµ

W
νe

W

e−

e+

u

d

µ−

νµ

The remaining seven diagrams, all arise from pair production of quarks or leptons
through Z or γ exchange with a W radiated from one of the final state particles.

W

Z/γ

d

e−

e+

d

u

νµ

µ−

u
W

Z/γ

e−

e+

u

d

νµ

µ−

µ

W

Z/γ

e−

e+

µ−

νµ

d

u

W

Z

νµ

e−

e+

νµ

µ−

d

u
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16.8 Draw the two lowest-order Feynman diagrams for e+e− → ZZ.

Because there are two identical particles in the final state, there are two (NC02)
diagrams.

e

e−

e+

Z

Z

e

e−

e+

Z

Z

16.9 In the OPAL experiment at LEP, the efficiencies for selecting W+W− → `νq1q2
and W+W− → q1q2q3q4 events were 83.8 % and 85.9 % respectively. After correcting for
background, the observed numbers of `νq1q2 and q1q2q3q4 events were respectively
4192 and 4592. Determine the measured value of the W-boson hadronic branching
ratio BR(W→ qq′) and its statistical uncertainty.

If N events are observed, the best estimate of the statistical uncertainty is
√

N (from
Poisson statistics). Assuming the backgrounds are relatively small, the observed
numbers of events are

N(`νq1q2) = 4192 ± 64.7 and N(q1q2q3q4) = 4592 ± 67.8 .

Accounting for the efficiencies, εi, the numbers of produced events in the two cat-
egories are estimated by ni = Ni/εi and the uncertainties are scaled in the same
way:

n(`νq1q2) = 5002.4 ± 77.2 and n(q1q2q3q4) = 5345.8 ± 78.9 .

Since the expected numbers of events are

x(`νq1q2) ∝ 2BR(W→ `ν)×BR(W→ qq′) and x(q1q2q3q4) ∝ BR(W→ qq′)2 .

The ratio of the two event categories gives

r ≡ n(`νq1q2)
n(q1q2q3q4)

=
2BR(W→ `ν)
BR(W→ qq′)

=
2[1 − BR(W→ qq′)])

BR(W→ qq′)
.

Writing the hadronic branching ratio as b and rearranging the above expression
gives

b =
2

r + 2
.

Here r = 5002.4/5345.8 = 0.9357 and thus

b = 0.6812 .
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The uncertainty on b is related to the uncertainty on r by

σ2
b =

(
∂b
∂r

)2

σ2
r =

σ2
r

r + 2
,

and the uncertainty on r = n1/n2 is given by

σ2
r =

(
∂r
∂n1

)2

σ2
1 +

(
∂r
∂n2

)2

σ2
2

⇒ σ2
r

r2 =
σ2

1

n2
1

+
σ2

2

n2
2

= 4.56 × 10−4

⇒ σr = 0.01998

⇒ σb =
σr√
r + 2

= 0.0117 .

Hence the observed numbers of events give

BR(W→ qq′) = 68.1 ± 1.2 %

consistent with the expected value.

16.10 Suppose the four jets in an identified e+e− → W+W− event at LEP are mea-
sured to have momenta,

p1 = 82.4 ± 5 GeV , p2 = 59.8 ± 5 GeV , p3 = 23.7 ± 5 GeV and p4 = 42.6 ± 5 GeV ,

and directions given by the Cartesian unit vectors,

n̂1 = (0.72, 0.33, 0.61) , n̂2 = (−0.61, 0.58,−0.53) ,
n̂3 = (−0.63,−0.72,−0.25) , n̂4 = (−0.14,−0.96,−0.25) .

Assuming that the jets can be treated as massless particles, find the most likely asso-
ciation of the four jets to the two W bosons and obtain values for the invariant masses
of the (off-shell) W bosons in this event. Optionally, calculate the uncertainties on the
reconstructed masses assuming that the jet directions are perfectly measured.

The invariant mass of a system of two particles is

m2
i j = (pi + p j) = (Ei + E j)2 − (pi + p j)

2

= E2
i + 2EiE2 + E2

j − p2
i − p2

j − 2pi · p j = 2EiE j − 2p1p2 cos θi j .

Here, where the jets are treated as massless (p = E) and therefore

m2
i j = 2(EiE j − pip j cos θi j)

= 2EiE j
(
1 − n̂i · n̂ j

)
.

For four jets, there are three possible associations to the two W bosons: (12)(34),
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(13)(24) or (14)(23). Using the values given the masses under these three different
hypotheses are:

(12)(34) : m12 = 65.1 GeV and m34 = 17.8 GeV ,

(13)(24) : m13 = 84.8 GeV and m24 = 82.6 GeV ,

(14)(23) : m14 = 105.1 GeV and m23 = 50.5 GeV ,

and the most likely jet pairing is (13)(24).

The uncertainties on the measured masses are given by

σ2
m =

(
∂m
∂E1

)2

σ2
E1

+

(
∂m
∂E1

)2

σ2
E1

=

1
2

E1/2
2

E1/2
1

[
1 − n̂i · n̂ j

]2

σ2
E1

+

1
2

E1/2
1

E1/2
2

[
1 − n̂i · n̂ j

]2

σ2
E2

=
1
4

σ2
E1

E2
1

+
σ2

E1

E2
1

 m2 .

For the jet pairing most consistent with being from the process e+e− → W+W−

this gives:

(13)(24) : m13 = (84.8 ± 9.3) GeV and m24 = (82.6 ± 5.9) GeV ,

consistent with the expected value of 80.3 GeV.

16.11 Show that the momenta of the final-state particles in the decay t→W+b are

p∗ =
m2

t − m2
W

2mt
,

and show that the decay rate of (16.31) leads to the expression for Γt given in (16.32).

In the rest frame of the top, the momenta of the two daughter particles are equal

and conservation of energy implies mt = Eb + EW. Writing this as mt − Eb = EW
and squaring gives

m2
t − 2mtEb + E2

b = E2
W

m2
t − 2mtEb + m2

b + p∗2 = m2
W + p∗2

⇒ m2
t + (m2

b − m2
W) = 2mtEb .
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Squaring again to eliminate Eb leads to

m4
t + 2m2

t (m2
b − m2

W) + (m2
b − m2

W)2 = 4mt(m2
b + p∗2)

m4
t − 2m2

t (m2
b + m2

W) + (mW − mb)2(mW + mb)2 = 4mtp∗2

m4
t − 2m2

t

[
(mW + mb)2 + (mW − mb)2

]
+ (mW − mb)2(mW + mb)2 = 4mtp∗2[

m2
t − (mW + mb)2

] [
m2

t − (mW − mb)2
]

= 4mtp∗2 ,

thus showing that

p∗ =
1

2mt

√[
(m2

t − (mW + mb)2
] [

m2
t − (mW − mb)2

]
.

Since mb � mW the term inside the square root can be approximated to[
m2

t − (mW + mb)2
] [

m2
t − (mW − mb)2

]
=

m2
t − m2

W

(
1 +

mb

mW

)2 m2
t − m2

W

(
1 − mb

mW

)2
≈

[
m2

t − m2
W − 2mWmb

] [
m2

t − m2
W + 2mWmb

]
=

[
m2

t − m2
W

]2 − 4m2
Wmb

≈
[
m2

t − m2
W

]2
.

Hence to a good approximation

p∗ ≈ m2
t − m2

W

2mt
.

The same result could have been obtained much more quickly by simply neglecting
the b-quark mass.

Substituting this expression into (16.31)

Γ(t→ bW+) =
g2

Wp∗2

16πmt

2 +
m2

t

m2
W


=

g2
W

64πm3
t

(m2
t − m2

W)2

2 +
m2

t

m2
W


=

g2
Wm3

t

64πm2
W

1 − m2
W

m2
t

2 2m2
W

m2
t

+ 1


=

GFm3
t

8
√

2π

1 − m2
W

m2
t

2 1 +
2m2

W

m2
t

 .



17 The Higgs Boson

17.1 By considering the form of the polarisation four-vector for a longitudinally po-
larised massive gauge bosons, explain why the t-channel neutrino-exchange diagram
for e+e− → W+W−, when taken in isolation, is badly behaved at high centre-of-mass
energies.

The longitudinally polarised W travelling in the z-direction has polarisation four-
vector

ε
µ
L =

1
mW

(pz, 0, 0, E) .

Consequently, at high energy (E � mW) the matrix element for the t-channel pro-
cess e+e− →W+

LW−
L alone, will scale as

M2 ∝
(

EW

mW

)4

,

and increases without limit. This is not the case for the transverse polarisation states

ε
µ
− =

1√
2

(0, 1,−i, 0) and ε
µ
+ = − 1√

2
(0, 1, i, 0) .

17.2 The Lagrangian for the Dirac equation is

L = iψγµ∂ µψ − mψψ ,

Treating the eight fields ψi and ψi as independent, show that the Euler-Lagrange equa-
tion for the component ψi leads to

i∂µψγ µ + mψ = 0 .

The Lagrangian (density) for the Dirac equation is

LD = iψγ µ∂µψ − mψψ .

The partial derivatives with respect to each of the four components of the spinor ψi

are
∂LD

∂∂(∂µψi)
= iψγ µ and

∂LD

∂ψi
= −mψ ,

163
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and the Euler-Lagrange equation gives:

∂µ

(
∂L

∂(∂µφi)

)
− ∂L
∂φi

= 0

∂µiψγ µ + mψ = 0

i(∂µψ)γ µ + mψ = 0 .

17.3 Verify that the Lagrangian for the free electromagnetic field,

L = − 1
4 FµνFµν ,

is invariant under the gauge transformation Aµ → A′µ = Aµ − ∂µχ.

The field strength tensor

Fµν = ∂ µAν − ∂νAµ ,
transforms to

Fµν′ = ∂ µ(Aν − ∂νχ) − ∂ν(Aµ − ∂ µχ)

= ∂ µAν − ∂ µ∂νχ − ∂νAµ + ∂ν∂ µχ

= ∂ µAν − ∂νAµ
= Fµν ,

and consequently FµνFµν is invariant under the gauge transformation.

17.4 The Lagrangian for the electromagnetic field in the presence of a current j µ is

L = − 1
4 FµνFµν − j µAµ .

By writing this as

L = − 1
4 (∂ µAν − ∂νAµ)(∂µAν − ∂νAµ) − j µAµ

= − 1
2 (∂ µAν)(∂µAν) + 1

2 (∂νAµ)(∂µAν) − j µAµ ,

show that the Euler-Lagrange equation gives the covariant form of Maxwell’s equations,

∂µFµν = jν .

The Lagrangian density

L = − 1
4 (∂ µAν − ∂νAµ)(∂µAν − ∂νAµ) − j µAµ

= − 1
4 (∂ µAν)(∂µAν) − 1

4 (∂νAµ)(∂νAµ) + 1
4 (∂ µAν∂νAµ) + 1

4 (∂νAµ)(∂µAν) − j µAµ
= − 1

2 (∂ µAν)(∂µAν) + 1
2 (∂νAµ)(∂µAν) − j µAµ

= − 1
2 (∂νAµ)(∂νAµ) + 1

2 (∂νAµ)(∂µAν) − j µAµ .
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Taking the partial derivatives with respect to the field Aµ and its derivatives ∂νAµ
gives

∂L
∂[∂(∂νAµ)]

= −∂νAµ + ∂ µAν and
∂L
∂Aµ

= − j µ ,

and the Euler-Lagrange equation gives:

∂ν

(
∂L

∂(∂νAµ)

)
− ∂L
∂Aµ

= 0

∂ν
[
∂ µAν − ∂νAµ] + j µ = 0

∂ν
[
∂νAµ − ∂ µAν

]
= j µ

∂νFνµ = j µ ,

or equivalently

∂µFµν = jν .

17.5 Explain why the Higgs potential can only contain terms with even powers of the
field φ.

Introducing odd powers of the field φ into the Higgs potential would break the
underlying gauge invariance of the Lagrangian, which is the whole point of intro-
ducing the Higgs mechanism in the first place.

17.6 Verify that substituting (17.30) into (17.29) leads to

L = 1
2 (∂ µη)(∂µη) − λv2η2 + 1

2 (∂ µξ)(∂µξ) ,− 1
4 FµνFµν + 1

2g
2v2BµBµ − Vint + gvBµ(∂ µξ) .

Substituting

φ(x) = 1√
2
(v + η(x) + iξ(x))

into

L = − 1
4 FµνFµν + (∂µφ)∗(∂ µφ) − µ2φ2 − λφ4

− igBµφ∗(∂ µφ) + ig(∂µφ∗)Bµφ + g2BµBµφ∗φ .
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and using µ2 = −λv2gives

L = − 1
4 FµνFµν + 1

2 (∂µη − i∂µξ)(∂ µη + i∂ µξ)

+ 1
2λv

2(v + η)2 + 1
2λv

2ξ2 − 1
4λ(v + η)4 − 1

2λ(v + η)2ξ2 − 1
4λξ

4

− i 1
2gBµ(v + η − iξ)(∂ µη + i∂ µξ) + i 1

2g(∂µη − i∂µξ)Bµ(v + η + iξ)

+ 1
2g

2BµBµ(v + η)2 + 1
2g

2BµBµξ2

= − 1
4 FµνFµν + 1

2 (∂µη)(∂ µη) + 1
2 (∂µξ)(∂ µξ)

+ 1
4λv

4 − λv2η2 − λvη3 − 1
4λη

4 − 1
4λξ

4 − λvηξ2 − 1
2η

2ξ2

+ gBµ(∂ µξ)(v + η) − gBµξ(∂ µη)Bµ

+ 1
2g

2v2BµBµ + g2vBµBµη + 1
2 BµBµη2 + 1

2g
2BµBµξ2 .

Interpreting the terms with three or four fields (B, η or ξ) as three- and four-point
interaction terms, leaves

L = − 1
4 FµνFµν + 1

2 (∂µη)(∂ µη) + 1
2 (∂µξ)(∂ µξ)

− λv2η2 + gvBµ(∂ µξ) + 1
2g

2v2BµBµ − Vint(B, η, ξ) .

which, when the terms are grouped together gives the required expression

L = 1
2 (∂µη)(∂ µη)−λv2η2︸                   ︷︷                   ︸

massive η

+ 1
2 (∂µξ)(∂ µξ)︸         ︷︷         ︸

massless ξ

− 1
4 FµνFµν+ 1

2g
2v2BµBµ︸                      ︷︷                      ︸

massive gauge field

−Vint+gvBµ(∂ µξ) .

17.7 Show that the Lagrangian for a complex scalar field φ,

L = (Dµφ)∗(Dµφ) ,

with the covariant derivative Dµ = ∂µ + igBµ, is invariant under local U(1) gauge trans-
formations,

φ(x)→ φ′(x) = eigχ(x)φ(x) ,

provided the gauge field transforms as

Bµ → B′µ = Bµ − ∂µχ(x) .

This proof just requires care. The original Lagrangian is

L = (Dµφ)∗(Dµφ) = (∂µφigBµφ)∗(∂ µφigBµφ)

= (∂µφ∗)(∂ µφ) + ig(∂µφ∗)Bµφ − ig(∂ µφ)Bµφ∗ + g2BµBµφφ∗ .

Under the transformation

φ(x)→ φ′(x) = eigχ(x)φ(x) and Bµ → B′µ = Bµ − ∂µχ(x) ,
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this Lagrangian becomes

L′ =
[
∂µφ

∗ − ig(∂µχ)φ∗
] [
∂ µφ + ig(∂ µχ)φ

]
+ ig

[
∂µφ

∗ − ig(∂µχ)φ∗
] [

Bµ − (∂ µχ)
]
φ

− ig
[
∂ µφ + ig(∂ µχ)φ

] [
Bµ − (∂muχ)

]
φ∗

+ g2BµBµφφ∗ − g2[Bµ(∂ µχ) + Bµ(∂µχ)]φφ∗ + g2(∂µχ)(∂ µχ)φφ∗

=(∂µφ∗)(∂ µφ) − ig(∂µχ)(∂ µφ)φ∗ + ig(∂µφ∗)(∂ µχ)φ + g2(∂µχ)(∂ µχ)φφ∗

+ ig(∂µφ∗)Bµφ + g2(∂µχ)Bµφ∗φ − ig(∂µφ∗)(∂ µχ)φ − g2(∂µχ)(∂ µχ)φ∗φ

− ig(∂ µφ)Bµφ∗ + g2(∂ µχ)Bµφφ∗ + ig(∂ µφ)(∂µχ)φ∗ − g2(∂ µχ)(∂µχ)φφ∗

+ g2BµBµφφ∗ − g2Bµ(∂ µχ)φφ∗ − g2Bµ(∂µχ)φφ∗ + g2(∂ µχ)(∂µχ)φφ∗

= (∂µφ∗)(∂ µφ) + ig(∂µφ∗)Bµφ − ig(∂ µφ)Bµφ∗ + g2BµBµφφ∗

= L .

17.8 From the mass matrix of (17.40) and its eigenvalues (17.41), show that the
eigenstates in the diagonal basis are

Aµ =
g′W (3)

µ + gWBµ√
g2

W + g′2
and Zµ =

gWW (3)
µ − g′Bµ√
g2

W + g′2
,

where Aµ and Zµ correspond to the physical fields for the photon and Z.

The eigenvalues of the mass matrix of (17.40) are λ1 = 0 and λ2 = g2
W + g′2. The

corresponding eigenvectors can be found by solving the equations

MX =

(
g2

W −gWg
′

−gWg
′ g′2

)
X = λX ,

where M is the mass matrix giving mass terms of the form(
W (3)
µ Bµ

)
M

(
W (3)µ

Bµ

)
.

For λ = λ1 = 0 the eigenvalue equation gives(
g2

W −gWg
′

−gWg
′ g′2

) (
x1
x2

)
= λ1

(
x1
x2

)
= 0

⇒ g2
Wx1 = g′gWx2 ,

and thus the corresponding eigenvalue is:

X1 = 1√
g2

W+g′2

(
g′

gW

)
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For the second eigenvalue,(
g2

W −gWg
′

−gWg
′ g′2

) (
x1
x2

)
= λ2

(
x1
x2

)
= (g2

W + g′2)
(

x1
x2

)
⇒ g2

Wx1 − gWg
′x2 = g2

Wx1 + g′2x1

⇒ −gWx2 = g′x1 ,

and thus the corresponding eigenvalue is:

X2 = 1√
g2

W+g′2

(
gW
g′

)
.

The mass eigenstates in the diagonal basis are therefore(
A
Z

)
=

(
g′ gW
gW −g′

) (
W
B

)
⇒ Aµ =

g′W (3)
µ + gWBµ√
g2

W + g′2
and Zµ =

gWW(3)
µ − g′Bµ√
g2

W + g′2
.

17.9 By considering the interaction terms in (17.38), show that the HZZ coupling is
given by

gHZZ =
gW

cos θW
mZ .

The interaction terms in the Lagrangian arise from

(Dµφ)†(D µφ) =1
2 (∂µh)(∂ µh) + 1

8g
2
W(W (1)

µ + iW(2)
µ )(W(1)µ − iW (2)µ)(v + h)2

+ 1
8 (gWW (3)

µ − g′Bµ)(gWW (3)µ − g′Bµ)(v + h)2

=1
2 (∂µh)(∂ µh) + 1

8g
2
W(W (1)

µ + iW(2)
µ )(W(1)µ − iW (2)µ)(v + h)2

+ 1
8 (g2

W + g′2)Z µZµ(v + h)2 .

Considering the part of the expression involving the Z fields and using the relation
g′ = gW tan θW,

LZ = 1
8 (g2

W + g′2)Z µZµ(v + h)2

=
g2

W

8

(
1 + tanθ

)
Z µZµ(v + h)2

=
g2

W

8 cos2 θW
Z µZµ(v + h)2

=
g2

W

8 cos2 θW

(
v2Z µZµ + 2vhZ µZµ + h2Z µZµ

)
. (17.1)
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The first term in the brackets gives the Z mass:

1
2 m2

ZZ µZµ =
g2

W

8 cos2 θW
v2Z µZµ

⇒ mZ = 1
2

gW
cos θW

v =
mW

cos θW
.

The second term in the brackets of (17.1) gives the trilinear coupling between a
physical Higgs field and two Z fields:

LZZh =
g2

W

4 cos2 θW
vhZ µZµ

= 1
2

gW

cos θW
mZhZ µZµ

= 1
2gZmZhZ µZµ .

Hence the HZZ coupling is

gHZZ = 1
2

gW

cos θW
mZ .

17.10 For a Higgs boson with mH > 2mW, the dominant decay mode is into two
on-shell W bosons, H→W+W−. The matrix element for this decay can be written

M = −gWmWgµνξ
µ(p2)∗ξν(p3)∗ ,

where p2 and p3 are respectively the four-momenta of the W+ and W−.
a) Taking p2 to lie in the positive z-direction, consider the nine possible polarisation
states of the W+W− and show that the matrix element is only non-zero when both W
bosons are left-handed (M↓↓), both W bosons are right-handed (M↑↑), or both are
longitudinally polarised (MLL).
b) Show that

M↑↑ =M↓↓ = −gWmW and MLL =
gW

mW
( 1

2 m2
H − m2

W) .

c) Hence show that

Γ(H→W+W−) =
GFm3

H

8π
√

2

√
1 − 4λ2 (1 − 4λ2 + 12λ4) ,

where λ = mW/mH.

a) and b) Consider the decay H→W+W−

H
W+ W�p2 = (E,p)p3 = (E,�p)

z

Denoting the respective four-momenta of the W− and W+ as p2 = (E, 0, 0, p) and
p3 = (E, 0, 0,−p), the corresponding is
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p1

p2

p3

H

W−

W+

The relevant Feynman rules are a factor igWmWgµν at the HWW vertex and factors
of εµ(p2)∗ and εν(p3)∗ for the final-state W bosons: The matrix element for the
decay is

−iM f i = igWmWgµν ε
µ(p2)∗ εν(p3)∗

⇒ M f i = −gWmWgµν ε
µ(p2)∗ εν(p3)∗ .

Thus the matrix element depends on the four-vector scalar product of the W boson
polarisation four-vectors. The possible polarisation states are:

ε
µ
+ (p2)∗ = 1√

2
(0,−1, i, 0) , ε µ− (p2)∗ = 1√

2
(0, 1, i, 0) and ε

µ
L (p2)∗ = 1

mW
(p, 0, 0, E) ,

εν+(p3)∗ = 1√
2
(0,−1, i, 0) , εν−(p3)∗ = 1√

2
(0, 1, i, 0) and ενL(p3)∗ = 1

mW
(−p, 0, 0, E) ,

where the ± refer to the gauge boson spin pointing in either the +± z-direction. Of
the nine possible combinations, only three give non-zero four-vector scalar prod-
ucts:

ε+(p2)∗ ·ε−(p3)∗ = +1 ,

ε−(p2)∗ ·ε+(p3)∗ = +1 ,

εL(p2)∗ ·εL(p3)∗ = − 1
m2

W
(p2 + E2) .

The spin orientations for these three cases all correspond to spin-0 states as shown
below.

H
W+ W�

z

H
W+ W�

z

H
W+ W�

z

✏+(p3) ✏�(p3)

✏L(p3) ✏L(p2)

✏�(p2) ✏+(p2)
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The energy of each W is E = mH/2:

E2 =
m2

H

4
= p2 + m2

W ,

⇒ p2 = 1
4 m2

H − m2
W ,

⇒ E2 + p2 = 1
2 m2

H − m2
W ,

Therefore the three non-zero matrix elements are:

M↓↓ = −gWmW ,

M↑↑ = −gWmW ,

MLL = +gW
1

mW
(p2 + E2) = +gW

1
mW

(
1
2 m2

H − m2
W

)
,

where the arrows indicate the helicity states of the W bosons.

c) Since the Higgs boson is a spin-0 scaler, the spin-averaged matrix element
squared is just:

〈|M f i|2〉 =M↓↓ +M↑↑ +MLL

= 2g2
Wm2

W +
g2

W

m2
W

(
1
2 m2

H − m2
W

)2

= g2
Wm2

W

2 +

 m2
H

2m2
W

− 1

2 .
The total decay rate is therefore

Γ(H→W+W−) =
p

8πm2
H

〈|M f i|2〉

=
g2

Wm2
W

8πm2
H

(
1
4 m2

H − m2
W

)1/2
2 +

 m2
H

2m2
W

− 1

2
=
g2

Wm2
W

16πmH

1 − 4m2
W

m2
H

1/2  m4
H

4m4
W

− m2
H

m2
W

+ 3


=

m3
Hg

2
W

64πm2
W

1 − 4m2
W

m2
H

1/2 1 − 4
m2

W

m2
H

+ 12
m2

W

m2
H


=

GF m3
H

8π
√

2
(1 − λ2)1/2(1 − 4λ2 + 12λ4) ,

where λ = mW/mH.

17.11 Assuming a total Higgs production cross section of 20 pb and an integrated
luminosity of 10 fb−1, how many H → γγ and H → µ+µ−µ+µ− events are expected in
each of the ATLAS and CMS experiments.
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The number of Higgs bosons produced in both the ATLAS and CMS experiments
is:

NH = L × σpp→ H + X ,

where L is the integrated luminosity:

L =

∫
L dt ,

giving

NH = 20 × 103 fb × 10 fb−1 = 200 000 .

The relevant Standard Model branching fractions are BR(H → γγ) ≈ 0.002,
BR(H→ ZZ∗) = 0.027 and BR(Z→ µ+µ−) = 0.035, and thus

N(H→ γγ) = 2 × 105 × 0.002 = 400 ,

N(H→ ZZ∗ → µ+µ−) = 2 × 105 × 0.027 × 0.0352 = 7 .

Despite the fact that very few H→ ZZ∗ → µ+µ− are produced, such events leave a
very clear signature in the detectors are relatively easily identified.

17.12 Draw the lowest-order Feynman diagrams for the processes e+e− → HZ and
e+e− → Hνeνe, which are the main Higgs production mechanism at a future high-energy
linear collider.

Z

e−

e+

H

Z

W

W

e−

e+

νe

H

νe

17.13 In the future, it might be possible to construct a muon collider where the Higgs
boson can be produced directly through µ+µ− → H. Compare the cross sections for
e+e− → H→ bb, µ+µ− → H→ bb and µ+µ− → γ→ bb at

√
s = mH.

The Feynman diagrams for the three process are all s-channel processes.

p1

p3

H

p2

p4

e−

e+

b

b

H

µ−

µ+

b

b

γ

e−

e+

b

b
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The matrix element for the process e+e− → H → bb can be obtained from the
Feynman rules where the couplings at the two Hff vertices are given by

−i
mf

v
= −i f

2mW
gW ,

and the propagator for the Higgs boson with total decay width ΓH is

1
q2 − m2

H + imHΓH
, .

Hence the matrix element is given by

−iM = v(p2)
[
−i

me

v

]
u(p1) · 1

q2 − m2
H + imHΓH

· u(p3)
[
−i

mb

v

]
v(p4)

M =
memb

v2mHΓH
[v(p2)u(p1)] · [u(p3)v(p4)] for q2 = m2

H .

Since we are in the limit where the masses of the particles can be neglected and
can be written

p1 = (E, 0, 0, E) ,

p2 = (E, 0, 0,−E) ,

p3 = (E, E sin θ, 0, E cos θ) ,

p4 = (E,−E sin θ, 0,−E cos θ) .

The corresponding spinors for the two possible helicity states of each particle are:

u↑(p1) =
√

E


1
0
1
0

 , u↓(p1) =
√

E


0
1
0
−1

 , v↑(p2) =
√

E


1
0
−1
0

 , v↓(p2) =
√

E


0
−1
0
−1

 .
and

u↑(p3) =
√

E


c
s
c
s

 , u↓(p3) =
√

E


−s
c
s
−c

 , v↑(p4) =
√

E


c
s
−c
−s

 , v↓(p4) =
√

E


s
−c
s
−c

 .
There are two possible combinations of intiial-state spinors that will give non-zero
values for v(p2)u(p1) = v†(p2)γ0u(p1):

v↑(p2)u↑(p1) = v↓(p2)u↓(p1) = 2E .

Similarly, there are two possible combinations of intiial-state spinors that will give
non-zero values for u(p3)v(p4):

u↑(p3)v↑(p4) = −u↓(p3)v↓(p4) = 2E .
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Thus, for each of the four helicity combinations giving a non-zero matrix element
at q2 = s = 4E = m2

H

M = ± memb

v2mHΓH
4E

= ±membmH

v2ΓH
.

The spin-averaged matrix element squared is just

〈|M|2〉 = 1
4 × 4 ×M =

(
membmH

v2ΓH

)2

.

Note the isotropic distribution of the final state particles, which is characteristic of
a scalar interaction. The differential cross section (at the peak of the Higgs reso-
nance) is given by:

dσ0

dΩ
=

1
64π2s

〈|M|2〉

=
1

64π2m2
H

(
membmH

v2ΓH

)2

,

⇒ σ0 =
m2

em2
b

16πv4Γ2
H

.

The corresponding expression for µ+µ− → H→ bb is obtained by replacing me by
mµ. The cross section for the QED process e+e− → γ→ bb at

√
s = mH is the now

familiar

σQED =
4πα2

3s
Q2

b =
16πα2

27m2
H

.

Taking mH = 126 GeV, v = 246 GeV, ΓH = 0.004 GeV, α = 1/128, mb = 5 GeV:

σ0
e+e− : σ0

µ+µ− : σQED =
m2

em2
b

16πv4Γ2
H

:
m2
µm2

b

16πv4Γ2
H

:
16πα2

27m2
H

= 2.2 × 10−12 GeV−2 : 9.5 × 10−8 GeV−2 : 7.1 × 10−9 GeV−2 .

Therefore, the cross section for e+e− → H → bb is there orders of magnitude
smaller than the QED process and it would be almost impossible to detect Higgs
production in s-channel e+e− annihilation. On the contrary, due to the larger muon
mass, the cross section e+e− → H → bb is an order of magnitude greater than
the pure QED process, motivating the idea of muon collider (whether it is actually
possible to construct such a machine is a different question).



Errata

p 56: Question 2.8: The reaction should (of course) read:

p + p→ p + p + p + p .

p 56: Question 2.9: The question should ask for the minimum opening angle; the
maximum opening angle is (rather trivially) π.

p 57: the factor of 1
4 in the last line of Question 2.16 should be removed, i.e. Find

the eigenvalue(s) of the operator Ŝ2
= (Ŝ 2

x+Ŝ 2
y+Ŝ 2

z ), and deduce that the eigenstates
of Ŝ z are a suitable representation of a spin-half particle.

p 78: the mass of the pion in Question 3.1 should be 140 MeV, not 140 GeV.

p146: In the matrix in the footnote B22 → B21.

p177: Question 7.2 should be ignored. There was an error in my original solution,
whereby finding a closed form was relatively straightforward - it isn’t!

p231: there is a typo in the equation at the bottom of the page:
1
2

[
S2 − S1

2 − S1
2
]
→ 1

2

[
S2 − S2

1 − S2
2

]
.

p312: In Figure 12.5, the arrows on the d and νµ are the wrong-way around, only
left-handed chiral states participate in the weak charged-current.

p315: Line four contains a typo, the third reaction should read νµu→ µ+d

p337: In Figure 13.16, the bottom two diagrams should (of course) show a π+.

p341: There is a typo (p1 → p2) in Equation (13.13), which should read

∆φ12 = (E1 − E2)
[
T −

(
E1 + E2

p1 + p2

)
L
]

+

m2
1 − m2

2

p1 + p2

 L .

This typo is repeated in question 13.1.

p362: In question 13.2, there is a spurious 4 in the denominator of the argument of
the sin2(...) in the second equation, it should read

sin2(2θ) sin2
(
∆m2[GeV2]L[GeV−1]

4Eν[GeV]

)
→ sin2(2θ) sin2

(
1.27

∆m2[eV2]L[km]
Eν[GeV]

)
.
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176 Errata

The expression in the main text is correct.

p363: Part d) of question 13.9 should be ignored - it is poorly worded. The intention
was to get the student to consider the case where the decay products of the pion
were close to being perpendicular to the direction of the boost. Close to θ∗ ∼ π/2
the transverse momentum is approximately p∗ and the longitudinal momentum is
primarily due to the Lorentz boost.

p427: The last matrix element should readM2
LR notM2

RR.

p458: Question 16.7 should read µ−νµud.

p498: Question 17.8 the expression for the fields should read:

Aµ =
g′W (3)

µ + gWBµ√
g2

W + g′2
and Zµ =

gWW (3)
µ − g′Bµ√
g2

W + g′2
,


