MATH 431 — May 2010: Solutions

All problems are similar to homework problems or material covered in the lectures.

1. (a) In the lecture we have derived
OH

Po = —2—.
0qo

Therefore, pg is constant in time if H does not depend on gqq.

One example for such a system is given in part (b) below, where H does not depend
on ¢. A second example would be a one dimensional harmonic oscillator (in x) embedded
in two dimensions such that there is no y dependence and therefore the momentum p, =
constant.

(b) In polar coordinates

x = rsinfcos¢,
= rsinfsin g,
z = rcosf,
the kinetic energy is given by Bookwork

%m [7*2 + (r8)% + (rsin 9(2))2] ,

and with the potential energy V' the Lagrangian is given by

L = %m [7*2+(T9')2+(rsin9q.5)2} - V.
Now
= B—L = mr
pT' - 8T' - 9
L )
b= 22 = wr,
Dy = g—g = mr?sin?0¢.
Hence

H =Y pidy = L= mi? 4+ mr? - mr?sin? 03 — 2= (72 + 1202 412 5in” 062 + V
= % (7;2 + 1262 4 r* sin® 9(;52> +V
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With this we get
OH ov

T 06 T Tos

An axisymmetric potential does not depend on ¢, so py is a constant of the motion,
and the angular momentum about the symmetry axis is conserved.

We consider the line element on a two dimensional surface
ds?> = d6? +sin®6de?.

The corresponding metric is

(1 0 o w (1 0
g“”_<0 sinze)’ and its inverse g —(0 1 )

sinZ 0
Now we want to determine the infinitesimal transformations
or — 0" 4+ €eCH(0,9).
For this we want to find the two functions

A(0,¢) = C1(97¢) and B(67¢) = C2<97¢)7

such that ds? remains invariant under the transformations

0 — 0+¢€A0,9),

¢ — ¢+eB(0,9),
with which sinf — sin(0+¢eA) ~ sinf + €A cosf
and sin?@ — sin? @ + 2eAsinf cosf 4+ O(e?).

Keeping terms to first order in € we get the transformations

HA HA
a6 — (1+e%)d9+ea—¢d¢,

0B 0B

0A 0A
2 2
A9 — (1+2¢57)do +2€—6¢d0dgb,
0B 0B

2 = 2 i
do (1+26 8¢)dgb + 2¢ 69d0d¢’

sin? 0 d¢? — sin®6 (1 + 2¢ g—§>d¢2 +sin292688—§d0d¢+261481n0 cos 0 dg? .



We now demand that ds? remains invariant:

d6? + sinfd ¢®> — 6% +8inOdp? 4 veereeeaaanns ,

terms must vanish

Thus we obtain the following constraints:

0A df
2'—: p— p— / = —
do- : 50 0=A=A(¢) = f(9) 5’
0B oB dfcos@ cos 6
2 R g = —
d¢” : sin 98¢+ASIHQCOSQ 0= 96~ dé o = B f(¢>sin9+g(0)’

f(9)
sin? 6

0A B
dfde : —-i-sm 96——0:>f”+sin29<

9 50 + g'(9)) =0

= f"(¢) + f(¢) = —sin® 0 ¢’ (0) = constant = c.

Solving the two differential equations for f and g we get

f"+f=c = f=asing+bcoso+c,

sin? Gd———c:> _Ccose+d
do 9= sin
For A and B we thus arrive at
A = f'(¢) = acos¢ —bsing,
B = Cosg(asmqﬁ—l—bCOSd)—f—c) Cose—i—d = —C?Sg(asinqﬁ—f—bcos@—i—d
sin 0 sin 0 sin 0

We are left with the three parameters a, b and d, which in the following we denote as
«, (0 and ~, respectively:

A = «acos¢p+ fBsing,
cos 6

B = (asing — fcos ) +

 sinf

Hence we are left with three degrees of freedom needed to parametrise the transfor-
mation.

The metric ds? is the metric on the surface of a sphere. The transformations are
generated by the rotations in (0, ¢) of a vector fixed at the origin. The generators
associated with the three degrees of freedom are the operators for the three components
of the angular momentum, .J;. They obey the SU(2) algebra,

[JZ',JJ‘] = iGiijk.



3. (a) Two-particle states are defined by

Ip1,p2) = a'(p1)a’(p2)|0),

with |p1, p2) = |p2, p1) as [af(p1),al(p2)] = 0.
We also know that Bookwork

Hence

(P1, P5lP1,P2) =
= (0]a

= (0la(py)a’ (p1){a’ (p2)a(py) + (2m)°2p78(p2 — P3)}0)
)?

[a(p1), a'(p2)] = (27)°2pY3(p1 — P2) .
Ola(py)a(py)a’ (p1)a’ (p2)[0)

(Ofa(
(0la(p}){a’ (p1)a(py) + (27)*2p76(p1 — Ph)}al (p2)]0)

+ (2m)*2pY6(p1 — ph)(0la(p})a' (p2)|0)

= (2m)°2p58(p2 — P5) (0l{a’ (p1)a(py) + (27m)*2p73(p1 — P1)}0)

+ (2m)*2pY5(p1 — Ph)(0l{a’ (p2)a(p}) + (27)*2p35(p2 — Pi)}HO)

= (2m)%(2p?) (2p9) {6 (P1 — P})d(P2 — Pb) + 6(p1 — P4)d (P2 — P1)} -

(b) The number operator is

With this

So we have

N = s [ a0,
{ dgp/ a'(p)a(p’), a (p)
7r) / 2p° o ()a(p). af(p)]
- (271T)3 / Czljﬁ, {a!(®")[a(p"). a' (P)] + [a' (p), a' (p)]a(p) }
- (2;)3 / (;2%, a'(p)2p"° (27)*6(p — p)
=a'(p).

Na'(p) —a(p)N = a'(p)
= Nal(p) =d'(p)(N +1),

and N|p;g...

p.) = Na'(p1)...a'(p,)|0)
= d'(p )(N 1)a'(ps) . ..a'(pn)[0)
= a’(p1)a’ (p2)(N +2) ...a"(pn)[0)
= ... =dl(p1).. (Pn)(N+”)\0>

=nal(p1)...al(p >|0> (as a(p)|0) =0 and so N|0) = 0)
= n|p1 -Pn )



4. (a) The electromagnetic field strength tensor is given by
F,, = 0,A,—-0,A,,
and the electromagnetic Lagrangian is

1

Lem. = _ZFHVFLW
1
= —5(0uAy = 0,A4,) (0" A" — 0" A¥)
1
= —ann"ﬂ(aaAﬂ — 0pAa)(0,A, — ,A,) .

The Euler-Lagrange equations of motion for this Lagrangian are obtained from

B oL \_ 9L _
0zv \0(0,4,)) ~ 94, ~

Now

oL _ o, L O oL =0
04, o \9(0,4,)) ~

Hence calculate

8L 1 o 124 € €
= - 177 ”776 [(5255 - 5?3%)(3“1% - auAu)

d(9sA.)
+ (aozAﬁ - 8514&)(62516/ - 525;)}
1
= = [0 0™ = nT0) (0, As = 0,A,)
+ (Oadp — 95 Aa) (1170 = n™n™)]
= — 34 [0°A¢ — 9°A°]
= —F’.
%0 ) OL )
= —_~ _Fo _—
92 (8(85A6)) 92 0

which are the Maxwell equations in the absence of sources.
(b) _
A, — A, = A+ 0.\

Now
F,. = 0,A, —0,A, = 0,(A, +0,A) —0,(A,+ I,N)
= 0,A, —0,A, 4+ 0,0,A—0,0,A
= 0udy = 0,A, = Fu
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(a)

(b)

as the derivatives of the scalar function A commute. With F),, also Lc . is invariant
under the transformation.

The Lagrangian for a massive photon without sources is given by

1
— 5 P F™ + m?A, A"
As before the first term is invariant under the transformation considered above. How-

ever, the second term transforms as
m2A, AP — m2A, AP = m?A, AP+ m?(0,A0" A + 9, AA* + AL0MA).

The extra terms do not vanish, so the mass term would not be invariant under the
transformation, i.e. break the invariance. Insisting on the invariance therefore forbids
the mass term, i.e. m? = 0 and the photon has to remain massless.

. The Dirac spinor for the hydrogen ground state (with spin up) is given by

1
0
1a cos 6
iae'? sin 6

P(r,0,0) = R(r)

For the normalisation we calculate:

1 = /di”ww = /47rr2dr|R|2(1+a2)
= N? ::/ r?|R|*dr = [4r(1+a?)]7t.
0

(h =1 here and in part (b))

0

.0 0

LZ - _Z% = dej - R 0 Qé/lvb?
ip

iae'? sin 6

so ¢ is NOT an eigenstate of L.

(L2) = /d?’r@DTLz@ZJ = 27r/r2drd0080|R|2a25in20.
Now

1
2 4 8T 1

d 91_ 20 = 2—— = — LZ = — 27

/_1 cos 0(1 — cos” ) 3 3 = (L,) 3¢ In(1 1 a?)



2a?
3(1+a?)’
In the H-atom, v/c ~ o = (L,) = O(v?/c?) is a relativistic effect which is due to
the spin-orbit interaction. In the non-relativistic limit a — 0, and the four-component

Dirac spinors for the spin-up and spin-down states reduce to (decoupled) solutions of
the Schroedinger equation multiplied by the two-component Pauli-spinors.

= <Lz> =

(c) Bookwork
+1 0 0 0
1 0O -1 0 0
S: = 5hE =350l g o 41 0
0 0 0 -1
1
= S, = -hR . 0
N ia cos 6 ’
—iae*® sin @
1
0 1 h
hence J. = (L:+S:)¢ = ShR| . o | = 5he = L = +5.
iae'? sin 0

6. (a) The Lagrangian density is invariant under global transformations of the phase of the
field ¢,

¢ — .

(b) If the coefficient of the highest power, i.e. A, is negative, then there is no stable
vacuum as the system could gain infinite potential energy by choosing large field
values. Therefore the case A < 0 is not physical. In contrast, the Lagrangian with
p? >0 and A > 0 descibes a charged, interacting scalar field with mass my = p.

(c) The choice 2 < 0 and A > 0 leads to spontaneous symmetry breaking (SSB). To see
this, we first write the Lagrangian in terms of two real components of ¢, ¢; and ¢o:

1 1 1
£ =5 ((u61)* + (Du62)?) = 5367 +63) — JA(6F + 63)°.

The potential is then given by
1 1
Vg1, ¢2) = §N2(¢% +¢5) + 1)\(¢% +¢3)%,

with the minima determined by

0
8;; = 120 + A7 + 03)di = i (1 + A(¢T + ¢3)) =0




= p” + (@1 +¢3) =0.

Gy =y =0, (e =0

as our new vacuum after SSB. Expanding the field around the new vacuum we can write

We can choose

¢(z) = v +n(z) +i((z)

and finally obtain for the Lagrangian £’ after SSB

L= = ((0un) + (0,0)%) + #°n* + constant + (cubic & quartic terms in n & ().

N =

The term p?n? is a mass term for the field n with m, = \/—2u2. There is no corresponding
mass term for the field ¢ which is a massless scalar field and hence a Goldstone Boson.

7. (a) Setting u = 1/ay the differential equation becomes

du bl
amE ot

Truncating at lowest order, the solution is given by u(E) = u(u) + bo In(E/p), with a
free integration constant u(u). After sustituting back u — 1/a; this is the proposed
solution, with the ‘initial condition’ o (u).

(b) The proposed definition is equivalent to the substitution

i = Aqcp exp { ! ]
bOO‘S(N)

with which we obtain the form

1

‘“(E)::bonmE/AQCD)'

At energies £ — Aqcp the couplings develops a pole, the so-called Landau-pole.
For large values of the coupling the perturbative series breaks down, and the Landau
pole indicates the non-perturbative region of QCD. At large energies, the coupling
becomes small. This so-called ‘asymptotic freedom’ of QCD as an SU(3) gauge field
theory allows us to perform perturbative calculations on the parton level which in turn
reliably describe QCD processes at large momentum transfer. The sketch should show
a monotonically decreasing positive function, indicating the Landau pole at E = Aqcp
and a small value of a; at large energies.
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(c) The solution valid at the next order of perturbation theory is obtained by inserting
our lowest-order solution into the differential equation including the next order term

~ by, leading to
du bl

_ .
dmE " ° " byIn(E/Agon)

The solution of this differential equation is given by

u(E) = ang) — boIn(E/Aqcn) + (b1/bo) InIn(E/Aqcn)

with a suitable redefinition of Aqcp to next order so that the integration constant
vanishes (formula not requested).



