
MATH 431 — Exam Summer 2011: Solutions

All problems are similar to homework problems or material covered in the lectures.
Marking as indicated on the question sheet.

1. Poincaré group in 1+2 dimensions; Pauli-Lubanski vector

ds2 = dt2 − dx2 − dy2 (1)

(a)

gµν =





1 0 0
0 −1 0
0 0 −1



 , gµν =





1 0 0
0 −1 0
0 0 −1



 .

The line element is invariant under 3 translations (dt, dx and dy), 2 boosts (dtdx,
dtdy) and 1 rotation (dxdy). The generators associated with the transformations of
the three translations are: P0 = i∂t, P1 = −i∂x and P2 = −i∂y. (The generators
of the boosts, K1 and K2, and the generator of rotations in the (x, y) plane, J3, are
the 1+2 dimensional versions of the usual 1+3 dimensional generators which were
discussed in the lectures.) Bookwork

(b)

Wµ = −
1

2
ǫµνρσJνρPσ ,

W 0 = −
1

2
ǫ0ijkJijPk =

1

2
ǫ0ijkJijPk =

1

2
ǫkijJijPk = JkPk ,

W i = −
1

2
ǫi0jkJ0jPk −

1

2
ǫij0kJj0Pk −

1

2
ǫijk0JjkP0 =

−
1

2
ǫi0jkJ0jPk −

1

2
ǫi0jkJ0jPk +

1

2
ǫ0ijkJjkP0 =

+
1

2
ǫ0ijkJ0jPk +

1

2
ǫ0ijkJ0jPk +

1

2
ǫ0ijkJjkP0 =

− ǫ0ijkJ0jPk −
1

2
ǫ0ijkJjkP0 = ǫijkKjPk − JiP0 .

In the case of the 1+2 dimensional line element Eq. (1), embedded in our usual 1+3
dimensions,

~K = (K1, K2, 0) and ~J = (0, 0, J3) .

For m = 0 we can choose, without loss of generality, Pµ = (p, 0, p, 0), and hence
Pµ = (p, 0,−p, 0). Then

W 0 = 0 ,

W 1 = ǫ1jkKjPk = ǫ123K2P3 + ǫ132K3P2 = 0 ,

W 2 = ǫ2jkKjPk = ǫ213K1P3 + ǫ231K3P1 = 0 ,

W 3 = −J3P0 + ǫ3jkKjPk = −J3P0 + ǫ312K1P2 + ǫ321K2P1 =

= −J3P0 −K1P0 = −(J3 +K1)P0 .
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For m > 0 we can evaluate the Pauli-Lubanski vector most conveniently in the rest
frame, hence Pµ = (m, 0, 0, 0). Then

W 0 = 0 ,

W 1 = 0 ,

W 2 = 0 ,

W 3 = −J3m.

2. (a) The Hamiltonian H0 for a free real scalar field is

H0 = 1
2

∫

(

φ̇2 + (∇φ)2 +m2φ2
)

d3x .

From the Heisenberg equation of motion for the generalised momentum operator π
and the canonical commutation relations we calculate:

ih̄π̇(x) = [π(x, t), H]

= − [

∫

d3x′ ( 1
2
π(x′)2 + 1

2
(∇′φ(x′))2 + 1

2
m2φ(x′)2

)

, π(x)]

= − 1
2

∫

d3x′ ((∇′φ(x′)) [∇′φ(x′), π(x)] + [∇′φ(x′), π(x)] (∇′φ(x′)))

− 1
2
m2

∫

d3x′ (φ(x′)[φ(x′), π(x)] + [φ(x′), π(x)]φ(x′))

= − ih̄

∫

d3x′ ((∇′φ(x′)) . (∇′δ(x− x′)) +m2φ(x′)δ(x − x′)
)

= ih̄

∫

d3x′ (((∇′)2φ(x′)
)

δ(x − x′) −m2φ(x′)δ(x− x′)
)

= ih̄
(

∇2φ(x) −m2φ(x)
)

.

We now use (as derived in the lecture) that the generalised momentum π = ∂L
∂φ̇

for

the free Klein-Gordon field is π = φ̇, and hence immediately get the Klein-Gordon
equation

φ̈(x) = ∇2φ(x) −m2φ(x) ,

or, written with the usual d’Alembert operator (⊓⊔ ≡ ∂µ∂µ ):

(

⊓⊔ +m2
)

φ = 0 .

(b) Inserting the given solution

φ(x, y) =

∞
∑

n=1

φn(x) cs
(nπy

R

)
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into the five-dimensional Klein-Gordon equation and carrying out ∂2/∂y2, one obtains
a four-dimensional Klein-Gordon equation for each of the Fourier coefficients φn(x):

(

∂2
0 −∇2 +m2 +

(nπ

R

)2
)

φn(x) = 0 .

Therefore the given φ(x, y) is a solution of the five-dimensional Klein-Gordon equation
if the φn(x) are solutions of the four-dimensional equations. The masses mn of the
fields φn are given by

m2
n = m2 +

(nπ

R

)2

.

If the five-dimensional mass m is zero, we get the equally spaced mass spectrum

mn =
nπ

R
.

The infinite set of particles are called Kaluza-Klein tower.
Bookwork

3. (a) (i)
{γµ, γν} = 2ηµν1I4 ⇒ γµγν + γνγµ = 2ηµν1I4 ,

where 1I4 is the 4-dimensional identity matrix. Taking the trace, and using tr(AB) =
tr(BA), tr1I4 = 4, we get

tr[γµγν ] = 4ηµν .

(ii)
γµγνγργσ = − γνγµγργσ + 2ηµνγργσ

= γνγργµγσ − 2ηµργνγσ + 2ηµνγργσ

= − γνγργσγµ + 2ηµσγνγρ − 2ηµργνγσ + 2ηµνγργσ

(iii) From (ii) we have

γµγνγργσ + γνγργσγµ = 2ηµσγνγρ − 2ηµργνγσ + 2ηµνγργσ .

Taking the trace and using

tr[γνγργσγµ] = tr[γµγνγργσ] ,

together with tr[γµγν ] = 4ηµν from part (i), we find

tr[γµγνγργσ] = 4[ηµνηρσ − ηµρηνσ + ηµσηνρ] .

(b) The Dirac equation reads (iγµ∂µ −m)ψ = 0 , hence

γµ∂µψ + imψ = 0 ⇒ (∂µψ
†)γµ† − imψ† = 0 .
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In addition we need to remember that ψ̄ := ψ†γ0 (and γµ † = γ0γµγ0 as given in the
question). Then

(∂µψ
†)γ0γµγ0 − imψ† = 0

and, multiplying with γ0 from the right,

(∂µψ̄)γµ − imψ̄ = 0 .

Using this we get

∂µ(ψ̄γµψ) = (∂µψ̄)γµψ + ψ̄γµ(∂µψ) = (imψ̄)ψ + ψ̄(−imψ) = 0 .

(c) (i) It is best to work out the anti-commutator for each specific µ. For µ = 0 we have:

γ5γ0 = iγ0γ1γ2γ3γ0 = −iγ0γ1γ2γ0γ3 = iγ0γ1γ0γ2γ3

= − iγ0γ0γ1γ2γ3 = −γ0γ5 ⇒ {γ5, γ0} = 0 ,

γ5γ1 = iγ0γ1γ2γ3γ1 = −iγ0γ1γ2γ1γ3 = iγ0γ1γ1γ2γ3

= − iγ1γ0γ1γ2γ3 = −γ1γ5 ⇒ {γ5, γ1} = 0 .

The other two cases, with γ2 and γ3, follow the same steps, with the same number of
sign changes when commuting γ2 or γ3 from right to left.

(ii) With (i) we can write

ūeγ
µ 1

2

(

1 − γ5
)

uν = ūe
1
2

(

1 + γ5
)

γµuν ,

which contains the left-handed electron field ūL
e , as

ūL
e = uL †

e γ0 = u†e
1
2

(

1 − γ5
)

γ0 = ūe
1
2

(

1 + γ5
)

.

4. (i) The decay µ → eγ is allowed by kinematics and w.r.t. charge conservation, but is
forbidden in the Standard Model as it would violate the separate conservation of the
lepton numbers Nµ and Ne. Empirically, Ne,µ,τ are conserved and the decay µ→ eγ
is not observed. Bookwork
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(ii) Feynman diagram for µ− → νµ e
− ν̄e in the Standard Model to lowest order:

−

W

e −

e

_

The solid ‘external’ lines stand for the incoming and outgoing spin-1/2 particles, the
muon, electron, muon-neutrino and electron anti-neutrino. The wavy internal line is
the propagator of the W− boson, the carrier of the weak interaction. It mediates the
transition from the initial state µ− to the final state νµ and creates the e− and ν̄e in
the final state. The solid dots denote the vertices of this weak interaction.
The algebraic expressions for the different elements are:

– incoming µ−: spinor u

– outgoing νµ: spinor ū

– outgoing e−: spinor ū

– outgoing ν̄e: spinor v

– vertices: −i g√
2
γα 1

2
(1 − γ5) and −i g√

2
γβ 1

2
(1 − γ5), with weak coupling constant g

– propagator: iηαβ/(q
2 − m2

W ), where q is the four-momentum transfer and mW is
the mass of the W boson Bookwork

(iii) The momentum transfer squared, q2, is of the order of (but limited by) m2
µ, which

is very small compared to m2
W . Thefore the propagator is well approximated by

−iηαβ/m
2
W . This is a very strong suppression factor, which would not be present if

the W would be massless. Bookwork

(iv) The τ lepton is much heavier than the µ or the e, therefore it can decay into both:

τ− → ντ e
− ν̄e , τ− → ντ µ

− ν̄µ .

The decays are very similar, with only small differences due to the different masses
of the final state particles. In addition, as the τ is also heavier than light hadrons, it
can decay in many hadronic final states like pions (the ντ must always be there due
to Nτ conservation). In these cases the W intially couples to a quark pair which then
hadronises. One example is the decay

τ− → ντ π
− π0 .

Bookwork
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5. (i) First step:

iσ2 =

(

0 1
−1 0

)

, and

(

0 1
−1 0

) (

0 −1
1 0

)

=

(

1 0
0 1

)

,

so iσ2 is unitary.

Second step: Prove by explicit matrix multiplication that σ2 σ
⋆
a σ2 = −σa (i = 1, 2, 3).

For i = 1 we have e.g.

σ2 σ
⋆
1 σ2 =

(

0 −i
i 0

) (

0 1
1 0

) (

0 −i
i 0

)

=

(

0 −1
−1 0

)

= −σ1 .

Third step: Choose W = iσ2, and with σ⋆
2σ

⋆
2 = 1I = σ2σ2 and the result of step two

we write:

W †U⋆W = − iσ†
2U

⋆iσ2 = σ2 exp
(

− i
2
θaσ

⋆
a

)

σ2

= σ2

(

1I −
i

2
θaσ

⋆
a −

1

4

1

2!
θaθa −

i

8

1

3!
θaθaθbσ

⋆
b − . . .

)

σ2

=

(

1I +
i

2
θaσa −

1

4

1

2!
θaθa +

i

8

1

3!
θaθaθbσb − . . .

)

= U .

Taking the complex conjugate of

W †U⋆W = U

we now also have
W †⋆UW ⋆ = U⋆

and as W = iσ2 = W ⋆ we arrive at the desired relation

U⋆ = W † U W .

Bookwork

(ii) In the Standard Model, fermion and gauge boson masses are obtained in a gauge
invariant way through electroweak symmetry breaking which is mediated by a Higgs
potential. Because of the unitary equivalence between the fundamental and the com-
plex conjugate representations of SU(2), gauge invariant mass terms for both up- and
down quarks (which are grouped together in SU(2) doublets) can be constructed from
only one complex Higgs doublet. In other words, it is due to this special property of
SU(2) that the Higgs sector in the Standard Model is the minimal one resulting in
only one physical Higgs boson.

Bookwork
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6. (i)

L =
1

2
(∂µφi)

2 −
1

2
µ2φ2

i −
1

4
λ(φ2

i )
2

with µ2 < 0 and λ > 0. The first term in the Lagrangian contains the kinetic terms of
the three fields which lead to the propagators in the Feynman rules. The second and
third term are the quadratic and quartic terms of the scalar potential. The coefficient
λ is chosen positive as otherwise there would be no stable vacuum. Only with µ2 < 0
we get a non-trivial vacuum which allows for spontaneous symmetry breaking. This
leads to mass terms (quadratic in the field) and interaction terms which lead to cubic
and quartic vertices in the Feynman rules. Bookwork

(ii)

L =
1

2

(

(∂µφ1)
2 + (∂µφ2)

2 + (∂µφ3)
2
)

−
1

2
µ2(φ2

1 + φ2
2 + φ2

3) −
1

4
λ(φ2

1 + φ2
2 + φ2

3)
2 .

The potential is

V =
1

2
µ2(φ2

1 + φ2
2 + φ2

3) +
1

4
λ(φ2

1 + φ2
2 + φ2

3)
2 .

For spontaneous symmetry breaking we need a non-trivial minimum of the potential:

∂V

∂φi

=
(

µ2 + λ(φ2
1 + φ2

2 + φ2
3)

)

φi = 0 ,

so we require
µ2 + λ(φ2

1 + φ2
2 + φ2

3) = 0 .

We choose the non-vanishing vacuum expectation value to be

〈φ1〉 =

√

−
µ2

λ
= v ,

so the vacuum (after spontaneous symmetry breaking) is Φ0 = (v, 0, 0) . We now
expand φ1 around the new vacuum (keeping φ2 and φ3):

φ1(x) = v + h(x) .

Inserting this into the Lagrangian we get

1

2

(

(∂µφ1)
2 + (∂µφ2)

2 + (∂µφ3)
2
)

−
1

2
µ2((v+h(x))2+φ2

2+φ
2
3)−

1

4
λ((v+h(x))2+φ2

2+φ
2
3)

2

and with −µ2 = v2λ we arrive at

L =
1

2
((∂µh)

2 + (∂µφ2)
2 + (∂µφ3)

2)+

v2λ

2
(h2(x) + v2 + 2vh(x) + φ2

2 + φ2
3) −

λ

4
(6v2h2(x) + . . .) =

1

2

(

(∂µh)
2 + (∂µφ2)

2 + (∂µφ3)
2
)

− λv2h2(x)+

cubic and quartic interaction terms + constant .
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Note that the terms quadratic in φ2 and φ3 have cancelled, so there are no mass terms
for these fields. Hence the Lagrangian, after SSB, describes two massless ‘Goldstone
bosons’ and one massive scalar Higgs field h with mass

√

−2µ2.

7. (i) Setting u = 1/αs the differential equation becomes

du

d lnE
= b0 +

b1
u
.

Truncating at lowest order, the solution is given by u(E) = u(µ) + b0 ln(E/µ), with a
free integration constant u(µ). After sustituting back u → 1/αs this is the proposed
solution, with the ‘initial condition’ αs(µ).

(ii) The proposed definition is equivalent to the substitution

µ = ΛQCD exp

[

1

b0αs(µ)

]

with which we obtain the form

αs(E) =
1

b0 ln(E/ΛQCD)
.

At energies E → ΛQCD the coupling develops a pole, the so-called Landau-pole. For
large values of the coupling the perturbative series breaks down, and the Landau
pole indicates the non-perturbative region of QCD. This is the region where quarks
and gluons are confined into colourless hadrons (baryons and mesons), which are the
observed degrees of freedom at low energy scales.
At large energies, the coupling becomes small. This so-called ‘asymptotic freedom’ of
QCD as an SU(3) gauge field theory allows us to perform perturbative calculations
on the parton level which in turn reliably describe QCD processes at large momentum
transfer, like e.g. jet-production.
The sketch should show a monotonically decreasing positive function, indicating the
Landau pole at E = ΛQCD and a small value of αs at large energies.

(iii) The solution valid at the next order of perturbation theory is obtained by inserting
our lowest-order solution into the differential equation including the next order term
∼ b1, leading to

du

d lnE
= b0 +

b1
b0 ln(E/ΛQCD)

.

The solution of this differential equation is given by

u(E) =
1

αs(E)
= b0 ln(E/ΛQCD) + (b1/b0) ln ln(E/ΛQCD) ,

with a suitable redefinition of ΛQCD to next order so that the integration constant
vanishes (formula not requested).
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