MATHA431 Modern Particle Physics Solutions 6
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so 1 is not an eigenstate of L.
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In H-atom , v/c ~ a = (L,) = O(v?/c?). This is a relativistic effect - spin-—orbit interac-
tion.
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4. We consider an electron in a constant magentic field B= (0,0, B) with B > 0.

(a.)
The vector potential
A* = (0,0, Bz, 0)

(b.)
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where, as usual, p= —iV.



(c.) Assuming a solution of the form
¢(x) = p(&)e P!, x(2) = x(B)e "
Inserting into the equations from (b.) these equations become
(E—m)¢(&) = & - (7 — eA)x(&)
(E+m)x(&) =& - (5 - eA)¢(@)

Substituting x(Z) from the second equation into the first and repeating the steps that
we too in class when deriving the gyromagnetic factor from the Dirac equation, we get

(E* —m?)$(@) = (5 — eA)® — &5 - Blg(%)
= [p® + €*B*z® — 2ep, Bz — e, B]¢(%)
Since p,, p, commute with x, we can seach for solutions of the form
¢(&) = e/ PrviP=2) f(z)

where p, and p, are c-numbers and f(z), as ¢(Z), is a two component spinor. The equation
for f(x) becomes

= % + (py — eBx)? — eBo.]f(z) = (E? — m? — p?) f(x)

f(z) can be taken to be an eigenfunction of o, with eigenvalues 0 = +1, 0,f = of. Then

o+ 5B~ DL (a) = (B —m? — 52 + eBo) f(x)

This is formally identical to the Schrodinger equation of an harmonic oscillator with fre-
quency 2|e|B. The energy levels are therefore given by
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E? —m? —p?+eBo=(n+ 5)2|6|B

or
E=m?+p*>+ (2n+1+0)le|B]?

Observe that there is a continuous degeneracy in p, and p,, as well as a discrete degeneracy
E(’n,pz,O' = +1) = E(n +1,p,0= _1)'

In the nonrelativistic limit p, << m?, (2n + 1)|e|B << m? the nonrelativistic limit there-
fore gives
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with wp = |e|B/m. These are the Landau levels of nonrelativistic quantum mechanics.



