MATH 431 — May 2019: Solutions

All problems are similar to homework problems or material covered in the lectures.

1.
a. The Lagrangian is a function of the coordinates, velocities and possibly of time.
Under ¢ — g + dq = q + €h, where ¢ is an infinitesimal constant, we have §L = % (eA).
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From the Euler-Lagrange EOM we have 6— = i@_ and therefore 0L = % (6—,5(]) . I
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With the definition of @) as
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9q

we note that @) is a constant of the motion.
b. With 6g = ¢ and L = L(q, q),

We also note that ¢ at time ¢’ =t + ¢ is given by
q(t +€) =q+e¢=q+dq.

Hence, the symmetry correspond to invariance under time translation.
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i.e. the conversed current coincides with the Hamiltonian. The derivation shows that
when the Langrangian does not depend explicitely on time, i.e. %—f = 0, corresponds to
time translation invariance, and consevation of the total energy H. In energy conserving
systems time is a cyclic coordinate and the Lagrangian does not depend explicitely on the
time coordinate, but only via the implicit dependence of the coordinates and velocities on

time. Hence for such systems we have L = L(q, q).



ds? = d6? + sin® 0dg?
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2a.

We want to find functions

A(Q, ¢) = C1(07¢)
and B(6, ) = ¢*(0, ¢)

such that ds? remains invariant under the transformations.

0 — 0+ cA(l, o)

¢ — ¢+eB(0,9)
sinf — sin(f + €A) ~ sinf + €A cos

sin? @ — sin® 0 + 2eAsinf cos + O(€?)

Keeping terms to first order in €

0A 0A
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dp = e7d0 + (1+ 5 2)dg

0A 0A

2 oA, o oA
do —>(1+2689)d9 +268¢d9d¢

0B 0B

2 ob ., . 9 ob
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B B
sin? §d¢? — sin? 9(1 + 26%)@2 + sin? 926%—9d9d¢ + 2e A sin @ cos 0dg?

we demand that ds? remains invariant.
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terms that vanish

demanding that the additional terms vanish we obtain the following constraints

0A df
2 D — = = = / = —
do- - 50 0=A=A(¢) = f'(9) 0
) 0B ) 0B df cosf cos
2. 2 —_— = _— = — — = —
d¢” : sin 98¢+ASIHQCOSQ 0= 96 d¢sin9:>B f(¢)sin0+9(9)
0A , 0B . f(9)
dfde 99 + sm29—80 =0= f"+4sin?0 (sin29 +4g'(0)) =0
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3. (a) Two-particle states are defined by

1)a
with |p1,p2) = [p2, p1) as [af(p1),al(p2)] = 0.

p1,p2) = a'(p1)a’(p2)]0),

We also know that

Hence

(P, P5|P1, P2)

= (0|a

= (0la(p}

= (0la(p))a’ (p1){a’ (p2)a(ph) + (27)*2p)6(p2 — P5)}0)
)

[a(p1), a’ (p2)] = (2m)°2p)(p1 — P2) .

(p))a(ph)a’ (p1)a’ (p2)|0)

(P)){a' (p1)a(ph) + (2m)*2p)6(p1 — Ph)}a' (p2)|0)

+ (2m)*2pY6(p1 — ph)(0la(p})a (p2)|0)

= (2m)*2p36(p2 — P5)(0[{a’ (p1)a(p)) + (27)*2pY6(p1 — P!)}|0)
+ (2m)*2p6(p1 — PH)(0{a’ (p2)a(p)) + (27)*2p36(p2 — P)}O)

= (2m)°(2p)) (2p9){0(p1 — P1)(P2 — Ph) + 6(pP1 — PL)d(P2 — PY)} -

(b) The number operator is

With this [N, af(p)] = = . / ' a'(p"a(p’),a' (p)

So we have

Na'(p) —a'(p)N =
= Na'(p
and N|p;...p

)

) = )...a'(pn)]0)

N+ ) f(p2) ...’ (pn)|0)
a' (pn)|0)

pn)(N+n)\0>

=na'(p1).. ( )|O> (as a(p)|0) =0 and so N|0) =0)
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4(a). 5+ —(i 01,2 3)

7T =(iy2y 2y
3t 2 Lt 0t
—i(Y°Y3 ) (Y0*0) (7041 40)A°
— "% = 0% =~y = iy Oyl =42
(v°)? = 707172737071727 (1) (1>’ (¥°) v 2% = yT %Py 2P
=(=1)*v*7*(v")*y%+? ( )72737273
=(-1)(-1)7*(v*)*7* = —=(v*)* =
(b> 1.2 .3 2.1 .2 3 . 0.1.2 3 '05
Y2 =(°)219%° = =i (i1 ?®) = —in%y
Y092 y? =70 (1) 2422 = —414 0419293 = iyleS.
(c)

{7ua '711} = 277}“’14 = VYo + VoV = 277ul/14a

where 14 is the 4-dimensional identity matrix, usually not written explicitly. Taking
the trace, and using tr(AB) = tr(BA), trly = 4, we get

tr[y ] = 4100



5. (a) The electromagnetic field strength tensor is given by
Fu. = 0,A,—0,A,,
and the electromagnetic Lagrangian is

1 v
Le.m. = _Z ,uI/F'u

1 v 14
— 7 (0uA, = 9, 4,) (9" A — 0" A"
1
= 1" (00 Ap — 95A0) (D Ay — D, A,).

The Euler-Lagrange equations of motion for this Lagrangian are obtained from

) oL _\_oL _
0w \0(0,4,)) ~ 94, ~

Now

o _y 4 9 oL\ _
04, o7 \0(0,4,)) ~

1 14 € €

= T (9505 — OB0E) (G, — DA,
+ (OaAp — 03Aa) (0005 — 6005,)]

1

= - 1 [(775“776” - ?76“775”)(3;“% - avAu)
+ (0aAp — 93Aa) (0" —n*n™)]

_ 1 O A€ __ 9E AD
=~ 4 [3 A —0°A ]
= — F’°.

0 oL B 0 s
Oz (3(35A6)) B 63:5F =9

which are the Maxwell equations in the absence of sources.
(b) ~
A, — A, = A, +0,A.

Now
F,. = 0,A, —0,A, = 8M(Al, +0,A) — 0, (A, + @LA)
= 0,A, —0,A,+ 0,0,A —0,0,A
= 0,4, -0,A, = F,,
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6a.

6b.

as the derivatives of the scalar function A commute. With F},, also Le . is invariant
under the transformation.

The Lagrangian for a massive photon without sources is given by

1
=3 B F" + m?A, A"

As before the first term is invariant under the transformation considered above. How-
ever, the second term transforms as

m2A, A — mPAAr = mPA AR+ mP(0,A0"A + 9, AA" + A, 0MA).

The extra terms do not vanish, so the mass term would not be invariant under the
transformation, i.e. break the invariance. Insisting on the invariance therefore forbids
the mass term, i.e. m? = 0 and the photon has to remain massless.

To show that orbital angular momentum is a constant of the motion we have to show
that it commutes with the Hamiltonian, i.e.

|:IA/17}AI:| = 07

where the L;’s are the components of the angular momentum operator in the z, y
and z directions. For a free particle the Hamiltonian is given by H = p%/(2m) and

the orbital angular momentum is given by L=#x p. Hence, for example, for L, (we
drop the hats from now on) we have

TPy — Yp=» P2 + P2 + P2
z, p2lpy — [y, P3)pe

P2, De) + [, PalD2) Py — (DylYs Py] + [, Dy|Dy )P
2ihpypy — 2ihpyp,) =0

Lz %] = |
=
= (
= (
where we used the commutation relations [z;, p;] = ihd;;. Similar results are obtained

for L, and L,. Hence, the orbital angular momentum commutes with the Hamiltonian
and is a contant of the motion.

Similarly to show that the orbital angular momentum is not a constant of the mo-
tion for a Dirac particle, we have to show that it does not commute with the Dirac
Hamiltonian,

H=a- -p+ fm=a;p; + fm

where summation over 7 is assumed.

[Lza H] = [.I‘, H]py - [y7 H]px = ih(axpy - aypx) = Zh(& X ﬁ)z



hence .
[L,H| =ihad x p#0

and consequently orbital angular momentum does not commute with the Hamiltonian
and is not a constant of the motion.

6¢. The total angular momentum for a Dirac particle is
J=L+38

where L is the orbital angular momentum and S is the spin angular momentum. we
saw in part b that [L, H] = ihd x p hence we need to find S such that

[S, H] = —ihd x §

We take

with

where o, are the Pauli matrices and the 0 entries are 2 x 2 zero matrices. It is easy to

verify that

1=

and therefore [J, H] = 0 and the total angular momentum .J is a constant of the motion.

7(a). 2 diagonal generators.

1 0 0 1 0 0
=0 =1 0] , Xx=[0 1 o0
0O 0 O 0 0 -2
. D =28
0 1 0 0 — O
)\1— 1 0 0 y )\2— ) 0 0
0O 0 0 0O 0 O
0 0 1 0 0 —2
M=10 0 0 , A=10 0 O
1 0 O 1 0 0
0 0 O 0 0
=10 0 1 , =10 0 —i
0 1 0 0 2 O
7c.



3=(2,1/3)+ (1,-2/3)
under the maximal subgroup SU(2) x U(1)

7d.
(-1/2, 1/3) (1/2, 1/3)
(0, -2/3)
e 3x3=1{(2,1/3)+ (1,-2/3)} x {(2,=1/3) + (1,2/3)} =
84+ 1={(2,+1)+(3,0)+ (1,0) + (2,—1)} + (1,0)
7.

3x3={(2,1/3)+(1,-2/3)} x {(2,1/3) 4+ (1,-2/3)} =
6+3={(3,2/3)+(2,—-1/3)+ (1,—-4/3)} + {(2,-1/3) + (1,2/3)}



