
MATH 431: Introduction to Modern Particle Theory,
Summer 2011

Examiner: Dr. T. Teubner, Extension 43791.

Time allowed: Two and a half hours

In this paper bold-face quantities like p and quantities with a vector arrow like
~x represent three-dimensional vectors.

Full marks can be obtained for complete answers to FIVE questions. Only the
best FIVE answers will be counted.
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1. Consider the Poincaré group in 1+2 dimensions, with the infinitesimal line
element

ds2 = dt2 − dx2 − dy2 .

(a) Write down in matrix form the metric for this line element and its
inverse. What are the transformations under which this line element is invariant?
Give the generator associated with the transformation for (at least) three of the
transformations.

[6 marks]

(b) The Pauli-Lubanski vector in four dimensions is given by (ǫ0123 = +1)

W µ = −1

2
ǫµνσρ Jνσ Pρ ,

where Ki = Ji0 and Ji = 1
2
ǫijk Jjk are the generators of boosts and rotations,

respectively, and Pρ is the momentum four-vector. Give W µ in terms of Ki, Ji,
P0, Pi . Write down the four components of the Pauli-Lubanski vector in the
case where the line element ds2 = dt2 − dx2 − dy2 is viewed as embedded in four
space-time dimensions, for both massless and massive particle states.

[14 marks]
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2. (a) The Hamiltonian H0 for a free real scalar field is given by

H0 = 1
2

∫

(

φ̇2 + (∇φ)2 +m2φ2
)

d3x .

Show that the (Heisenberg) equation of motion for the time evolution of the
generalised momentum operator π,

ih̄π̇ = [π,H0] ,

together with the canonical commutation relations, given by

[φ(x, t), π(x′, t)] = ih̄δ(x − x′) ,

[φ(x, t), φ(x′, t)] = [π(x, t), π(x′, t)] = 0 ,

imply the Klein-Gordon equation for the field φ. (You may use without derivation
that for the free scalar field π = φ̇ .)

[10 marks]

(b) Assume a five-dimensional space-time (t,x, y), where x = (t,x) are
the usual four-dimensional space-time coordinates and y is the coordinate of an
additional compact extra dimension, −R/2 ≤ y ≤ R/2.

Consider the free Klein-Gordon equation in this space-time,

(25 +m2)φ = 0 , (1)

where 25 ≡ 2 − ∂2/∂y2, with 2 = ∂2
0 − ∇2 the usual d’Alembert operator.

The general solution of equation (1) is obtained by a Fourier expansion and by
imposing appropriate boundary conditions.

Show that

φ(x, y) =
∞
∑

n=1

φn(x) cs
(

nπy

R

)

,

where cs(nπy/R) = cos(nπy/R) if n is odd and cs(nπy/R) = sin(nπy/R) for
even n, is a solution of equation (1), provided that the Fourier coefficients φn(x)
are solutions of a four-dimensional Klein-Gordon equation. Determine the mass
spectrum as seen by a four-dimensional observer, and show that for m = 0 the
masses are equally spaced. What is this infinite set of massive particles called?

[10 marks]
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3. (a) Prove the following relations:

(i) tr[γµγν ] = 4ηµν ,

(ii) γµγνγργσ = 2ηµνγργσ − 2ηµργνγσ + 2ηµσγνγρ − γνγργσγµ ,

(iii) tr[γµγνγργσ] = 4[ηµνηρσ − ηµρηνσ + ηµσηνρ] .
[9 marks]

(b) Given the four-vector current density Jµ
V = ψ̄γµψ, derive the current

conservation, ∂µJ
µ
V = 0, by using the covariant form of the Dirac equation and

the relation (γµ)† = γ0γµγ0 . [4 marks]

(c) Using the definition γ5 = iγ0γ1γ2γ3, show that

(i) {γ5, γµ} = 0 ,

(ii) a (charge-lowering) weak current of the form

ūeγ
µ1

2

(

1 − γ5
)

uν

involves only left-handed electrons (or right-handed positrons).
[7 marks]

4. Weak decays of leptons:

(i) Explain why the decay µ− → e−γ is not allowed in the Standard Model.
[3 marks]

(ii) Draw the (lowest order) Feynman diagram for the muon decay in the
Standard Model,

µ− → νµ e
− ν̄e .

Name and explain the different elements of the Feynman diagram and give their
corresponding algebraic expressions. (You can leave out the labels for the mo-
menta and spins of the external particles.) [7 marks]

(iii) Given that the weak coupling g is of the order of the electromagnetic
coupling e (g sin θW = e with the sine of the Weinberg angle sin θW ≈ 0.5), why
are the weak decays suppressed compared to typical electromagnetic or strong
decays? [4 marks]

(iv) In analogy to the µ decay, discuss the possible decays of the τ lepton.
[6 marks]
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5. (i) Prove that for the group SU(2) the fundamental representation (the
representation by complex 2×2 matrices) is equivalent to the complex conjugate
representation. This means that there exists a unitary 2× 2 matrix W such that
U⋆ = W † U W (unitary equivalence).

Hints: The complex conjugate representation can be written as

U⋆ = exp(− i

2
θa σ

⋆
a) ,

with the three Pauli-matrices in the usual representation,

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

First show that iσ2 is unitary and that σ2 σ
⋆
a σ2 = −σa. [15 marks]

(ii) Explain which consequences this has for the construction of mass terms
in the Standard Model. [5 marks]

6. Let the Lagrangian for three interacting real scalar fields φ1, φ2, φ3 be
given by

L =
1

2
(∂µφi)

2 − 1

2
µ2φ2

i −
1

4
λ(φ2

i )
2 ,

with µ2 < 0 and λ > 0, and where the summation over i is implied.

(i) Explain the meaning of the different terms and to which elements of
the corresponding Feynman rules they lead. Why is µ2 chosen negative, but λ
positive? [6 marks]

(ii) Show that after spontaneous symmetry breaking this Lagrangian de-
scribes one massive field with mass

√
−2µ2 and two massless ‘Goldstone bosons’.

[14 marks]
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7. In perturbative QCD the scale (energy) dependence of the ‘running’ cou-
pling αs = g2

s/(4π) is described by the differential equation

dαs

d lnE
= −b0α2

s − b1α
3
s + O(α4

s) ,

with b0, b1 > 0 the first two coefficients of the QCD beta-function.

(i) Neglect the term ∼ α3
s and verify that the solution is given by

αs(E) =
αs(µ)

1 + b0αs(µ) ln(E/µ)
,

where the initial condition is fixed by the coupling αs(µ) at a reference scale µ.
[4 marks]

(ii) Show that by defining a mass scale

ΛQCD = µ exp

[

− 1

b0αs(µ)

]

the solution reads

αs(E) =
1

b0 ln(E/ΛQCD)
.

Experimentally, ΛQCD ≃ 200 MeV. Sketch the behaviour of αs(E) and discuss the
physical consequences in the two cases E → ΛQCD and at asymptotically large
energies. [9 marks]

(iii) Derive a solution similar to the one in part (ii), but taking into account
the term −b1α3

s in the differential equation and chosing a suitable redefinition of
ΛQCD (formula for ΛQCD at next order not required). [7 marks]
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