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1a The vacuum expectation value of the electroweak Higgs field φ:

〈φ0〉 =
1√
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0
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The Standard Model SU(2)×U(1)Y quantum numbers of the component of the Higgs
field with non–trivial VEV are:

φ : T =
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2
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, Y = 1

and its electric charge
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2
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2
= 0.

Hence, the electromagnetic symmetry remains unbroken by the VEV of the Higgs
field.
The Lagrangian density of the Higgs field is given by:
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The relevant term for the gauge boson masses:
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reading off from the last two lines we have
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1b We will derive the general case for Higgs representations and then substitute. The
general term for the gauge bosons masses has the form
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where in the last line we used
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which yields
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and where in the last line correspond to the quantum eigenvalues of the electrically
neutral component of the Higgs representations. We require that Q(φj0) = 0, which
ensures that electric charge remains unbroken by the vacuum expectation values of
the Higgs fields.
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Z is obtained from the matrix element of the second term
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For Tj = 3 and Y = 4 we have
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For a triplet Tj = 1 Y = 2
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Experimentally, ρ ≈ 1.0000.... is highly constrained.

(2a) The fundamental and anti–fundamental representations of SU(5) are

5 = (3, 1)− 2
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The 24 representation is obtained by takingthe product 5× 5̄
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]
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The leptoquarks in the 24 representation are:

(X, Y ) + (X̄, Ȳ ) = (3̄, 2) 5

3

+ (3, 2)−5

3

with electric charges

Q(X) =
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In SU(5) the matter states are embedded in the 5̄ and 10A representations as:
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Note that all the states are taken as left–handed fields.
The diagrams that couple fermions to the leptoquarks vector bosons
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and a diagram leading to proton decay
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(3a)
ūeγ

µ 1
2

(

1− γ5
)

uν = ūe
1
2

(

1 + γ5
)

γµuν ,

which contains the left-handed electron field ūL
e , as

ūL
e = uL †

e γ0 = u†
e
1
2

(

1− γ5
)

γ0 = ūe
1
2

(

1 + γ5
)

.

(3b) The decay µ → eγ is allowed by kinematics and w.r.t. charge conservation, but is
forbidden in the Standard Model as it would violate the separate conservation of the
lepton numbers Nµ and Ne. Empirically, Ne,µ,τ are conserved and the decay µ → eγ
is not observed.

(3c) Feynman diagram for µ− → νµ e
− ν̄e in the Standard Model to lowest order:

−

W

e −

e

_

The solid ‘external’ lines stand for the incoming and outgoing spin-1/2 particles, the
muon, electron, muon-neutrino and electron anti-neutrino. The wavy internal line is
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the propagator of the W− boson, the carrier of the weak interaction. It mediates the
transition from the initial state µ− to the final state νµ and creates the e− and ν̄e in
the final state. The solid dots denote the vertices of this weak interaction.
The algebraic expressions for the different elements are:

– incoming µ−: spinor u

– outgoing νµ: spinor ū

– outgoing e−: spinor ū

– outgoing ν̄e: spinor v

– vertices: −i g√
2
γα 1

2
(1− γ5) and −i g√

2
γβ 1

2
(1− γ5), with weak coupling constant g

– propagator: iηαβ/(q
2 − m2

W ), where q is the four-momentum transfer and mW is
the mass of the W boson

(3d) The momentum transfer squared, q2, is of the order of (but limited by) m2
µ, which

is very small compared to m2
W . Thefore the propagator is well approximated by

−iηαβ/m
2
W . This is a very strong suppression factor, which would not be present if

the W would be massless.

(3e) The τ lepton is much heavier than the µ or the e, therefore it can decay into both:

τ− → ντ e
− ν̄e , τ− → ντ µ

− ν̄µ .

The decays are very similar, with only small differences due to the different masses
of the final state particles. In addition, as the τ is also heavier than light hadrons, it
can decay in many hadronic final states like pions (the ντ must always be there due
to Nτ conservation). In these cases the W intially couples to a quark pair which then
hadronises. One example is the decay

τ− → ντ π
− π0 .
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