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1. (a) The fundamental triplet representation decomposes into

3 = (2, 1/3) + (1,−2/3)

under SU(2)I ×U(1)Y . The proton and neutron form an isospin doublet with SU(2)I

charges +1/2 and −1/2, repectively. Then, with the electric charges +1 and 0, the
combination of T3 and Y which give the electric charges are given by

+1 = α
1

2
+ β

1

3
, 0 = α(−

1

2
) + β

1

3
,

which is solved with α = +1 and β = +3/2.

(b) The decomposition of the sextet, octet and decuplet of SU(3) in terms of SU(2)×U(1)
can be derived from the graphical construction as done in class:

6 = {(3, 2/3) + (2,−1/3) + (1,−4/3)} ,

8 = {(2, +1) + (3, 0) + (1, 0) + (2,−1)} ,

10 = {(4, +1) + (3, 0) + (2,−1) + (1,−2)} .

With Q = T3 + 3

2
Y from part (a), we then get the electric charges of the states in the

multiplet decompositions,

6 = {(2, 1, 0) + (0,−1) + (−2)} ,

8 = {(2, 1) + (1, 0,−1) + (0) + (−1,−2)} ,

10 = {(3, 2, 1, 0) + (1, 0,−1) + (−1,−2) + (−3)} .

2. (a) There are 5−1 = 4 traceless, diagonal 5×5 matrices. Knowing the traceless, diagonal
SU(3) matrices we already have two diagonal SU(5) generators. A third and forth
are then readily constructed from lower dimensional 3× 3 and 4× 4 identity matrices
in the same way we have we have constructed the traceless, diagonal SU(3) matrices.
So we get a set of four traceless, diagonal 5 × 5 generators (conventional numbering)

λ3 =











1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











, λ8 =











1 0 0 0 0
0 1 0 0 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 0











,

λ15 =











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −3 0
0 0 0 0 0











, λ24 =











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −4











.
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This basis corresponds to the decomposition into a maximal subgroup, SU(5) →
SU(4) × U(1). Another basis is given by

λ3 =











1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











, λ8 =











1 0 0 0 0
0 1 0 0 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 0











,

λ15 =











0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −1











, λ24 =











2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 −3 0
0 0 0 0 −3











.

This basis corresponds to the decomposition into another maximal subgroup, SU(5) →
SU(3) × SU(2) × U(1).

(b) The dimension of the group is D = 24.

(c) The fundamental representation is the 5. The decomposition under SU(3)×SU(2)×
U(1) is

5 = (3, 1, 1/3) + (1, 2,−1/2) ,

i.e. a SU(3) triplet and SU(2), U(1) singlet with U(1) charges 1/3, plus a SU(3), U(1)
singlet and SU(2) doublet with −1/2. (U(1) charges up to an overall normalisation.)

(d) Equivalently the five-bar decomposes as (2̄ = 2)

5̄ = (3̄, 1,−1/3) + (1, 2, 1/2) .

Hence the product is

5 × 5̄ = {(3, 1, 1/3) + (1, 2,−1/2)} × {(3̄, 1,−1/3) + (1, 2, 1/2)} .

From the hadron classifications done in class we know the decompositions

3 × 3̄ = 8 + 1 , 2 × 2 = 3 + 1 .

Hence in total we get

5 × 5̄ = 24 + 1 = {(8, 1, 0) + (1, 3, 0) + (1, 1, 0) + (3, 2, 5/6) + (3̄, 2,−5/6)}+ (1, 0) .
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3. (a) With {γ5, γµ} = 0 we can write

ūeγ
µ 1

2

(

1 − γ5
)

uν = ūe
1

2

(

1 + γ5
)

γµuν ,

which contains the left-handed electron field ūL
e , as

ūL
e = uL †

e γ0 = u†
e

1

2

(

1 − γ5
)

γ0 = ūe
1

2

(

1 + γ5
)

.

(b) Feynman diagram for µ− → νµ e− ν̄e in the Standard Model to lowest order:

−

W

e −

e

_

The solid ‘external’ lines stand for the incoming and outgoing spin-1/2 particles, the
muon, electron, muon-neutrino and electron anti-neutrino. The wavy internal line is
the propagator of the W− boson, the carrier of the weak interaction. It mediates the
transition from the initial state µ− to the final state νµ and creates the e− and ν̄e in
the final state. The solid dots denote the vertices of this weak interaction.
The algebraic expressions for the different elements are:

– incoming µ−: spinor u

– outgoing νµ: spinor ū

– outgoing e−: spinor ū

– outgoing ν̄e: spinor v

– vertices: −i g√
2
γα 1

2
(1 − γ5) and −i g√

2
γβ 1

2
(1 − γ5), with weak coupling constant g

– propagator: iηαβ/(q2 − m2

W ), where q is the four-momentum transfer and mW is
the mass of the W boson

(c) The momentum transfer squared, q2, is of the order of (but limited by) m2

µ, which
is very small compared to m2

W . Thefore the propagator is well approximated by
−iηαβ/m2

W . This is a very strong suppression factor (in the amplitude, ∼ 1/m4

W in
the decay rate!), which would not be present if the W would be massless.

(d) The τ lepton is much heavier than the µ or the e, therefore it can decay into both:

τ− → ντ e− ν̄e , τ− → ντ µ− ν̄µ .

The decays are very similar, with only small differences due to the different masses
of the final state particles. In addition, as the τ is also heavier than light hadrons, it
can decay in many hadronic final states like pions (the ντ must always be there due
to Nτ conservation). In these cases the W intially couples to a quark pair which then
hadronises. One example is the decay

τ− → ντ π− π0 .
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