
MATH 328 — May 2009: Solutions

All problems are similar to homework problems or material covered in the lectures.

1.

ds2 = dt2 − dx2 − dy2 (1)

(a)

gµν =





1 0 0
0 −1 0
0 0 −1



 , gµν =





1 0 0
0 −1 0
0 0 −1



 .

(b) The line element is invariant under 3 translations (dt, dx and dy), 2 boosts (dtdx,
dtdy) and 1 rotation (dxdy). The generators associated with the transformations are:
P0 = i∂t, P1 = −i∂x and P2 = −i∂y , the generators of translations. K1 and K2 are
the boost generators and J3 is the generator of rotations in the (x, y) plane.

(c)

Wµ = −
1

2
ǫµνρσJνρPσ ,

W 0 = −
1

2
ǫ0ijkJijPk =

1

2
ǫ0ijkJijPk =

1

2
ǫkijJijPk = JkPk ,

W i = −
1

2
ǫi0jkJ0jPk −

1

2
ǫij0kJj0Pk −

1

2
ǫijk0JjkP0 =

−
1

2
ǫi0jkJ0jPk −

1

2
ǫi0jkJ0jPk +

1

2
ǫ0ijkJjkP0 =

+
1

2
ǫ0ijkJ0jPk +

1

2
ǫ0ijkJ0jPk +

1

2
ǫ0ijkJjkP0 =

− ǫ0ijkJ0jPk −
1

2
ǫ0ijkJjkP0 = −ǫijkKjPk − JiP0 .

Hence
W0 = ~J · ~P ,

Wi = JiP0 + ǫijkKjPk .

In the case of the one+two dimensional line element Eq. (1), embedded in our usual
one+three dimensions,

~K = (K1, K2, 0) and ~J = (0, 0, J3) .

For m = 0 we can take, without loss of generality, that Pµ = (p, 0, p, 0), Pµ =
(p, 0,−p, 0). Then

W 0 = 0 ,

W 1 = −ǫ1jkKjPk = −ǫ123K2P3 − ǫ132K3P2 = 0 ,

W 2 = −ǫ2jkKjPk = −ǫ213K1P3 − ǫ231K3P1 = 0 ,

W 3 = −J3P0 − ǫ3jkKjPk = −J3P0 − ǫ312K1P2 − ǫ321K2P1 =

= −J3P0 −K1P0 = −(J3 +K1)P0 .
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For m > 0 we can evaluate the Pauli-Lubanski vector most conveniently in the rest
frame, Pµ = (m, 0, 0, 0). Then

W0 = 0 ,

W1 = 0 ,

W2 = 0 ,

W3 = −J3m.

2. (a) In the lectures we have defined the operators Ji± by

~J± =
1

2
( ~J ± i ~K)

and seen that ~J+ and ~J− are both generating the algebra SU(2) but commute between
each other. In this way we have rewritten the Lorentz algebra as the algebra of
SU(2) × SU(2). As ~J2

+ and ~J2
− are Casimir operators of the two commuting SU(2)

groups they are thus also invariants of the Lorentz group. We have

~J2
+ =

1

4
( ~J2 − ~K2 + 2 i ~J · ~K) ,

~J2
− =

1

4
( ~J2 − ~K2 − 2 i ~J · ~K) ,

and hence
~J2 − ~K2 = 2( ~J2

+ + ~J2
−) ,

~J · ~K = −i(J2
+ − J2

−) .

Therefore ~J2− ~K2 and ~J · ~K are Lorentz invariants as well, being the sum and difference
of Lorentz invariants.

(b) For the representation (j1, j2) of the SU(2) × SU(2) algebra the number of states is
(2j1 + 1)(2j2 + 1). The total spin is given by j = j1 + j2. Therefore the composition
j1 ⊗ j2 breaks under SU(2)J with the following spin states

j1 + j2 ⊕ j1 + j2 − 1 ⊕ · · · ⊕ |j1 − j2| .
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3. (i) The Lagrangian of the two-dimensional harmonic oscillator is

L =
1

2
m(ẋ2 + ẏ2) −

1

2
k(x2 + y2) .

(ii) The Euler-Lagrange equations are

d

dt

∂L

∂ẋ
−
∂L

∂x
= mẍ+ kx = 0 ,

d

dt

∂L

∂ẏ
−
∂L

∂y
= mÿ + ky = 0 .

(iii) The Hamiltonian is

H =
1

2m
(p2

x + p2
y) +

1

2
mw2(x2 + y2) , with w =

√

k

m
.

(iv) In polar coordintes we derive:

L =
1

2
m(ṙ2 + r2φ̇2) −

1

2
kr2 ,

pr =
∂L

∂ṙ
= mṙ ,

pφ =
∂L

∂φ̇
= mr2φ̇ .

Hence we get

H =
∑

i

piq̇i − L = mṙ2 +mr2φ̇2 −
1

2
m(ṙ2 + r2φ̇2) +

1

2
mw2r2

=
1

2
m(ṙ2 +mr2φ̇2) +

1

2
mw2r2

=
pr

2

2m
+

pφ
2

2mr2
+

1

2
mw2r2 .

(v) There are two constants of the motion.
Since the Hamiltonian does not depend explicitly on time, the energy is a constant
of the motion with E = H(q0, p0). Since it does not depend explicitly on φ, also pφ

is a constant of the motion, corresponding to conservation of the angular momentum
w.r.t. the symmetry axis.
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4. (a) The generalised momentum

π(x) =
∂L

∂φ̇
.

The Hamiltonian density is defined by

H = φ̇(x)π(x) −L ,

so

H =

∫

d3x φ̇(x, t)π(x, t)− L =

∫

H d3x .

For the free Klein-Gordon field π = φ̇ (as derived in the lecture) and hence

H = 1

2
φ̇2 + 1

2
(∇φ)2 + 1

2
m2φ2 .

(b)

[φ(x, t), H] = [φ(x, t),

∫

(

1

2
π(x′, t)2 + 1

2
(∇′φ(x′, t))2 + 1

2
m2φ(x′, t)2

)

d3x′]

= 1

2

∫

d3x′
(

[φ(x), π(x′)2] + [φ(x), (∇′φ(x′))2] +m2[φ(x), φ(x′)2]
)

.

Now
[φ(x), φ(x′)] = 0 ⇒ [φ(x),∇′φ(x′)] = 0 ,

and hence

ih̄φ̇(x) = [φ(x), H] = 1

2

∫

(π(x′)[φ(x), π(x′)] + [φ(x), π(x′)]π(x′)) d3x′

= ih̄

∫

π(x′)δ(x− x′) d3x′ = ih̄π(x) .

Next calculate

ih̄π̇(x) = [π(x, t), H]

= − [

∫

d3x′
(

1

2
π(x′)2 + 1

2
(∇′φ(x′))2 + 1

2
m2φ(x′)2

)

, π(x)]

= − 1

2

∫

d3x′ (∇′φ(x′)[∇′φ(x′), π(x)] + [∇′φ(x′), π(x)]∇′φ(x′))

− 1

2
m2

∫

d3x′ (φ(x′)[φ(x′), π(x)] + [φ(x′), π(x)]φ(x′))

= − ih̄

∫

d3x′
(

∇′φ(x′).∇′δ(x− x′) +m2φ(x′)δ(x− x′)
)

= ih̄

∫

d3x′
(

(∇′)2φ(x′)δ(x− x′) −m2φ(x′)δ(x− x′)
)

= ih̄
(

∇2φ(x) −m2φ(x)
)

.

Together with the previous step we immediately get the Klein-Gordon equation

φ̈(x) = ∇2φ(x) −m2φ(x) .
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5.

γµ∂µψ + imψ = 0 , (∂µψ
†)γµ† − imψ† = 0

⇒ (∂µψ
†)γ0γµγ0 − imψ† = 0 and (∂µψ̄)γµ − imψ̄ = 0 .

(a) With this

∂µ(ψ̄γµψ) = (∂µψ̄)γµψ + ψ̄γµ(∂µψ) = (imψ̄)ψ + ψ̄(−imψ) = 0 .

(b) Similarly, and with {γ5, γµ} = 0 we get

∂µ(ψ̄γµγ5ψ) = (∂µψ̄)γµγ5ψ + ψ̄γµγ5(∂µψ) = (imψ̄)γ5ψ − ψ̄γ5(γµ∂µψ) = 2imψ̄γ5ψ .

(c) From the Dirac equation for the spinors ūf and ui we have

0 = ūf ( 6 pf −m)γµui = ūfγ
µ( 6 pi −m)ui

⇒ 2mūfγ
µui = ūf ( 6 pfγ

µ + γµ 6 pi)ui

and 6 pfγ
µ + γµ 6 pi = γνγµpfν

+ γµγνpiν
.

Now
γµγν + γνγµ = 2gµν ,

γµγν − γνγµ = −2iσµν

⇒ γµγν = gµν − iσµν and γνγµ = gµν + iσµν .

So we get

6 pfγ
µ + γµ 6 pi = gµν(pf + pi)ν + iσµν(pf − pi)ν = (pf + pi)

µ + iσµν(pf − pi)ν ,

and finally have derived the Gordon decomposition

ūfγ
µui =

1

2m
ūf [(pf + pi)

µ + iσµν(pf − pi)ν ] ui .
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6. Unitary equivalence and the ‘SU(2) miracle’:

(a) First step:

iσ2 =

(

0 1
−1 0

)

, and

(

0 1
−1 0

) (

0 −1
1 0

)

=

(

1 0
0 1

)

,

so iσ2 is unitary.

Second step: Prove by explicit matrix multiplication that σ2 σ
⋆
a σ2 = −σa (i = 1, 2, 3).

For i = 1 we have e.g.

σ2 σ
⋆
1 σ2 =

(

0 −i
i 0

) (

0 1
1 0

) (

0 −i
i 0

)

=

(

0 −1
−1 0

)

= −σ1 .

Third step: Choose W = iσ2, and with σ⋆
2σ

⋆
2 = 1I and the result of step two we write:

W †U⋆W = − iσ
†
2U

⋆iσ2 = σ2 exp
(

− i
2
θaσ

⋆
a

)

σ2

= σ2

(

1I −
i

2
θaσ

⋆
a −

1

4

1

2!
θaθa −

i

8

1

3!
θaθaθbσ

⋆
b − . . .

)

σ2

=

(

1I +
i

2
θaσa −

1

4

1

2!
θaθa +

i

8

1

3!
θaθaθbσb − . . .

)

= U .

Taking the complex conjugate of

W †U⋆W = U

we now also have
W †⋆UW ⋆ = U⋆

and as W = iσ2 = W ⋆ we arrive at the desired relation

U⋆ = W † U W .

(b) In the Standard Model, fermion and gauge boson masses are obtained in a gauge
invariant way through electroweak symmetry breaking which is mediated by a Higgs
potential. Because of the unitary equivalence between the fundamental and the com-
plex conjugate representations of SU(2), gauge invariant mass terms for both up- and
down quarks (which are grouped together in SU(2) doublets) can be constructed from
only one complex Higgs doublet. In other words, it is due to this special property of
SU(2) that the Higgs sector in the Standard Model is the minimal one resulting in
only one physical Higgs boson.
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7.

L =
1

2
(∂µφi)

2 −
1

2
µ2φ2

i −
1

4
λ(φ2

i )
2

with µ2 < 0 and λ > 0.

(a) The first term in the Lagrangian contains the kinetic terms of the three fields which
lead to the propagators in the Feynman rules. The second and third term are the
quadratic and quartic terms of the scalar potential. The coefficient λ is chosen positive
as otherwise there would be no stable vacuum. Only with µ2 < 0 we get a non-trivial
vacuum which allows for spontaneous symmetry breaking. As shown in (b) this leads
to mass terms (quadratic in the field) and interaction terms which lead to cubic and
quartic vertices in the Feynman rules.

(b)

L =
1

2

(

(∂µφ1)
2 + (∂µφ2)

2 + (∂µφ3)
2
)

−
1

2
µ2(φ2

1 + φ2
3 + φ2

3) −
1

4
λ(φ2

1 + φ2
3 + φ2

3)
2 .

The potential is

V =
1

2
µ2(φ2

1 + φ2
3 + φ2

3) +
1

4
λ(φ2

1 + φ2
3 + φ2

3)
2 .

For spontaneous symmetry breaking we need a non-trivial minimum of the potential:

∂V

∂φi

=
(

µ2 + λ(φ2
1 + φ2

3 + φ2
3)

)

φi = 0 ,

so we require
µ2 + λ(φ2

1 + φ2
3 + φ2

3) = 0 .

We choose the non-vanishing vacuum expectation value to be

〈φ1〉 =

√

−
µ2

λ
= v

and expand φ1 around the new vacuum after spontaneous symmetry breaking (keeping
φ2 and φ3):

φ1(x) = v + h(x) .

Inserting this into the Lagrangian we get

1

2

(

(∂µφ1)
2 + (∂µφ2)

2 + (∂µφ3)
2
)

−
1

2
µ2((v+h(x))2+φ2

2+φ
2
3)−

1

4
λ((v+h(x))2+φ2

2+φ
2
3)

2

and with −µ2 = v2λ we arrive at

L =
1

2
((∂µh)

2 + (∂µφ2)
2 + (∂µφ3)

2)+

v2λ

2
(h2(x) + v2 + 2vh(x) + φ2

2 + φ2
3) −

λ

4
(6v2h2(x) + . . .) =

1

2

(

(∂µh)
2 + (∂µφ2)

2 + (∂µφ3)
2
)

−
1

2
λv2h2(x)+

cubic and quartic interaction terms + constant .

Hence the Lagrangian describes one massive scalar field and two massless ‘Goldstone
bosons’.
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