
from the previous lecture ...

Pauli–Lubanski vector Wσ = −1
2ǫσµνλJ

µνPλ

Casimir invariants of the Poincare group : PµP
µ = m2 and WµW

µ

If m 6= 0 take Pµ = (m, 0, 0, 0) ⇒ −WµW
µ = m2~J2

−WµW
µ|~P ,S〉 = m2j(j + 1)|~P ,S〉

massive particles of spin j have 2j + 1 degrees of freedom

If m = 0 there is no rest frame. Choose Pµ = (w , 0, 0,w).

The “Little Group”: Λµ
νP

ν = Pµ

A, B , and Lz = (xPy − yPx) ⇒ non–compact → infinite dimensional

We demand that A and B annihilate the physical massless states



Â|~P , a, b〉 = a|~P , a, b〉

B̂|~P , a, b〉 = b|~P , a, b〉

with a = b = 0 for physical massless states. Therefore,

−WµW
µ = 0

for physical massless states. This agrees well with

lim
m→0

WµW
µ = lim

m→0
−m2(j(j + 1)) = 0

that we found in the massive case. For massless states with a, b = 0 the little

group is SO(2) or U(1). The generator of rotations in the x − y plane is J3.

Hence, the representations are labeled by the eigenvalue h of J3, which is the

angular momentum in the direction of propagation.
MATH431 Lecture 2 2020–2021 Semester 2 2 / 10



→ helicity : projection of the spin on the direction of momentum.

The helicity is quantised. The proof is based on topological properties of

the Lorentz group.

→ massless states are labeled by their helicity.

h =
~P

|~P |
· ~J

where
~P

|~P|
is a unit vector in the direction of the momentum. Helicity is

quantised. For massless states there are only two helicity states.

h = 0, ±
1

2
, ±1, ±

3

2
, ±2, · · ·

Photon m2 = 0 two polarisation states h = ±1

Graviton m2 = 0 two polarisation states h = ±2
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For massive particles there are (2j + 1) helicity states.

For massive states we can go from −h to +h polarisation states by a

Lorentz transformation, i.e. by a boost.

For massless particles this is not possible as c = 1 in all inertial frames.

Helicity is a Lorentz invariant of massless states.
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Lagrangian & Hamiltonian Mechanics

Newtonian mechanics : specify position and velocity at t = ti

m
d2X

dt2
= F (X ) ⇒ X = X (t = tf ) ;

Ẋ = Ẋ (t = tf )

In Newtonian mechanics we specify initial conditions for the position and

velocity, and solve the second order differential Newton equation for the

position and velocity as a function of time.

Modern particle physics : specify energy and momentum at t = ti

Energy and momentum are constants of the motion. Extract quantities that

remain constant in the initial and final time and measure them experimentally.
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In modern particle physics calculations are done in the framework of quantum

field theories. A bridge between the “old” Newtonian mechanics and the

“modern” particle physics is provided by the classical Lagrangian &

Hamiltonian formulations of classical mechanics.

Newton : ~F = m~a ⇒ −~∇V (~X ) = m
d2~X

dt2
for conserved forces

~v =
d ~X

dt
~a =

d2~X

dt2

~P = m
d ~X

dt
~F =

d~P

dt

Form dynamical functions of ~X and ~v

Examples : ~L = ~X × ~P

E =
1

2
m~v2 + V (~X , t) = T + V (~X )
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Constants of the motion

Energy is conserved if V = V (~X ) 6= V (t) and ~F = −~∇V (~X ), which follows

from

dE

dt
=

d

dt

(

1

2
m~v2 + V (~X )

)

= m~v ·
d~v

dt
+

d

dt
V (~X )

= m~v · ~̇v + ~∇V (~X )
d ~X

dt
=

(

m~̇v + ~∇V
)

· ~v = 0

where the last equality follows from Newton’s equation. Take

L = T − V =
1

2
mv2 − V (~X )

=
1

2
m ~̇X

2

− V (x , y , z)

=
1

2
m(ẋ2 + ẏ2 + ż2)− V (x , y , z)
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for x
∂L

∂ẋ
= mẋ

d

dt

(

∂L

∂ẋ

)

= mẍ
∂L

∂x
= −

∂V

∂x

we get
d

dt

(

∂L

∂ẋ

)

−
∂L

∂x
= mẍ +

∂V

∂x
= 0

This is a very important result and generalises to many mechanical systems

and modern field theories.

For a conserving mechanical system with n–degrees of freedom q1, q2, · · · , qn

with potential V (q1, q2, · · · qn).

The 2nd order Euler–Lagrange equations are

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= 0

The motion of the physical system is solved by specifying 2n boundary

conditions:

q1, · · · , qn , q̇1, · · · , q̇n, at t = t0
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We define the conjugate momentum

pi =
∂L

∂q̇i
(~q, ~̇q, t)

Cyclic coordinate a coordinate that does not appear explicitly in L

L = L(q1, · · · , qn−1, q̇1, · · · , q̇n, t) ⇒
∂L

∂qn
= 0

⇒
d

dt

(

∂L

∂q̇n

)

= 0 ⇒
d

dt
(pn) = 0 ⇒ pn = constant (1)

⇒ Aim → find cyclic coordinates → constants of the motion

Lagrange formulation → system described in terms of n 2nd order diff. eqs.

An alternative formulation is provided by the Hamiltonian formulation
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Hamilton → describe the system in terms of 1st order differential equations.

Still need to specify 2n boundary conditions

the price is that we have 2n first order differential equations, rather than n

second order equations.

Hamilton change variables from configuration space to phases space

Configuration space : (q1, · · · , qn, q̇1, · · · , q̇n),

Phase space : (q1, · · · , qn, p1, · · · , pn),

where pi =
∂L

∂q̇i
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	An alternative way to write Newton's equations

