MATH 431 — May 2018: Solutions

All problems are similar to homework problems or material covered in the lectures.
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We want to find functions
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such that ds? remains invariant under the transformations.
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we demand that ds? remains invariant.
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demanding that the additional terms vanish we obtain the following constraints
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2. (a) In the lecture we have derived
) OH
o = —5—.
9q0

Therefore, pg is constant in time if H does not depend on qq.

One example for such a system is given in part (b) below, where H does not depend
on ¢. A second example would be a one dimensional harmonic oscillator (in ) embedded
in two dimensions such that there is no y dependence and therefore the momentum p, =
constant.

(b) In polar coordinates

xr = rsinfcos¢,
= rsinfsin ¢,
z = rcosf,
the kinetic energy is given by Bookwork

%m [1*2 + (r0)% + (rsin 0&)2] ,

and with the potential energy V the Lagrangian is given by

1 . )
L = 3m [7*2—1—(7"0)2—#(7“81110@2} -V.
Now
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Hence
H =" pids — L =mi? + mr?0? + mr?sin® 092 — - (72 + 1267 + rsin 667 + V
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= % (7*2 + 7202 + r?sin? 0¢2> +V
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With this we get
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An axisymmetric potential does not depend on ¢, so py is a constant of the motion,
and the angular momentum about the symmetry axis is conserved.

3. (a) Two-particle states are defined by

Ip1,p2) = a'(p1)a’(p2)|0),

with |p1, p2) = [p2, p1) as [af(p1),al(p2)] = 0.
We also know that Bookwork

[a(p1), a' (p2)] = (27)2p6(p1 — P2) -

Hence

(p1, Phlp1, P2) = (0la(p))a(ph)a’ (p1)al(p2)|0)

= (0la(py){a’ (p1)a(ph) + (27)*2p}6(p1 — ph) tal (p2)[0)

= (0la(p})a’ (p1){a’ (p2)a(ph) + (27)*2p{6(p2 — P5)}H0)

+ (2m)*2p{6(p1 — P5)(0la(p})a’ (p2)|0)

= (2m)*2p9d(p2 — P5)(0{a’ (p1)a(p}) + (27)*2pY6(p1 — P1)}0)

+ (2m)*2p{6(p1 — py) (0[{a’ (p2)a(p}) + (27)*2p9d(p2 — P7)}0)
= (2m)°(2pY) (2p3){0(P1 — P1)d(P2 — Ph) + d(p1 — P5)d(P2 — 1)} -

(b) The number operator is

With this [V, al(p)] = ( 2;)3 (;;%/ af (p')a(p’), a’(p)
- o [ S 6 6atw)a ()
- [ o () ale). 0! ()] + o' ()l ()}
=a'(p).

w



So we have

Na'(p) —a'(p)N = a'(p)
= Na'(p) = al(p)(N +1),

and  N|p1...pn) = Nal(p1)...a'(p,)[0)
=CLT(p1)(N+1) (p2) .- .a'(pn)[0)
= a'(p1)a’(p2)(N +2)...a(p,)[0)
= i (pr).al (pa)(V 4 m)0)
=na'(p1)...a"(pn)|0) (as a(p)|0) =0 and so N|0) = 0)
= n|p:. pn>

4.
o +imp = 0, (9T —imyt = 0

= (0N —imypT = 0 and (90 —imyp =
(a) With this

Op(y") = (Bu)y" ¥ + 97" (Out) = (imah)y + d(—imyp) =
(b) Similarly, and with {7° v#} = 0 we get
O (P v°h) = (D) v b + oty (Buh) = (im)y*Y — Py° (Y1 0ut)) = 2imapy™y) .
(c) From the Dirac equation for the spinors @ and u; we have
0 = ap(py —m)y ui = ugy"(p; — m)u;

= 2mapyHu; = (et + A p)u
and  p*+Y i = YV Py, +Y i, -

Now
YA+ = 29",
YA =yt = —2ic™
= AT = gM" — ot and At = g" + ot .
So we get

b+ b = 9" (pr + i)y +i0" (pp —pi) = (pf +pi)" +ic" (pr —pi)v,
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and finally have derived the Gordon decomposition

) 1 .
apytu = o [(py +pi) 0" (pr = pi)u]ui

. (a) The electromagnetic field strength tensor is given by
F,, = 0,A,—0,A,,

and the electromagnetic Lagrangian is

1 1 %4
Le.m. == _ZFIU,VF'LL
1
= (044, —0,A,)(0" A" — ¥ A")
1
= —Zn“an”ﬁ(ﬁaAﬁ — 05A0)(0,A, — D,A,) .

The Euler-Lagrange equations of motion for this Lagrangian are obtained from
0 oL oL 0
Ozv \ 0(0,A,) oA,

o _y o 0 oL\ _
04, ozv \9(0,4,)) —

Now

Hence calculate

oL 1
9(05A,) 4"

" [(6505 — 6505 (OuAs — D, AL)
+ (0aAp — 05A4) (8505 — 6065)]

1
= — — [0 — 0’ ) (0. A, — O, AL)

4
+ (Oadp — 05 Aa) (™0’ —n*n™)]
= — 24 [0°A° — 9°A°]
- _ F5e )
%0 o) oL 0
_ Y e —
x9 (3(35A6)) B 63:5F 0.

which are the Maxwell equations in the absence of sources.
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6a.

A, — flﬂ = A, +0,A.
Now _
Fu = 0,4, —0,A, = 0u(A, +0,A) — 0, (A, + 0,N)
= 0,A, —0,A,+ 0,0,A —0,0,A
= 0,A, -0,A, = F,,
as the derivatives of the scalar function A commute. With F},, also Le . is invariant
under the transformation.

The Lagrangian for a massive photon without sources is given by

1 v 2
_ZF/“/FM +m AMA'u .

As before the first term is invariant under the transformation considered above. How-
ever, the second term transforms as

m2A, A" — mPA A = mPA AR+ mP(0,A0MA + 9, AAF + AL0MN).

The extra terms do not vanish, so the mass term would not be invariant under the
transformation, i.e. break the invariance. Insisting on the invariance therefore forbids
the mass term, i.e. m? = 0 and the photon has to remain massless.

To show that orbital angular momentum is a constant of the motion we have to show
that it commutes with the Hamiltonian, i.e.

[LH] —0,

where the f/i’s are the components of the angular momentum operator in the z, y
and z directions. For a free particle the Hamiltonian is given by H = p?/(2m) and

the orbital angular momentum is given by L=rx p. Hence, for example, for L, (we
drop the hats from now on) we have

(L2, %] = [wpy — yp=, p% + Py + D]
= [z, p2lpy — [y, P IPa
= (p2[®, pal + [2, p2]p2 )y — (PylY, Py] + [y, PyIPy P2
= (2thpypy — 2ihpyps) =0
where we used the commutation relations [z;, p;] = ihd;;. Similar results are obtained

for L, and L,. Hence, the orbital angular momentum commutes with the Hamiltonian
and is a contant of the motion.



6b. Similarly to show that the orbital angular momentum is not a constant of the mo-
tion for a Dirac particle, we have to show that it does not commute with the Dirac
Hamiltonian,

H=a-p+ pm = a;p; + Bm
where summation over ¢ is assumed.
[Lza H] = [.I‘, H]py - [y7 H]px = ih(axpy - ayp:c) = Zh(& X ﬁ)z

hence
[L,H] =ihd x g #0

and consequently orbital aangular momentum does not commute with the Hamiltonian
and is not a constant of the motion.

6¢. The total angular momentum for a Dirac particle is
J=L+38

where L is the orbital angular momentum and S is the spin angular momentum. we
saw in part b that [L, H] = ihd X p hence we need to find S such that

(S, H] = —ihd x §

We take

Uy

Il
N | —

M

with

_fo; O
EJ_(O Uj)

where o, are the Pauli matrices and the 0 entries are 2 x 2 zero matrices. It is easy to

verify that

1 —
(55 H] = —ihd x j

and therefore [j , H] = 0 and the total angular momentum J is a constant of the motion.

7(a). 2 diagonal generators.

1 0 0 10 0
=10 -1 0] , x=[01 o0
0 0 0 00 -2



7b. D=8

0 1 0 0 —i 0
AM=11 00 , X=11%c 0 0
0O 0 O 0O 0 O
0O 0 1 0O 0 —2
M=10 0 0 , As=10 0 O
1 0 0 i 0 0
0O 0 0 0 0
=100 1] ., xm=[0 0 —
0 1 0 0 72 O

7c.

under the maximal subgroup SU(2) x U(1)

7d.
(-1/2, 1/3) (1/2, 1/3)
(0, -2/3)
e 3x3={(21/3)+(1,-2/3)} x {(2,—-1/3) + (1,2/3)} =
8+1={(2,+41)+(3,0)+ (1,0) + (2,-1)} + (1,0)
Tt

3x3=4(2,1/3)4+(1,-2/3)} x {(2,1/3) 4+ (1,-2/3)} =
6+3=1{(3,2/3)+(2,-1/3) + (1, -4/3)} +{(2, =1/3) + (1,2/3)}



