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1 Overview

Physics : Mathematical modelling of experimental observations. Predict outcomes of ex-
periments.

Initial conditions : Mathematical model → Predicted outcome ↔ Experimental data
Practical : An acceptable mathemcatical model is the one which is most successful in

accounting for a wide range of experimental observations
Themes: Reductionism : Large to small
Celestial, Atomic, Nuclear, sub–nuclear, ...
Themes: Unification : Newton, Maxwell, Einstein, Glashow–Weinberg–Salam, Georgi–

Glashow,
Earth & Skies, Electric & Magentic, Mechanics & ElectroMagnetism, Weak & EM,

ElectroWeak & Strong
Inventory :
Forces : E&M, Weak, Strong: spin +1 particles
Gravity: spin 2 particle
Particles :
Quarks & leptons
The aim of these lectures is to provide an introduction to the theoretical foundations

of modern particle physics. The course is aimed at third year undergraduate students in
UK universities. Befitting with the UK environment I do not assume any prior knowl-
edge. The material is introduced at an elementary level. The goal is to whet the student’s
appetatite for theoretical physics closer to the contemporary frontier. In this spirit the
presentation aims to be elementary, though the concepts contains the basic elements the
underlie our leading theory of elementary particle physics, the Standard Model. Physics
is first and foremost an experimental science. The language that we use to encode the
experimental data is mathematics. We may therefore regard physics as the mathemati-
cal modelling of experimental observations, where in this we may include terrestrial and
extra–terrestrial observations. So, for example, Newton formulated his laws of mechanics
by using observational data of planetary motion. Likewise today’s observations include
data from cosmological, astro-physical and terrestrial laboratories. Typically, in the math-
ematical modelling of the experimental data, we are given some initial conditions. The
mathematical model is then used to calculate a predicted outcome of these initial con-
ditions, which are tested against the experimental data. Physicists are practical people.
An accepted mathematical model is the one which is most successfull in accounting for
a wide range of experimental observations. The mathematical formulation of physical
observations follows several themes. Partly this follows from the technological develop-
ment of the experimental instruments. Thus, one theme is that of reductionism, i.e. from
large to small. The initial observations since ancient times were made in the celestial
domain, where astronomers mapped the motion of stars and planets. Progress is also
made by posing general postulates, without firm observational evidence. In this regard,
since ancient times both the geo–centric and helio–centric models of planetary motions
were proposed. With advances in optical instrumentation Galileo was able to provide the
decisive evidence in favour of the helio–centric model. Kepler and Newton formulated
their laws of planetary motion and mechanics following these advances. With technologi-
cal advances the electric and magnetical forces and the atomic world that they rule where
explored and understood in the course of the 19th century, with key contributions by
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Farady, Maxwell and Einstein. Further down the scale Rutherford and Fermi shed light
on the nuclear world. Which brings us closer to the sub–atomic world, which has been
probed since the fifties to the present day. To account for the experimental data emerging
with the exposition of new layers of the physical, new mathematical models and tools
were developed. Newton formulated the laws of mechanics and the inverse square law of
the gravitational interactions; Maxwell encapsulated the dynamics of charged matter in
electric and magnetic fields in the four Maxwell equations, whereas Einstein developed the
theory of special relativity in an attempt to reconcile Maxwell’s equations with Galilean
mechanics. Quantum mechaics was developed to account for the observed quantum spec-
trum of atomic and nuclear energy spectra, and were morphed into quantum field theories,
in order to account for detailed features of this spectra. The formalism of the Standard
Model utilises the framework of quantum field theories, adapted to Abelian and non–
Abelian gauge symmetries. The Standard Model of particle physics is a renormalisable
quantum field theory with specified matter and gauge content. The aim of these lectures
is to introduce the student to these structures at an elementary level.

Another prevailing theme in physics is that of unification. With the development of
experimental instrumentation that can probe smaller and smaller scales, using higher and
higher energies, or higher resolving power, different mathematical tools are introduced to
model the emerging mathematical data. Synthesising disparate mathematical formalisms
of experimental data into one coalescing framework is a guiding principle in theoretical
physics. It enlarges the scope and the predictive power of the mathematical model. I
note here a common misconception in regard to the term “predictive power”. The point
is not that a mathematical model needs to be able to predict something that has not
been observed before, and will be observed by some future experiment. This is perhaps
a prerequisite for those wishing to win a Nobel prize. For a physical theory, though, the
terminology “predictive power” is used in the sense of “calculability”. We want in our
mathematical representation of the physical world to start with some boundary condi-
tions, which can be boundary conditions in time or in space, and to be able to calculate
outcomes that can be detected in observations. Now, we want the minimum number of
free parameters in our mathematical model to be able to account for the maximal number
of observations in our physical experiment. This is why unification is such a prevailing
theme. Unifying different mathematical structures into one framework typically reduces
the number of free parameters and enlarges the predictive power of the unified theory,
in the sense that it is able to account for a wider range of observable phenomena. In-
deed, unification runs as a constant theme through the history of the development of
our understanding of the physical world over the past few centuries. Newton’s laws of
mechanics unified celestial and terrestrial observations of mechanical motion. Maxwell’s
equations unified the electric and magnetic forces in one electromagnetic theory. Ein-
stein unified electromagnetism with mechanics. The Standard Glashow–Weinberg–Salam
model unifies the electromagnetic and weak interactions, whereas Grand Unified Theories
unify the Standard Model with Quantum Chromo Dynamics (QCD), the theory under-
lying the strong interactions. The final frontier is the synthesis of quantum mechanics,
which accounts for the sub–atomic interactions, and general relativity, which describes
the gravitational interaction in the celestial, galactical and cosmological spheres, into one
overridding theory. These lectures will introduce the key ingredients of the Standard
Model and will offer a glimpse into Grand Unified Theories. The subject of the final fron-
tier, in the framework of string theories, is covered in the module “introduction to string
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theory”, which is offered next year. To proceed in our quest we first make an inventory
of what the Standard Model is composed of.

The Standard Model of particle physics is composed of three sectors: the forces; the
matter and the Higgs sectors. The forces in the Standard Model are mediated by spin
+1 particles that are transform in the adjoint representation of a unitary group. These
forces correspond to invariances of the Standard Model Lagrangian under the local gauge
group transformations. There are three forces in the Standard Model, corresponding to
invariaces under three gauge sectors: the electromagnetic force, which correspond to in-
variance under the U(1) transformations; the weak force, which corresponds to invriance
under SU(2) transformations; and the strong force, which corresponds to invriance under
SU(3) transformations. The gravitational interaction, which is not part of the Stan-
dard Model, is mediated by a Spin +2 field. The quantisation of the gravitational field
constitute much of the contemporary interest in theoretical physics.

The matter sector of the Standard Model is composed of soin 1/2 particles that trans-
form in representations of the Standard Model gauge symmetries. It is divided in the
categories of quarks and leptons, where quarks are particles that transform under the
SU(3) gauge symmetry of the strong interactions, whereas leptons are those that do not.
Hence, the quarks interact via the strong interactions, whereas leptons do not. The par-
ticles in the Standard Model appear in three replications that transform in indentical
manner under the Standard Model gauge group. The first generation of quarks are the
up– and down–quarks, the second are the charm and the strange quarks, and the third
are the top and bottom quarks. The first generation of leptons are the electron–neutrino
and the electron, the second are the muon–neutrino and the muon, and the third are the
tau–neutrino and the tau–lepton. The three replications are typically referred to as three
generations and carry identical charges under the Standard Model gauge groups. They
differ in their respective mass scales, i.e. the first generation is the lightest, whereas the
third one is the heaviest. This distinction is also reflected in the historical process of their
experimental discovery. The electron was the first to be observed in 1897 by Thompson,
whereas the last particle to be discovered, nearly a century later was the top–quark in
1995. The Higgs sector of the Standard Model is composed of a single spin 0 state that
transform as a doublet under the weak interactions.

Quarks

(
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down

) (
charm

strange

) (
top

bottom

)

Leptons

(
νe

electron

) (
νµ
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) (
ντ
tau

)

The Standard Model is an accummulations of over two centuries of research that
concluded in a model with 19 continuous free parameters that accounts for all observable
atomic and sub–atomic phenomena. This is a remarkable feat that accounts for tens
of thousands of experimental observations, in the most complex experimental apparatus
devoleped to date. Yet, the Standard Model is not the end of the road. It leaves many
yet unanswered questions. The Higgs particle, whose Vacuum Expectation Value (VEV)
generates mass for the Standard Model particle, was detected at the Large Hadron Collider
(LHC) in 2012. However, the origin or the mass scale of the Higgs particle and its stability
with respect to corrections from higher scales remains an enigma.

The Standard Model particle spectrum suggests the embedding of its gauge and matter
multiplets in larger groups in the framework of Grand Unified Theories (GUTs). This

3



unification gives rise to interactions that mediate rapid proton decay. We know in our
bones that is not the case, because if it was all the protons in our body would have
decayed long ago. In fact there would not be any matter at all! We are indeed fortunate
that the proton is stable. In fact, its lifetime exceeds that of the universe by many
orders of magnitude. Dedicated experiments searching for proton decay indicate that
τproton ≥ 1034years. Furthermore, the Standard Model is an effective field theory that
provides viable parameterisation of all observable sub–atomic data up to some scale in
which new physics must be present. In the first place, we know that the quantisation
of gravity cannot be formulated consistently as a quantum field theory. Gravity is not
renormalisable. In quantum field theories, in general, we encouter some amplitudes that
diverge. For instance, when calculating the self–energy of the electron. The way to
counter that is to absorb the infinities in some quantities that are fixed in experiments.
The physical parameters that are measured in experiments contain these infinities, which
reflects our ignorance of their fundamental origin. If this can be done for a finite number
of parameters, the physical theory is said to be renormalisable. Gravity on the other hand
is not renormalisable because it contains an infinite number of infinities.

While gravity is extremely weak at the electroweak scale, at some scale, which is typi-
cally called the Planck scale, it becomes of comparable strength to the gauge interactions.
At that scale its effect on the particle dynamics must be included and the Standard Model,
which is particular quantum field theory model, ceases to provide viable parameterisa-
tion. So the Standard Model cannot be the end of the story. It must be augmented by
new physics at some cutoff scale that we can denote generically as Λ. At that scale new
interactions are induced among the Standard Model particles that are suppressed by the
cutoff scale. Some of these oprators can induce rapid proton decay, which indicates that
the new scale is above 1016GeV. Fourteen orders of magnitude above the electroweak scale
and merely two orders of magnitude below the reduced Planck scale. Why is there such a
vast separation between the electroweak scale and the GUT and Planck scales, and what
keeps it stable, i.e. what mechanism keeps the electroweak scale stable against corrections
from the higher scales. Imagine living by the seaside and building a dyke to protect the
shores from 5 meters waves. But that will provide protection from 50 meters waves in
the case of a tsunami. This is called the hierarchy problem. To protect the EW scale
the existence of physics beyond the SM have been contemplated. Among them a sym-
metry between fermions and bosons, called supersymmetry. We can resort to the seaside
analogy again. When a tsunami occurs it is usually precedeed by a retraction of the sea
waters, followed by the tsunami wave. Imagine that as the sea waters retract, doors in
the seabed opens up to vast empty caverns. As the water come back they fill the empty
spaces which negates the rising level of waters. Hence the shores are protected. This is
more or less how supersymmetry works. In the case of supersymmetry bosonic corrections
are balanced by fermionic corrections, with a net effect that the EW scale remains intact.
Another mechanism that has been proposed is that of large extra dimensions, that in a
sense also diverts the rising levels into the vast empty spaces of the extra dimensions.

The synthesis of the Standard Model with gravity cannot be achieved within the
framework of point quantum field theories. String theory provides the most advanced
contemporary framework to explore this unification. In string theory elementary particles
are no longer point particles, but have an internal dimension. The result is that divergent
amplitudes in quantum field theories are rendered finite in string theory.

There are additional questions that tell us that in order to understand basic features
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of the Standard Model, we have to study its fusion with gravity. Why are there three
generations in nature? How do the mass parameters in the SM fixed? How did the universe
came to be, and how were its basic constituents produced? These puzzles require inputs
that go beyond the realm of quantum field theories.

In this course we will focus on the mathematical structures that make up the Standard
Model of particle physics. The study of modern particle physics is the study of the sym-
metries that underlie the sub–atomic interactions among the basic constituents of matter.
These symemtries are associated with conservation laws, for example, the conservation of
angular momentum in classical mechanics is associated with invariance of the mechanical
potential under rotations. We will also see how symmetries are violated. We can make
an analogy with a spinning wheel on a car. As long as the wheel is symmetric it turns
around soomthly and the car moves freely. If you make a puncture in it the car movement
will be impedded. What we would like to do is to set up the mathematical formalism
to link between symmetries and conservation laws, as well as their violation. This setup
is used to interpret the experimental observations. The mathematical formalism involves
groups, and their representations. We start with the Lorentz group.

2 Special relativity and the Lorentz group

Before turning to the Lorentz group and special relativity, consider rotations in a two
dimensional plane. The transformation is induced by a 2x2 matrix

(
x′1
x′2

)

=

(
cos θ sin θ
− sin θ cos θ

)(
x1
x2

)

≃
[(

1 0
0 1

)

+ θ

(
0 1
−1 0

)](
x1
x2

)

(2.1)

for small θ. Similarly in three spatial dimensions

~X ′ = R ~X

where R is a 3x3 matrix. The magnitude of vectors does not change when we rotate them
i.e.,

~X ′ · ~X ′ = ~X · ~X (2.2)

or
~XTRTR ~X = ~X · ~X (2.3)

i.e. we have to impose the condition RTR = I. The metric in this case is

ηij =





0 1 0
0 1 0
0 0 1



 (2.4)

xy

θ

y

x
Rotations in 2D
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2.1 Special relativity and the Lorentz group

Einstein’s special relativity follows from two basic tenets:

� c, the speed of light in vacuum is constant in all inertial frames with c = 3 · 108m/s
(in these lectures we often set c = 1).

� The laws of physics are the same in all inertial frames.

Events are labelled by their time and position in intertial frames.

−→ 4vector Xµ = (ct, ~X) µ = 0, 1, 2, 3

x0 = ct ~X = (x1, x2, x3) = (x, y, z)

The length of the four vector is given by

X ·X = c2t2 − x2 − y2 − z2 = t2 − x2 − y2 − z2 with c = 1

This is written as

X ·X =

3∑

µ,ν=0

ηµνX
µXν = ηµνX

µXν = XµX
µ

where by Einstein’s summation convention, indices that are repeated as lower and upper
indices are summed over, i.e. over µ = 0, 1, 2, 3. Here ηµν is the Minkowski metric given
by

ηµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







(2.5)

In general the scalar product of two 4–vectors Xµ, Y µ is given by

X · Y =

3∑

µ,ν=0

ηµνX
µY ν

We will use Einstein’s summation convention. A down index is summed with an up index,
and the summation symbol is dropped. We will encounter different types of objects

� scalar – no free indices. All indices are summed over.

� vector – one free index (e.g. Xµ)

� tensor – two and more free indices (gµν, Rµνρσ)

The Lorentz transformations are the transformations that preserve the scalar product. In
particular, they preserve the length of a 4–vector.

t2 − ~X2 = X ·X = ηµνX
µXν = X ′ ·X ′ = ηµνX

′µX ′ν = t′
2 − ~X′2

where X and X ′ are related by a Lorentz transformation

Xµ → X ′µ = ΛµνX
ν
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In general we write the metric as gµν and its components can be functions of spacetime.
This is the subject of general relativity in which spacetime can be curved. The metric
satisfies

gµνgνσ = δµσ ⇒ (gµν)−1 = gµν

In flat spacetime that we are dealing with in this lectures gµν → ηµν . We distinguish
between 4–vectors with upper and lower indices. We write

Xµ =

3∑

ν=0

gµνX
ν

Xµ is a covariant vector and Xµ is a contravariant vector. For Xµ = (t, ~X) → Xµ =

(t,−~X), for our choice of the Minkowski metric. The Lorentz invariant can be written as

XµX
µ. Given a vector Xµ = (t, ~X) there are two differential quantities of interest

� 1. dXµ → differential → contra variant four vector

� 2. ∂
∂Xµ = ∂µ → gradient → covariant four vector

How do they behave under coordinate transformations Xµ → X ′µ?

� 1. dXµ → dX ′µ = ∂X′µ

∂Xν dX
ν

� 2. ∂
∂Xµ → ∂

∂X′µ = ∂Xν

∂X′µ
∂
∂Xν

We see that the differential and the grandient transform differently. A four vector that
transforms like the differential is a contra–variant vector

V ′µ =
∂X ′µ

∂Xν
V ν

whereas four vector that transforms like the gradient is a covariant vector

V ′
µ =

∂Xν

∂X ′µVν

in the following we will use the notation

∂µ =
∂

∂Xµ

Example of a four vector is the momentum vector P µ = (E, ~P) and Pµ = (E,−~P). In
relativistic quantum mechanics the momentum four vector is proportional to the gradient

Pµ ∼
∂

∂Xµ

and
PµX

µ = Et− ~P · ~X
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2.2 Properties of Lorentz transformations

Lorentz transformations are transformations that preserve the scalar product and the
length of Lorentz four vectors, just like the rotations that preserve the length of three
vectors in three dimensional spatial space. The only difference is that in three dimensions
we are in Euclidean space with its Euclidean metric, whereas Lorentz transformations
operate in Minkowski spacetime with its Minkowski metric. The length of four vectors in
Minkowski space is given by

ηµνX
µXν

which is invariant under Lorentz transformations, i.e. there no change in its size and
shape. The invariance implies the existence of a symmetry, which is generated by a
group, the Lorentz group.

Assume Xµ → X ′µ under some Lorentz transformation, i.e.

Xµ → X ′µ = ΛµνX
ν

Hence
ηµνX

µXν → ηµνX
′µX ′ν = ηµνΛ

µ
αΛ

ν
βX

αXβ = ηαβX
αXβ

⇒ ηµνΛ
µ
αΛ

ν
β = ηαβ (2.6)

or in matrix notation
ΛTηΛ = η

where η is the 4x4 Minkowski metric and Λ is the 4x4 matrix of Lorentz transformations.
The identity in eq. (2.6) defines the Lorentz transformations.

⇒ (DetΛ)2 = 1⇒ DetΛ = ±1

The physical transformations correspond to those that can be continuously connected to
the identity, for which DetΛ = +1.

� DetΛ = +1→ Proper Lorentz tranformations

� DetΛ = −1→ Imroper Lorentz tranformations

We can look at the 00 component of the identity ηµνΛ
µ
αΛ

ν
β = ηαβ

ηµνΛ
µ
0Λ

ν
0 = +1

⇒ (Λ0
0)

2 −
∑

i

(Λi0)
2 = +1

⇒ (Λ0
0)

2 = 1 +
∑

i

(Λi0)
2 ≥ 1

We have that as,

(Λ0
0)

2 ≥ 1⇒ Λ0
0 ≥ +1 orthochronos LT

or Λ0
0 ≤ −1 non orthochronos LT
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An example of a nonorthochronos Lorentz transformation is given by reflections:

Λµν =







−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







The Lorentz transformations that are continuously connected to the identity are proper
and orthochronos i.e.

� 1. DetΛ = 1↔ proper

� 2. Λ0
0 ≥ 1↔ orthochronos

Examples:

�

Λµν =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







and Λµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1







� rotations:

Λµν =

(
1 0

0 ~R

)

where ~R are 3x3 rotation matrices in the three spatial dimensions. We have that
DetΛ = DetR = ±1 and DetR = +1 for proper rotations.

� boosts: For a boost along the x–axis

Λµν =







cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1







we have DetΛ = cosh2 η − sinh2 η = 1 and Λ0
0 = cosh η ≥ 1.

� time inversion:







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







(2.7)

DetΛ = −1 and Λ0
0 = −1. An improper non–orthochronos Lorentz transformation.

� full inversion:







−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







(2.8)

DetΛ = +1 and Λ0
0 = −1. A proper non–orthochronos Lorentz transformation.
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All Lorentz transformations are generated by the above transformations. The proper
and orthochronos Lorentz transformations correspond to rotations and boosts. These are
the physical Lorentz transformations that can be continuously connected to the identity
Lorentz transformation, i.e. we can write them in infinitesimal form, similar to the way
that we expanded the rotation in two dimensions in eq. (2.1). The proper orthochronos
Lorentz transformations form a group. We can parametrise these transformations in terms
of six parameters, similar to the θ parameter in eq. (2.1)

6 parameters = 3 angles + 3 boosts

We can write an infinitesimal proper orthochronos Lorentz tranformation in the form

Λµν = δµν + ωµν (2.9)

where δµν is the identity transformation and ωµν is a 4x4 matrix of the infinitesimal
parameters. Hence,

δµν = +1 for µ = ν ; = 0 for µ 6= ν

Next, we expand eq. (2.6) to first order in the infinitesimal parameters in ωµν . For
the continuous transformations the properties of the inifitesimal transformations fix the
transformation properties of the Lorentz group, and finite transformations are obtained
by integration. To obtain the constraints on the infinitesimal parameters we insert (2.9)
into (2.6) and expand to first order in O(ω),

ηµν(δ
µ
α + ωµα)(δ

ν
β + ωνβ) = ηαβ

open brackets

ηµνδ
µ
αδ

ν
β + ηµνω

µ
αδ

ν
β + ηµνδ

µ
αω

ν
β + ηµνω

µ
αω

ν
β = ηαβ

⇒ ηαβ + ωβα + ωαβ +O(ω2) = ηαβ

⇒ ωβα + ωαβ = 0

→ The tensor of infinitesimal transformations is antisymmetric.

rotations: rotation group in two dimensions

(
cos θ sin θ
− sin θ cos θ

)

≃
(
1 0
0 1

)

+ θ

(
0 1
−1 0

)

for small θ (2.10)

The number of degrees of freedom in a 4x4 antisymmetric matrix?
for general n: n2−n

2
= n(n−1)

2

for n = 4→ 4 · 3
2

= 6→ 3 rotation angles + 3 boosts

⇒ ωµν =







0 a1 a2 a3
−a1 0 b3 −b2
−a2 −b3 0 b1
−a3 b2 −b1 0







(2.11)
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2.3 Algebraic properties of the Lorentz group

We associate an operator U(Λ) with the Lorentz transformation Λ. For the special case
Λ = δ → U(δ) = I, the identity operator. We want to find an operator associated with
Λ = δ + ω. To order O(ω)

U(δ + ω) = I +
1

2
iJµνω

µν + · · ·

where Jµν are a set of operators and the ωµν are the infinitesimal parameters. to see the
relevant structure we can look at the example of rotations





x′

y′

z′



 =





1 α −β
−α 1 γ
β −γ 1









x
y
z



 (2.12)

we can write the matrix in the form

A = I + α





0 1 0
−1 0 0
0 0 0



+ β





0 0 −1
0 0 0
1 0 0



 + γ





0 0 0
0 0 1
0 −1 0



 (2.13)

where the 3x3 matrices are the operators i.e. the analogs of the operators Jµν and
α, β, γ ∈ ωµν . The expansion in (2.13) is almost in the desired form. The caveat is that
the operators are not hermitian, whereas for physics reasons we would like them to be
hermitian. To obtain that we multiply by i, i.e.

A = I + iα





0 −i 0
i 0 0
0 0 0



 + iβ





0 0 i
0 0 0
−i 0 0



+ iγ





0 0 0
0 0 −i
0 i 0



 (2.14)

Now the operators are hemitian.
To extract the algebraic properties of the Lorentz group, we will first discuss the

problem in general and then specialise to the generators of the Lorentz group. Our
observations here will then be valid in different cases as well.

In quantum mechanics, which underlies quantum field theory, and hence modern par-
ticle physics, operators are unitary,

U−1
QM = U †

QM ⇒ U †
QMUQM = I

The reason that operators have to be unitary is that for a pure state probability should
be preserved. Under a unitary transformation we have

|ψ〉 → |ψ′〉 = U |ψ〉

P = 〈ψ′||ψ′〉 = 〈ψ|U †U |ψ〉 = 〈ψ|ψ〉.
Hence, the probability is preserved if U is unitary. A convenient way to write a unitary
opetor is using exponentiation

U = eiO → U † = e−iO
†

⇒ U †U = e−iO
†

eiO = I
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We see that provided that the operator O is hermitian, exponentiation is a good way
to represent unitary operators. A property of exponents is

eaeb = ea+b

provided that a and b commute i.e. ab = ba. What happens, however, if a and b do not
commute? Write

eAeB
?
= eA+B (2.15)

and A and B are two operators that do not commute i.e. [A,B] 6= 0. To test the identity
in (2.15) we can expand the two sides and compare at equal orders in the expansion

(I + A+
A2

2!
)(I + B +

B2

2!
)

?
= (I + A+B +

(A+B)2

2!
)

I + A+B + AB +
A2

2!
+
B2

2!
?
= I + A+B +

A2

2!
+
AB

2!
+
BA

2!
+
B2

2!

We see that the two sides are not equal! To remedy the inequality we can fix the left
hand side

I + A +B +
A2

2!
+
AB

2!
+
BA

2!
+
B2

2!
+
AB

2!
− BA

2!

= I + (A +B) +
(A+B)2

2!
+

[A,B]

2!

Hence, to second order we derived the identity

eAeB = eA+B+ 1
2
[A,B] (2.16)

Now, suppose we have the exponential representation of a unitary group

eiαaXa ,

where Xa are hermitian generators and form a vector space; αa are infinisetimal numbers;
and summation over repeated indecis is implied. In general, as we saw,

eiαaXAeiβbXb 6= ei(αaXa+βbXb)

but as the elements
eiγaXa

form a group, we must have
eiαaXAeiβbXb = eiδaXa (2.17)

for some δa, where summation over repeated indices is implied.

2.3.1 Digression: properties of a group

Groups will crop up throughout the lectures. It is useful to recall some of their properties.
Assume group G under some product ⊗:

1. if g1, g2 ∈ G then g1 ⊗ g2 = g3 ∈ G

2. there exist an identity element e ∈ G and eg = ge = g for all g ∈ G.
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3. for each g ∈ G there exist an inverse g−1 ∈ G and gg−1 = e

Examples:

1

G = integers; ⊗ = +

if n,m ∈ G ⇒ n+m ∈ G; n+ 0 = 0 + n = n; n+ (−n) = 0 ∈ G
⇒ the group criteria are satisfied

but G = integers is not a group under ⊗ = × as there is no inverse

i .e. if n, m ∈ G ⇒ n× 1 = 1× n = n

but n× 1

n
= 1 and

1

n
/∈ G

Hence, the group criteria are not satisfied.

2

G = rational numbers form a group under; ⊗ = ×
if X, Y ∈ G ⇒ X × Y = Z ∈ G;
X × 1 = 1×X = X ; → 1 is the identity

X =
n

m
⇒ X− =

m

n
⇒ X ×X−1 =

m

n

n

m
= 1→ X−1 ∈ G

⇒ the group criteria are satisfied

Groups and Lie algebras are the bedrock of modern particle physics. Getting back to
our problem, we expand the exponents in eq. (2.17) up to quadratic order in α and β

(

I + iαaXa +
(iαaXa)

2

2

)(

I + iβbXb +
(iβbXb)

2

2

)

= I + iαaXa + iβbXb −
(αaXa)

2

2
− αaXaβbXb −

(βbXb)
2

2
( complete the square of αaXaβbXb)

= I + iαaXa + iβbXb +

−(αaXa)
2

2
− αaXaβbXb

2
− βbXbαaXa

2
− (βbXb)

2

2

− αaXaβbXb

2
+
βbXbαaXa

2

= I + i(αaXa + βbXb) +
(i(αaXa + βbXb))

2

2
− [αaXa, βbXb]

2

We get that
eiαaXAeiβbXb = eiαaXa+iβbXb− 1

2
[αaXa,βbXB ] (2.18)

or noting the group property eq. (2.17) we have

iδaXa = iαaXa + iβbXb −
1

2
[αaXa, βbXB]

= iαaXa + iβbXb −
1

2
αaβb[Xa, XB]

13



Hence, we must have
[Xa, Xb] = ifabcXc for some fabc

fabc are called the structure constants and summarise the group multiplication law.
We can now turn our attention back to the special case of the Lorentz group. We

saw that the matrix of infinitesimal transformation that are connected continuously to
the identity is an antisymmetric second rank tensor, i.e. ωµν = −ωνµ. In four spacetime
dimensions that corresponds to three boosts and three rotations.

→ Λ = e
i
2
ωµνJ

µν

where Jµν are generators of the Lorentz algebra. To first order in the infinisetimal pa-
rameters ω we have

Λ ∼ I − i

2
ωµνJ

µν (2.19)

A representation of the Lorentz group transforms as

φi →
[

e
i
2
ωµνJ

µν
R

]i

j
φj = U(Λ)φ , j =, 1 . . . , n

JµνR are the generators in the R–representation of the Lorentz group as n × n matrices.
As µ, ν = 0, · · · , 3 we have 16 Jµν matrices, but on six of those are independent as
Jµν = −Jνµ.

All elementary particles in nature transform in representations of the Lorentz group.

scalars → Higgs boson

fermions → matter

vectors → force mediators

The generators of the Lorentz group satisfy the Lie algebra.

[Jµν , Jρσ] = i(ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ)

which is the Lie algebra of SO(1, 3). We define the operators

Ki = Ji0 = −J0i i = 1, 2, 3

Ji =
1

2

∑

j,k

ǫijkJjk

where ǫ123 = +1, ǫ213 = −1, ǫ112 = 0, etc ... To first order in the infinitesimal parameters
the Lorentz rotations and boosts are given by

Λ = I + i~a · ~K − i~b · ~J

The second rank tensor ωµν is given in terms of the ai and bi as in eq. (2.11). For

example, as we have seen in eq. (2.14) in the case of rotations: A = I + i~α · ~J . Hence,
the generators of the Lorentz group are:

~J → generators of rotations
~K → generators of boost

14



satisfy the commutation relations

[Ji, Jj] = iǫijkJk

[Ji, Kj] = iǫijkKk

[Ki, Kj] = −iǫijkJk

We define the combinations:

~J+ =
1

2

(

~J + i ~K
)

~J− =
1

2

(

~J − i ~K
)

Note that the generators ~J+ and ~J− are not hermitians as,

~J†
+ = ~J−
~J†
− = ~J+

The commutation relations of ~J+ and ~J− are

[
J+
i , J

+
j

]
=

1

4
[Ji + iKi, Jj + iKj] =

1

4
(Jk + iKk + iKk + Jk) = iǫijkJ

+
k

Similarly,

[
J+
i , J

+
j

]
= iǫijkJ

+
k

[
J−
i , J

−
j

]
= iǫijkJ

+
k

[
J+
i , J

−
j

]
= 0

The J+
i and J−

i generate two disjoint generators of an SU(2) algebra, SU(2)× SU(2)†.
Each representation of the Lorentz group is labelled by the indecis of the two disjoint
SU(2) algebras (j1, j2).
Each representation has (2j1 + 1)⊗ (2j2 + 1) components.

As ~J = ~J+ + ~J− spin is given by j1 + j2.

examples: (j1, j2) spin components
a (0,0) 0 1 singlet
b (1

2
, 0) 1

2
2 Weyl spinor

c (0, 1
2
) 1

2
2 Weyl spinor

d (1
2
, 0) + (0, 1

2
) 1

2
4 Dirac spinor

e (1
2
, 1
2
) 1,0 4 vector

If we write Xµ = (t, x, y, z), under rotation t is a singlet and (x, y, z) is a triplet.

Recalling that the generatorof rotations is given by ~J = ~J+ + ~J−, we note that under
rotations a Lorentz four vector decomposes into a singlet and a triplet.

From the point of view of the (1
2
, 1
2
) representation, each spin 1

2
state has two compo-

nents that we can denote as spin up and spin down. In total we have four possibilities ↑↑,
↑↓, ↓↑, ↓↓, from which we can form three symmetric combinations and one asymmetric

15



3 ↔ ↑↑; 1√
2
(↑↓ + ↓↑); ↓↓ spin = 1 ; j3 = (+1, 0,−1)

1 ↔ 1√
2
(↑↓ − ↓↑); spin = 0 ; j3 = 0

we see that the triplet is symmetric with respect to exchange of the two spin states,
whereas the singlet is asymmetric.

3 The Poincare group

We saw that spin is a label of representations of the Lorentz group, which correspond to
elementary particles in nature. However, we cannot yet classify elementary particles which
also have mass. The reason is that the Lorentz transformations are not the most general
infinitesinal transformations of the infinitesimal relativistic line element. We should write
down the most general transformations of a relativistic line element

ds2 = c2dt2 − dx2 − dy2 − dz2 (3.1)

So far we discussed rotations & boosts that are symmetries of the Lorentz group. We
want to write the most general set of transformations that keep the line element in eq.
(3.1) invariant. To determine the most general set of transformations we can look at the
two dimensional case

dS2 = c2dt2 − dx2 (3.2)

The most general inifintesimal transformations are given by

t → t+ ǫT (t, x)

x → x+ ǫR(t, x)

where ǫ is an infinitesimal parameters. We want to find the functions T and R such that
the line element remains invariant

dt → dt+ ǫ(
∂T

∂t
dt+

∂T

∂x
dx)

dx → dx+ ǫ(
∂R

∂t
dt+

∂R

∂x
dx)

ds2 → [(1 + ǫ
∂T

∂t
)dt+ ǫ

∂T

∂x
dx]2 − [(1 + ǫ

∂R

∂x
)dx+ ǫ

∂R

∂t
dt]2

we require invariance of ds2. Expanding to first order in ǫ

ds2 → dt2 − dx2 + 2ǫ

(
∂T

∂t
dt2 − ∂R

∂x
dx2 + (

∂T

∂x
− ∂R

∂t
)dxdt

)

+O(ǫ2)

we impose that the coefficients of the addtional terms vanish. These yield the constraints
on the functions T and R.
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dt2 :
∂T

∂t
= 0⇒ T = T (x)

dx2 :
∂R

∂x
= 0⇒ R = R(t)

dxdt :
∂T

∂x
− ∂R

∂t
= 0⇒ dT

dx
=
dR

dt
= constant = c

⇒ T (x) = cx+ a

R(t) = ct+ b

We obtained three degrees of freedom that are respresented by the three constants of the
motion a, b , c. We can check what are the three constants of motion.

a. choose c = b = 0 ; a 6= 0 ⇒ x→ x ; t→ t+ ǫa
hence this case corresponds to a translation in time

b. choose a = c = 0 ; b 6= 0 ⇒ t→ t ; x→ x+ ǫb
hence this case corresponds to a translation in space

c. choose a = b = 0 ; c 6= 0 ⇒ t→ t + ǫcx ; x→ ǫct+ x
the third transformation corresponds to a boost

If we had taken the line element to be ds2 = dt2+dx2 we would have obtained orinary
rotations.

t → t+ ǫcx

x → x− ǫct

or in matrix form (
t

x

)

→
(
t

x

)

+ ǫ

(
0 1
−1 0

)(
t

x

)

that we have seen before. Hence, the case of the infinitesimal line element ds2 = dt2+dx2

corresponds to rotaions in two dimensions. The boost transformation is a generalisation
of rotations to four dimensional Minkowski spacetime. Returning to four dimensional
Minkowski spacetime in eq. (3.1) ds2 = c2dt2 − dx2 − dy2 − dz2,

we have 4− translationsdt, dx, dy, dz

3− rotations dxdy, dxdz, dydz

3− boosts dtdx, dtdy, dtdz

The group that describes this set of symmetries is the Poincare group. The total number
of generator of the Poincare group is 10. Our aim is to find the algebra of the Poincare
group and its invariants. This will give us the labels of elementary particles. The trans-
lation symmetries are important. They relate to the momentum operator that generates
translations. We will therefore obtain momentum and mass from the relativistic invariant
PµP

µ = m2, where P µ is the particle momentum four vector. Mass is the second label of
particle states.
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To start let us look at the transformation of the function φ(x) in one dimension

x → x+ a

φ(x) → φ(x+ a)

we are looking for an operator that induces this transformation.

φ(x+ a) = U(a)φ(x)

φ(x) → φ(x+ a) =
∑

n

an

n!

(
∂n

∂xn
φ(x)

)∣
∣
∣
∣
a=0

=

(
∑

n

an

n!

∂n

∂xn

)

︸ ︷︷ ︸
operator

φ(x) = ea
∂
∂xφ(x)

U(a) = ea
∂
∂x ← is the operator

U(a) = ea
∂
∂x ≃ 1 + a

∂

∂x
+ · · · = 1 + i(−ia ∂

∂x
) + · · ·

= 1 + iaP + · · ·

i.e P = −i ∂
∂x

is the operator that induces the translation in x. The complex factor i
arises because we require that U(a) is a unitary operator.

U = I + iaP

U † = I − iaP
U−1 = I − iaP
U †U = (I − iaP )(I + iaP ) = I + a2P 2 ≃ I

In four spacetime dimensions
U(aµ) ≃ I + iaµPµ

The generators of the Poincare group are:

Pµ = i∂µ ← 4 translations (3.3)

Lµν = i(Xµ∂ν −Xν∂µ) ← 3 rotations + 3 boosts (3.4)

The most general transformation consistent with the Poincare group.

Xµ → X ′µ = ΛµνX
ν + aµ

We want to find:

� the commutation relations among the generators of the group

� the maximal set of commuting operators → physical labels
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Example : Rotations

[Li, Lj ] = iǫijk

Casimir operator L2

[
L2, Li

]
= 0 → 2 mutually commuting operators L2, Lz.

L2|j,m〉 = j(j + 1)|j,m〉
Lz|j,m〉 = m|j,m〉

the states are labelled by their eigenvalues under the commuting operators.
We saw that Pµ = i ∂

∂Xµ ← 4 generators

1 ⇒ [Pµ, Pν] = 0

the order does not matter if we perform two successive translations.

Xµ → X ′µ = Xµ + aµ 1. translate by aµ

X ′µ → X ′′µ = X ′µ + bµ 2. translate by bµ

= Xµ + aµ + bµ

Xµ → X ′µ = Xµ + bµ 1. translate by bµ

X ′µ → X ′′µ = X ′µ + aµ 2. translate by aµ

= Xµ + aµ + bµ

The order of the translations does not matter, hence the commutator of the two
operations (generators) commutes.

2 [Pµ, X
ν] =

[
i ∂
∂Xµ , X

ν
]
= i
[
∂
∂Xµ , X

ν
]
= iδνµ

3 [Pµ, Ki] = ? , [Pµ, Ji] = ?

We perform successive Poincare transformations

1. Xµ → X ′µ = Λ1
µ
νX

ν + a1
µ first transformation

2. X ′µ → X ′′µ = Λ2
µ
νX

′ν + a2
µ second transformation

= Λ2
µ
ν

(
Λ1

ν
λX

λ + a1
ν
)
+ a2

µ

= Λ2
µ
νΛ1

ν
λX

λ

︸ ︷︷ ︸

2 successive L.T.

+ Λ2
µ
νa

′ν + a2
µ

︸ ︷︷ ︸

translation that includes a L.T.

we symbolise:
U(Λ2, a2)U(Λ1, a1)

We perform the first transformation 1. and then the second 2.
we require:

U(Λ2, a2)U(Λ1, a1) = U(Λ2Λ1,Λ2a1 + a2) (3.5)
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where U(λ, a) is given by

U(Λ, a) = 1 + i~α · ~J − i~β · ~K + iaµPµ (3.6)

Here, αi, βi and a
µ are infinitesimal parameters. Hence, (3.6) is an expansion of U(Λ, a) to

first order in the infinitesimal parameters. Inserting (3.6) into (3.5) and keeping terms to
second order in the inifinitesimal parameters, we derive the commutation relations. The
generator of translations is given in eq. (3.3), whereas the generators of boosts and rota-
tions are given in eq. (3.4). The translation generators satisfy the communation relations

given in 1 , whereas the generators of translations and boosts satisfy the commutation
relations

[Lµν , Lρσ] = iηνρLµσ − iηµρLνσ − iηνσLµρ + iηµρLνσ (3.7)

which are the commutation relations of the SO(1, 3) Lie algebra. The most general
representation of the generators of the SO(1, 3) algebra that obeys eq. (3.7) is given by

Jµν = Lµν + Sµν

where Sµν obeys eq. (3.7) and commutes with Lµν . Additionaly:

[Jµν , Pρ] = −iηµρPν + iηνρPµ (3.8)

In terms of Ji and Ki the commutation relations become

[Ji, Pj] = iǫijkPk

[Ki, Pj] = iHδij where H = P0

[Ji, H ] = 0 , [Pi, H ] = 0 , [Ki, H ] = iPi

A more elegant form of the commutation relations is obtained by defining the

3.1 Pauli–Lubanski vector:

Wσ = −1
2
ǫσµνλJ

µνP λ (3.9)

We note the appearance of the antisymmetric tensor in four dimensions ǫσµνλ, which gen-
eralises the antisymmetric tensor in three dimensions ǫijk. Before proceeding to examine
the Pauli–Lubasnki vectort, we digress to discuss the generalisation of the antisymmetric
tensor in any number of dimensions.
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antisymmetric tensor in 3D: ǫijk i, j, k = 1, 2, 3

ǫ123 = +1 ǫ132 = −1
ǫ231 = +1 ǫ213 = −1
ǫ312 = +1 ǫ321 = −1

i.e. ǫ123 = ǫeven permutations = ǫodd permutations

For a 3× 3 matrix A =





a1 a2 a3
b1 b2 b3
c1 c2 c3





DetA =
∑

i,j,k

ǫijkaibjck

= ǫ123a1b2c3 + ǫ132a1b3c2 + ǫ213a2b1c3

+ǫ231a2b3c1 + ǫ312a3b1c2 + ǫ321a3b2c1

= a1(b2c3 − b3c2)− a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

useful identities : ǫijkǫilm = (δjlδkm − δjmδkl)
ǫijlǫijk = 2δlk

facilitates vector calculus calculations in 3D.

Generalises to nD ǫµνρ ··· σ : ǫ123···n = +1 = ǫe.p. = −ǫo.p.

For a n× n matrix A =






a11 · · · a1n
...
an1 · · · ann






DetA =
∑

i,j,k,···
ǫijk ··· a1ia2j · · · anρ

in 4D ǫµρστ µ, ρ, σ, τ = 0, 1, 2, 3

21



Returning to the Pauli–Lubanski vector eq. (3.9) we have

WσP
σ = −1

2
ǫσµνλJ

µνP λP σ = +
1

2
ǫµνλσJ

µνP λP σ = 0

W0 = −1
2
ǫ0ijkJ

ijP k = −JkP k = − ~J · ~P

Wi = −1
2
ǫijk0J

jkP 0 − 1

2
ǫij0kJ

j0P k − 1

2
ǫi0jkJ

0jP k

=
1

2
ǫ0ijkJ

jkP 0 − 1

2
ǫ0ijkJ

j0P k − 1

2
ǫ0ijkJ

j0P k

= P0Ji + ǫijkPjKk

~W = P0
~J + ~P × ~K

(3.10)

For ~P = 0 , P0 = m ⇒ ~W = +m~J = +m~S

The commutation relations become:

[Jµν ,Wρ] = i(ηνρWµ − ηµρWν)

[Wµ, Pν ] = 0

[Wµ,Wν ] = iǫµνρσW
ρP σ

3.2 Casimir invariants of the Poincare group

A Casimir operator is one that commutes with all the generators of the group.
Eigenvalues of the Casimir operators are labels of 1–particle states.
The Casimir operator C commutes with the Hamiltonian

H = P0 ⇒ [C,H ] = 0

P0 = i~
∂

∂t
↔ translation in time

Hence, the eigenvalues of the Casimir operator are constants in time → constants of the
motion.

single particle states: ψ(x) = |~P , S〉
where ~P represents the momentum vector and S stands for other quantum numbers
PµP

µ is the first Casimir operator of the Poincare group

PµP
µ|~P , S〉 = m2

0|~P , S〉 → m0 rest mass of the particle

The rest mass of the particle is a Poincare invariant.
The second Casimir operator of the Poincare group is given by WµW

µ.
We saw thatWµ is a Lorentz four vector. Hence,WµW

µ is a Lorentz scalar, and commutes
with Jµν , the generators of the Lorentz group.
From the explicit form of Wµ it also follows that

[Wµ, Pν ] = 0
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by using the asymmetry of ǫµνρσ and the symmetry of Pν = i∂ν . Hence, it follows that

[WµW
µ, P ν] = 0

Since, WµW
µ is a Lorentz invariant, we can compute it in a convenient frame.

If m 6= 0 it is convenient to choose the rest frame of the particle. In this frame

P µ = (m, 0, 0, 0).

W µ = −1
2
ǫµνρ0JνρP0 + · · · = −

m

2
ǫµνρ0Jνρ · · · =

m

2
ǫ0µνρJνρ

⇒ W 0 = 0

W i =
m

2
ǫ0ijkJjk =

m

2
ǫijkJjk = mJ i

Therefore, on a one particle state with mass m and spin j we have −WµW
µ = m2JiJ

i =

m2 ~J2

−WµW
µ|~P , S〉 = m2j(j + 1)|~P , S〉 (m 6= 0)

If m = 0 there is no rest frame and |~v| = c, i.e. the particle is travelling at the speed
of light. We choose a frame with

P µ = (w, 0, 0, w).

⇒ W 0 = −1
2
ǫ0ijkJijPk = wJ3 = W 3

W 1 = −1
2
ǫ10jkJ0jPk −

1

2
ǫ1j0kJj0Pk −

1

2
ǫ1jk0JjkP0

= w(J1 −K2)

Similarly, W 2 = w(J2 +K1)

Therefore, −WµW
µ = w2

[
(K2 − J1)2 + (K1 + J2)2

]
(m = 0)

The limit m→ 0 is nontrivial. We study separately the massive and massless representa-
tions.

� Massive representations

PµP
µ = m2

WµW
µ = −m2j(j + 1)

Take m > 0 → , massive representations are labeled by their mass m and spin j.
For massive states we can choose the frame P µ = (m, 0, 0, 0).

⇒ invariant under spatial rotations

The “Little group” of Lorentz transformations is the set of Lorentz transformations
that leaves P µ invariant.

P µ = ΛµαP
α

23



We see from the form of P µ in the rest frame that for massive representations the
“little group” correspond to spatial rotations i.e.

⇒ the little group for massive representations is SU(2)

⇒ massive representations of mass m are labeled by their spin j = 0, 1
2
, 1, · · ·

states within each representations are labelled by jz = −j,−j + 1m · · · , j − 1, j

⇒ massive particles of spin j have 2j + 1 degrees of freedom

� Massless representations PµP
µ = P 2 = m2 = 0.

Two choices that satisfy this condition are P µ = (w, 0, 0, w) or P µ = (0, 0, 0, 0).

The second case is unphysical. It is unchanged under Lorentz transformations.

In the case of massless states there is no rest frame.

We want to find the little group in the case of massless states, i.e. the set of Lorentz
transformations Λµν that leaves the momentum 4–vector invariant. Our problem is
to solve the equation

Λµν(p)P
ν = P µ

where P ν = (w, 0, 0, w).

First, we note that rotations in the x, y plane leaves this pν invariant

λµν =







1 0 0 0
o cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1







(3.11)

This is an SO(2) subgroup of SU(2) generated by J3, the generator of rotations in
the x−y plane. To find the most general transformation that leaves P µ = (w, 0, 0, w)
invariant, it is sufficient to look at the infinitesimal Lorentz transformations,

Λµν = δµν + ωµν

We look for the most general matrix ωµν that satisfies

ωµν = −ωνµ

and
ΛµνPν = (δµν + ωµν)Pν = δµνPν + ωµνPν = P µ

Hence,ωmuνPν = 0

For P ν = (w, 0, 0, w) → Pν = (w, 0, 0,−w)

⇒







0 w01 w02 w03

−w01 0 w12 w13

−w02 −w12 0 w23

−w03 −w13 −w23 0













1
0
0
−1







= 0

24



This gives the constraints

w03 = 0

w01 + w13 = 0

w02 + w23 = 0

Denoting w01 = α; w02 = β; w12 = θ, the most general transformation that leaves
P µ invariant is given by

Λ = e−i(αA+βB+θC)

where (with a lower second index)

Aµν = i







0 −1 0 0
−1 0 0 1
0 0 0 0
0 −1 0 0







Bµ
ν = i







0 0 −1 0
0 0 0 0
−1 0 0 1
0 0 −1 0







(3.12)

Cµ
ν = i







0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0







The matrix C corrspond to rotations in the x − y plane, whereas the A and B
matrices are given by combinations of boost and rotation generators.

Cµ
ν =

(
J3
)µ

ν

Aµν =
(
K1 + J2

)µ

ν

Bµ
ν =

(
K2 − J1

)µ

ν

We showed that for massless states the Poincare invariant −WµW
µ is given by

−WµW
µ = w2

[
(K2 − J1)2 + (K1 + J2)2

]

Hence, we obtained
−WµW

µ = w2
[
A2 +B2

]

Using the expressions for the matrices A, B and C that we found or the commutation
relations of the Lorentz algebra we find that the J3, A and B generators close an
algebra

[
J3, A

]
= iB ;

[
J3, B

]
= −iA ; [A,B] = 0

This is the same as the algebra generated by

P x, P y, and Lz = (xP y − yP x) ,

i.e. translations and rotations in the Euclidean x − y plane with A and B playing
the role of translation operators. The algebra is denoted as ISO(2). It is a non–
compact algebra, i.e. it is infinite dimensional due to the continuous eigenvalues of
the momentum operators P x and P y. Since A and B commute their eigenvalues are
continuous and non–compact.
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We find that for massless particles there exists a continuous degree of freedom that is
not realised physically. We demand therefore that the operators A and B annihilate
the physical massless states

Â|~P , a, b〉 = a|~P , a, b〉
B̂|~P , a, b〉 = b|~P , a, b〉

with a = b = 0 for physical massless states. Therefore,

−WµW
µ = 0

for physical massless states. This agrees well with

lim
m→0

WµW
µ = lim

m→0
−m2(j(j + 1)) = 0

that we found in the massive case. For massless states with a, b = 0 the little
group is SO(2) or U(1). The generator of rotations in the x− y plane is J3. Hence,
the representations are labeled by the eigenvalue h of J3, which is the angular
momentum in the direction of propagation.

→ helicity : projection of the spin on the direction of momentum.

The helicity is quantised. The proof is based on topological properties of the Lorentz
group.

→ massless states are labeled by their helicity.

h =
~P

|~P |
· ~J

where
~P

|~P | is a unit vector in the direction of the momentum. Helicity is quantised.

For massless states there are only two helicity states.

h = 0, ± 1

2
, ± 1, ± 3

2
, ± 2, · · ·

Photon m2 = 0 two polarisation states h = ±1
Graviton m2 = 0 two polarisation states h = ±2

For massive particles there are (2j + 1) helicity states.

For massive states we can go from −h to +h polarisation states by a Lorentz trans-
formation, i.e. by a boost.

For massless particles this is not possible as c = 1 in all inertial frames.

Helicity is a Lorentz invariant of massless states.
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4 Lagrangian & Hamiltonian Mechanics

Newtonian mechanics : specify position and velocity at t = ti

m
d2X

dt2
= F (X) ⇒ X = X(t = tf) ;

Ẋ = Ẋ(t = tf)

In Newtonian mechanics the mechanical problem is solved by specifying initial con-
ditions for the position and velocity, and solving the second order differential Newton
equation, which then provides a solution for the position and velocity at ensuing
times.

Modern particle physics : specify energy and momentum at t = ti

Energy and momentum are constants of the motion. Extract quantities that re-
main constant in the initial and final time and measure them experimentally. The
analysis of the experimental data is performed subject to the tenet that energy and
momentum are conserved.

In modern particle physics calculations are done in the framework of quantum field
theories. A bridge between the “old” Newtonian mechanics and the “modern” particle
physics is provided by the classical Lagrangian & Hamiltonian formulations of classical
mechanics.

Newton : ~F = m~a ⇒ −~∇V ( ~X) = m
d2 ~X

dt2
for conserved forces

~v =
d ~X

dt
~a =

d2 ~X

dt2

~P = m
d ~X

dt
~F =

d~P

dt

Form dynamical functions of ~X and ~v

Examples : ~L = ~X × ~P

E =
1

2
m~v2 + V ( ~X, t) = T + V ( ~X)

4.1 Constants of the motion

Energy is conserved if V = V ( ~X) 6= V (t) and ~F = −~∇V ( ~X), which follows from

dE

dt
=

d

dt

(
1

2
m~v2 + V ( ~X)

)

= m~v · d~v
dt

+
d

dt
V ( ~X)

= m~v · ~̇v + ~∇V ( ~X)
d ~X

dt
=
(

m~̇v + ~∇V
)

· ~v = 0

where the last equality follows from Newton’s equation.
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4.2 An alternative way to write Newton’s equations

Take

L = T − V =
1

2
mv2 − V ( ~X)

=
1

2
m ~̇X

2

− V (x, y, z)

=
1

2
m(ẋ2 + ẏ2 + ż2)− V (x, y, z)

for x
∂L

∂ẋ
= mẋ

d

dt

(
∂L

∂ẋ

)

= mẍ
∂L

∂x
= −∂V

∂x

we get
d

dt

(
∂L

∂ẋ

)

− ∂L

∂x
= mẍ+

∂V

∂x
= 0

This is a very important result and generalises to many mechanical systems and modern
field theories.

For a conserving mechanical system with n–degrees of freedom q1, q2, · · · , qn with
potential V (q1, q2, · · · qn).

The 2nd order Euler–Lagrange equations are

d

dt

(
∂L

∂q̇i

)

− ∂L

∂qi
= 0

The motion of the physical system is solved by specifying 2n boundary conditions:

q1, · · · , qn , q̇1, · · · , q̇n, at t = t0

or q1, · · · , qn , at t = t0 t = tf

We define the conjugate momentum

pi =
∂L

∂q̇i
(~q, ~̇q, t)

Cyclic coordinate a coordinate that does not appear explicitly in L

L = L(q1, · · · , qn−1, q̇1, · · · , q̇n, t) ⇒
∂L

∂q n
= 0

⇒ d

dt

(
∂L

∂q̇n

)

= 0 ⇒ d

dt
(pn) = 0 ⇒ pn = constant (4.1)

⇒ Aim → find cyclic coordinates → constants of the motion

In the Lagrange formulation we describe the system in terms of n 2nd order differential
equations

An alternative formulation is provided by the Hamiltonian formulation
Hamilton → describe the system in terms of 1st order differential equations.
Still need to specify 2n boundary conditions
the price is that we have 2n first order differential equations, rather than n second

order equations.
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Hamilton change variables from configuration space to phases space

Configuration space : (q1, · · · , qn, q̇1, · · · , q̇n),
Phase space : (q1, · · · , qn, p1, · · · , pn),

where pi =
∂L

∂q̇i

The tranformation is made by a Legendre transformation

H =

n∑

k=1

pkq̇k − L(q1, · · · , qn−1, q̇1, · · · , q̇n, t) = H(qk, pk),

where pk =
∂L

∂q̇k

Example: a particle in one dimension with constant energy E.

L =
1

2
mq̇2 − V (q)

p =
∂L

∂q̇
= mq̇ ⇒ q̇ =

p

m

H = pq̇ − L(q, q̇ = pq̇)−
(
1

2
mq̇2 − V (q)

)

=
p2

m
− m

2

p2

m2
+ V (q) =

p2

2m
+ V (q)

In the Hamiltonian formalism we perform a Legendre transformation from configuration
space to phase space that consist of the 2n Independent variables (qi, pi). The Hamiltio-
nian is a function of these 2n variables and possibly of time, H = H(qi, pi, t).

Legendre transformation from configuration to phase space (qi, pi) → 2n independent
variables H = H(qi, pi, t).

The Hamilton equation of motion are obtained by taking

dH =
∂H

∂qk
dqk +

∂H

∂pk
dpk +

∂H

∂t
dt (4.2)

Whereas from� H = pkq̇k − L, we have

dH = pkdq̇k + q̇kdpk −
∂L

∂qk
dqk −

∂L

∂q̇k
dq̇k −

∂L

∂t
dt (4.3)

with pk =
∂L

∂q̇k
and with Euler–Lagrange equations

dpk
dt
− ∂L

∂qk
= 0

we get,

dH = q̇kdpk −
∂L

∂qk
dqk −

∂L

∂t
dt (4.4)

�here and in eq. (4.2) summation of k is implied.
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Comparing the coefficients of eqs. (4.2) and (4.4) yields the Hamilton equations of motion

∂H

∂pk
= q̇k

∂H

∂qk
= − ∂L

∂qk
= −dpk

dt
= −ṗk

∂H

∂t
= −∂L

∂t

We get 2n+1 1st order differential equations which are the Hamilton equations of motion.
When L does not depend explicitly on time ⇒ ∂L

∂t
= 0

⇒ dH

dt
=

∂H

∂qi
q̇i +

∂H

∂pi
ṗi +

∂H

∂t

=
∂H

∂qi

∂H

∂pi
+
∂H

∂pi

(

−∂H
∂qi

)

+
∂H

∂t
=
∂H

∂t
= −∂L

∂t
= 0

when L 6= L(t) ⇒ H 6= H(t) ⇒ H is a constant of the motion.
When H does not depend explicitly on t H is identified with the conserved energy

H = E = constant.

4.3 Poisson brackets

Using Hamilton equations we can write for any canonical function G(qi, pi, t)

dG

dt
=

∂G

∂qi
q̇i +

∂G

∂pi
ṗi +

∂G

∂t

=
∂G

∂qi

∂H

∂pi
− ∂G

∂pi

∂H

∂qi
+
∂G

∂t

the Possion brackets are defined as

{A,B} = ∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

we can write
dG

dt
= {G,H}+ ∂G

∂t

⇒ if
∂G

∂t
= 0 & {G,H} = 0⇒ dG

dt
= 0

i.e. if G does not depend explicitly on time and the Poisson brackets of G with H
vanish then G is conserved in time.

In Quantum mechanics the Poisson brackets are replaced by the commutator of the
hermitian operators A and B, i.e.

{A,B} → [A,B] where A ,B are hemitian operators

⇒ dA

dt
= [A,H ] +

∂〈A〉
∂t

⇒ if A 6= A(t) & [A,H ] = 0 ⇒ dA

dt
= 0

⇒ A A is a conserved operator
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5 The action principle

The Euler–Lagrange equations of motion can be derived from an action principle. Given
the Lagrangian

L(qi, q̇i) =
∑

i

1

2
miq̇

i − V (qi)

define

S =

∫

dtL(qi, q̇i).

Action principle for fixed values of q(ti) = qin, q(tf ) = qout, then the classical trajectory
which satisfies these boundary conditions is an extremum of the action

δ

∫ tout

tin

dtL(qi, q̇i) = 0

δS =

∫ tout

tin

dt δL(qi, q̇i =

∫ tout

tin

dt

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)

=

∫ tout

tin

dt

(
∂L

∂qi
δqi +

∂L

∂q̇i
δ
dqi
dt

)

=

∫ tout

tin

dt

(
∂L

∂qi
δqi −

d

dt

(
∂L

∂q̇i

)

δqi

)

+
∂L

∂q̇i
δqi

∣
∣
∣
∣

tout

tin

= 0

⇒
∫ tout

tin

dt

(
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))

δqi = 0 (5.1)

This must hold for any variation δqi. Hence we must have

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)

= 0 (5.2)

6 Classical field theory

So far we discussed systems with discrete and finite number of particles
Classical field Ψ(~r, t): function of ~r, t, specifying the value of the field at a spacetime

point.
A field representation can simplify a many body mechanical problem

Example:
∂2y(x, t)

∂t2
− 1

v2
∂2y(x, t)

∂x2
= 0

where y(x, t) represents the motion of molecules along a chain. With a large number
of molecules in the chain, say of the order of 1023 we can write the deviation from some
equilibrium position as a function of the variables x and t.
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6.1 Continuous dynamics in the Lagrangian formalism

The Lagrangian for longitudenal motion of a N–particle linear elastic chain.

L =
N∑

i=1

1

2
mẏ2i −

∑

i

1

2
K(yi+1 − yi)2

where

mi = m → mass of the ith particle

yi → longitudenal displacement from equilibrium

Ki = K → elastic constant

a → equilibrium position

Na → total length of the chain

L =
1

2

N∑

i=1

a

[

m

a
ẏ2i −Ka

(
yi+1 − yi

a

)2
]

=
∑

i

aLi

lim
a→0

=

N∑

i=1

aLi =

∫

dxL(x) = L

x is a continuous index replacing the discrete index i.

lim
a→0

m

a
→ dm

dx
= µ→ linear mass density

lim
a→0

N→∞

Ka → τ = elastic tenion; Young’s modulus

L = lim
a→0

1

2

∑

a

{

m

a
ẏ2i −Ka

(
yi+1 − yi

a

)2
}

→ 1

2

∫

dx
(

µẏ2 − τy′2
)

Lagrangian density L(x) = 1

2

{

µẏ2 − τy′2
}

per unit length

L is a function of the field velocity ẏ, the field coordinate y(x, t) and the field gradient
y′

2
.
x is an index. Apoint in the field. It replaced the i variable in the discrete case.
The generalisation to three dimensions

L =

∫

L(φ, φ̇,∇φ)dxdydz where φ = φ(x, y, z, t)

the action is given by

S =

∫ t2

t1

dt L[φ] =

∫ t2

t1

dtdxdydz L(φ, φ̇,∇φ)

=

∫

d4x L(φ, ∂µφ) ← relativistic notation
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The equations of motions for the field φ are obtained by requiring that the variation
of the action vanishes and demanding that δφ = 0 at t1 and t2.

δ

∫

L(φ, ∂µφ)d4x =

∫ (
∂L(φ, ∂µφ)

∂φ
δφ+

∂L(φ, ∂µφ)
∂(∂µφ)

δ(∂µφ)

)

d4x

we note that there is no explicit dependence of L on xµ. With δ(∂µφ) = ∂µ(δφ) we get

=

∫

Ω

(
∂L(φ, ∂µφ)

∂φ
δφ+

∂L(φ, ∂µφ)
∂(∂µφ)

∂µδφ

)

d4x

=

∫

Ω

δφ

(
∂L(φ, ∂µφ)

∂φ

)

d4x+

∫

Ω

∂µ

(
∂L(φ, ∂µφ)
∂(∂µφ)

δφ

)

d4x−
∫

Ω

δφ∂µ

(
∂L(φ, ∂µφ)
∂(∂µφ)

)

d4x

where we used integration by parts
∫
V dU = V U −

∫
UdV.

the second term is a boundary term that vanishes by the divergence theorem (Gauss law).

=

∫

δφ

(
∂L(φ, ∂µφ)

∂φ
− ∂µ

(
∂L(φ, ∂µφ)
∂(∂µφ)

))

d4x = 0

Since this holds for any δφ we have that

∂L(φ, ∂µφ)
∂φ

− ∂µ
(
∂L(φ, ∂µφ)
∂(∂µφ)

)

= 0

These are the Euler–Lagrange equations of motion for the field φ.
Example’: in the case of the harmonic chain

L =
1

2
µẏ2 − 1

2
τy′

2

∂L
∂ẏ

= µẏ2 ;
∂L
∂y′

= τ ẏ2 ;
∂L
∂y

= 0

∂µ
∂L

∂(∂µy)
− ∂L
∂y

= µ
∂2y

∂t2
− τ ∂

2y

∂x2
= 0

which is the familiar wave equation. If

L =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2 =

1

2
ηαβ(∂αφ)(∂βφ)−

1

2
m2φ2

∂L(φ, ∂µφ)
∂(∂µφ)

= ηαβ
∂(∂αφ)

∂(∂µφ)
(∂βφ) + ηαβ(∂αφ)

∂(∂βφ)

∂(∂µφ)

= ηαβδαµ(∂βφ) + ηαβδβµ(∂αφ)

= ηµβ(∂βφ) + ηµα(∂βφ) = 2ηµν(∂νφ)

∂µ

(
∂L(φ, ∂µφ)
∂(∂µφ)

)

− ∂L(φ, ∂µφ)
∂φ

=
1

2
∂µ(2η

µν∂νφ) +m2φ

= (∂µ∂
µ +m2)φ(~x, t) = 0
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This is the Klein–Gordon equation of a reletivistic free scalar field that we will encounter
in more detail later on. The Hamiltonian for a field can be written has

H =

∫

h(φ, π)dxdydz

where the generalised momentum density is defined by

h = φ̇(~x, t)π(~x, t)− L

and

H =

∫

d3x(φ̇(~x, t)π(~x, t)− L) =
∫

d3xh

For the Klein–Gordon field,

L =
1

2
(φ̇2 − (∇φ)2 −m2φ2)

We used here ∂µ = (∂t, ~∇) , ∂µ = (∂t,−~∇) → � = ∂µ∂
µ = (∂2t − ~∇2)

⇒ ∂L
∂φ̇

= φ̇

h = φ̇2 −
(
1

2
(φ̇2 − (∇φ)2 −m2φ2)

)

=
1

2

(

φ̇2 + (∇φ)2 +m2φ2
)

the total energy
∫
hd3x should be conserved if H 6= H(t), and be the zero component of

some four vaector P µ. To construct it we introduce the energy momentum tensor

T µν = ∂µφ
∂L

∂(∂νφ)
−Lηµν

⇒ P µ =

∫

T µ0d3x

and H = P 0 =

∫

T 00d3x

T µν is conserved as it satisfies the continuity equation

∂νT
µν = ∂ν

(

∂µφ
∂L

∂(∂νφ)
− Lηµν

)

= ∂µφ∂ν

(
∂L

∂(∂νφ)

)

+ ∂ν∂
µφ

∂L
∂(∂νφ)

− ηµν
(
∂L
∂φ

∂νφ+
∂L

∂(∂λφ)
∂ν∂λφ

)

=

(

∂ν

(
∂L

∂(∂νφ)

)

− ∂L
∂φ

)

∂µφ+
∂L

∂(∂νφ)
∂ν∂

µφ− ∂L
∂(∂λφ)

∂µ∂λφ = 0

The conservation of T µν implies that P µ =
∫
T µ0d3x transforms as a 4–vector and is time

independent. P µ is the energy–momentum 4–vector.
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7 The Klein–Gordon equation

In non–relativistic quantum mechanics

~P → −i~~∇ , E → i~
∂

∂t
quantum operators

The Hamiltonian for an energy conserving system is

H =
~P

2m
+ V (~q) = E

leads to the Shrödinger equation by substitution

(

− ~
2

2m
~∇2 + V (~q)

)

Ψ(~q, t) = i~
∂

∂t
Ψ(~q, t)

In special relativity the four vector P µ is given by

P µ = (
E

c
, ~P )

we have ∂µ = (1
c
∂
∂t
, ~∇) ; ∂µ = (1

c
∂
∂t
,−~∇) Therefore we can identify P µ = i~∂µ.

In special relativity E = mc2
√

1− v2

c2

, ~P = m~v
√

1− v2

c2

Therefore, PµP
µ = E2

c2
− ~P 2 = m2c2.

Following the example of non–relativistic quantum mechanics we use P µ → i~∂µ and
obtain the wave equation

−~2∂µ∂
µφ = m2c2φ

or (

∂2 +
m2c2

~2

)

φ( ~X, t) = 0 ← the Klein–Gordon equation

Its interpretation as a single particle is problematic. The equatio describes a scalar field
but not in a single state but a multi–state, i.e. a quantised field. To find solutions of the
Klein–Gordon equation we put it in a box and impose that the wave–function vanishes
on the boundaries. We then take the volume to infinity. We assume that the particle is
free i.e. V ( ~X) = 0. The solution in the box is a plane wave solution of the form

φ( ~X, t) ∼ eikµx
µ

xµ = (t, ~x)

kµ = (w,~k) , kµ = (w,−~k) ← constant

φ(~x, t) ∼ ei(wt−
~k·~x)

We want the solution to describe a free particle of mass m. We substitute this solution
into the Klein–Gordon equation

⇒ w2 − |~k|2 = m2

The particle is confined in a box assume
⇒ φ(x, y, z, t) = T (t)X(x)Y (y)(Z(z)
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substituting in the KG equation → − T̈
T

+
X

′′

X
+
Y

′′

Y
+
Z

′′

Z
= m2 → const

all constants → w2 − k2x − k2y − k2z

To satisfy the boundary conditions we impose:
kx =

n1π
L

, ky =
n2π
L

, kz =
n3π
L

where n1, n2, n3 are integers

and obtain w2 = m2 + π2

L2 (n
2
1 + n2

2 + n2
3) ← dispersion relations

The solutions of the KG equations are momentum eigenstates

we have: φ = Ae−ik·x = Ae−ikµx
µ ⇒ ∂µφ =

∂φ

∂xµ
= −ikµAe−ik·x = −ikµφ

∂2φ = −kµkµφ = −k2φ

⇒
(

∂2 +
m2c2

~2

)

φ = 0 ⇒ k2 =
m2c2

~2
=

1

λ2

λ = ~

mc
has dimensions of length → Compton wave length of particle of mass m

we have: P µφ = i~∂µφ = ~kµφ

φ describes a momentum eigenstate with eigenvale ~kµ

The condition k2 = m2c2

~2
is the same as P 2 = m2c2 → the mass shell condition

we have: P 2 =
E2

c2
− ~p2 = m2c2 ⇒ E

c
= ±

√

m2c2 + ~p2

⇒ some solutions of the KGE correspond to negative energy states
→ interpretation as a single particle state is problematic. Such interpretation is also

in conflict with the probability interpretation of the wave function.
Quantum mechanics → non–relativistically |ψ(x)|2 = ρ(x).
ρ(x) → probability density →

∫∞
−∞ |ψ(x)|2dx = 1

The probability density in quantum mechanics obeys a continuity equation.

∂ρ

∂t
+ ~∇ · ~J = 0

where ~J = − i~

2m
(ψ∗~∇ψ − ψ~∇ψ∗)

Provided that the potential V (~r) is real, ρ(x) is conserved.
We want to construct similar quantities for the KG equation. Furthermore, we want

the continuity equation to be covariant i.e. to hold in all inertial frames, →
∂µj

µ = 0 ← covariant

find a 4–vector jµ = (j0, ~J) which obeys ∂µj
µ = 0.

Start with the KGE 1. φ∗ · / (∂2 +m2)φ = 0

2. φ · / (∂2 +m2)φ∗ = 0

1 − 2 → φ∗∂2φ− φ∂2φ∗ = 0
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ηαβ(φ∗∂α∂βφ− φ∂α∂βφ∗) = ηαβ∂α(φ∗∂βφ− φ∂αφ∗) = ∂β(φ
∗∂βφ− φ∂αφ∗) = 0

⇒ jµ ∼ (φ∗∂βφ− φ∂αφ∗) ⇒ ∂µj
µ = 0

In Schrödinger case ρ = ψ∗ψ. Here,

ρ =
i~

2mc2
(φ∗ ∂

∂t
φ− φ ∂

∂t
φ∗)

φ ∼ e±i(Et−~p·~x) = e±iEte∓~p·~x

The case with +E in the exponent corresponds to the antiparticle case. For φ ∼
e+iEt( ), with E ≈ mc2 we have

ρ =
i~

2mc2

(
imc2

~
φ∗φ+

imc2

~
φ∗φ

)

= −φ∗φ < 0

We get negative probability associated with the antiparticle and positive probability
asscociated with the particle. This does not make sense as probability density→ multiply
by charge e.

⇒ Charge density ρ =
i~e

2mc2

(
imc2

~
φ∗φ+

imc2

~
φ∗φ

)

Charge current density ρ =
e~

imc

(

φ∗~∇φ+ φ~∇φ∗
)

The interpretation of the solution of the KGE makes sense as charge density, not as
probability density.
→ it makes sense as a quantum field → creating–annihilating particles

7.1 Quantisation of the KG field (real scalar field).

The Lagrangian density : L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 =

1

2
(∂φ)2 − 1

2
m2φ2

leads to the KG equation : (∂2 +m2)φ = 0

we can write : L =
1

2
φ̇− 1

2
(∇φ)2 − 1

2
m2φ2

from which we derive Π =
∂L
∂φ̇

= φ̇

In ordinary quantum mechanics we impose the relations:

[qi, pj] = i~δij, [qi, qj ] = 0, [pi, pj] = 0

In classical field theory the coordinates are replaced by the fields

qi → φ(x) , pi → π(x)
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analoguesly, in quantum field theory we impose the equal–time commutation relations

[φ(~x, t), π(~x′, t)] = i~δ(~x− ~x′)
[φ(~x, t), φ(~x′, t)] = [π(~x, t), π(~x′, t)] = 0

where the Dirac δ–function satisfies the properties

∫ ∞

−∞
f(x)δ(x− a)dx = f(a)

∫ β

α

f(x)δ[F (x)]dx =
f(a)

|F ′(a)| whereF (a) = 0

The commutation relations are equal time commutation relations→ canonical commuta-
tion relations

In the Heisenberg picture the equations of motion are given by

i~α̇ = [α,H ] , where α→ operator, H–Hamiltonian α 6= α(t)

consider:

[φ(~x, t), H ] =

[

φ(~x, t),

∫ [
1

2
π(~x′, t)2 +

1

2
(∇φ(x′, t))2 + 1

2
m2φ(x′, t)2

]

d3x′
]

=
1

2

∫

d3x′
{[
φ(~x, t), π(~x′, t)2

]
+
[
φ(~x, t), (∇φ(x′, t))2

]
+m2

[
φ(~x, t), φ(x′, t)2

]}

Recalling that [φ(~x, t), φ(~x′, t)] = 0⇒ [φ(~x, t),∇′φ(~x′, t)] = 0

⇒ [φ(~x, t), H ] =
1

2

∫

d3x′
([
φ(~x, t), π(~x′, t)2

])

=
1

2

∫

d3x′
(
φ(~x, t)π(~x′, t)2 − π(~x′, t)2φ(~x, t)

)

=
1

2

∫

d3x′ (φ(~x, t)π(~x′, t)π(~x′, t)− π(~x′, t)φ(~x, t)π(~x′, t)

+ π(~x′, t)φ(~x, t)π(~x′, t)− π(~x′, t)π(~x′, t)φ(~x, t))

=
1

2

∫

d3x′ ([φ(~x, t), π(~x′, t)] π(~x′, t) + π(~x′, t) [φ(~x, t), π(~x′, t)])

=

∫

d3x′
(

π(~x′, t)δ3(~x− ~x′) = i~π(~x, t) = i~φ̇(~x, t)
)

we obtained the correct equations of motion.
The connection between the quatised field and its particle interpretation is seen by

looking at the Fourier transformed field

φ(x) =
1

(2π)4

∫

d4p φ̃(p)e−ip·x

φ̃(p) =

∫

d4x φ(x)eip·x

38



For φ(x) to satisfy the KG equation we must have

(∂2 +m2)φ =
1

(2π)4

∫

d4p (m2 − p2)φ̃(p)e−ip·xd4p = 0

i .e. (p2 −m2) = 0

i .e. φ̃(p) 6= 0 only when p2 = m2

φ̃(p) = (2π)δ(p2 −m2)f(p)

p0 = ±
√

~p2 +m2

we may set : f(~p) = θ(p0)f+(~p) + θ(−p0)f−(~p)
where

θ(x) =

{

1 x > 0

0 x < 0

from: the properties of the delta function we have

∫

f(x)δ(x− a)dx = f(a)

using y = λx ,
dy

λ
= dx

∫

f(x)δ(λx− λa)dx =

∫

f(
y

λ
)δ(y − λa)dy

λ
=
f(a)

λ

Further recalling

∫ β

α

f(x)δ(F (x))dx =

and using y = F (x) , dy = F ′(x)dx , x = F−1(y) , dx =
dy

F ′(F−1(y))
we have

=

∫ F (β)

F (α)

f(F−1(y))δ(y)
dy

F ′(F−1(y))
=
∑

i

f(ai)

F ′(ai)

where y = F (ai) = 0. Hence,

δ(p2 −m2) = δ(p20 − (~p2 +m2))

=
1

2p0
δ(p0 − (~p2 +m2)

1
2 ) +

1

2p0
δ(p0 + (~p2 +m2)

1
2 )

φ(~x, t) =
1

(2π)4

∫

dt

∫
d3~p

2po

(
e−ip·xf+(~p) + eip·xf−(~p)

)

Here p0 =
√

~p2 +m2

f+(~p) = f(+
√

~p2,+~p)

f−(~p) = f(−
√

~p2,−~p)

The f+ term corresponds to positive energy states. The f− term corresponds to negative
energy states.
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So far the Fourier decomposition that we discussed is classical, i.e. we didn’t yet
impose the commutation relations.

If we impose the commutation relations

[π, φ] = δ3(~x− ~x′) , [φ, φ] = [π, π] = 0

Then the aplitude of the Fourier modes become annihilation and creation operators,

f−(~p) = (f+(~p))
† = a†(~p)

f+(~p) = = a(~p)

It can then be shown that a(~p) and a†(~p) satisfy the commutation relations

[
a(~p), a†(~p′)

]
= 2p0δ3(~p− ~p′)XS(2π)3

[a(~p), a(~p′)] = 0 =
[
a†(~p), a†(~p′)

]

i.e. the quantum field φ(x) creates and annihilates particle states with momentum ~p. The
vacuum is defined by

a(~p)|0〉 = 0 ∀ ~p 〈0|0〉 = 1

1− particle state |~p〉 = a†(~p)|0〉
2− particle state |~p1, ~p2〉 = a†(~p1)a

†(~p2)|0〉

and so forth.
So far we discussed the free KG equation.
How do we incorporate interactions?
In Newtonian mechanics we describe interactions by adding a potential.

L =
1

2

∑

i

(
dxi
dt

)

− V (~x)

m
∑

i

ẍi = −~∇V (~x = ~F (~x)

if we have more than one particle

∑

j

mj

∑

i

ẍji =
∑

ij

−~∇V (~xi − ~xj)

typically we consider the interactions to be 2–body interactions and we sum over all the
interacting particles

For the harmonic oscillator in one dimension

V (x) =
1

2
kx2

mẍ = −∂V (x)

∂x
= −kx
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In the case of the KGE

L =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2

The second term looks like V (φ) ∼ 1
2
kφ2. Classically the particle is in a potential well.

If it has initial energy E, it will oscillate about the vacuum V (φ) = 0. The lowest point
that the field can be in is the vacuum. So far we are describing a free field. Suppose that
we want to describe a field which is not free in a potential

V (φ) = Aφ4 +Bφ2 ,with A > 0, and B < 0.

In Newtonian mechanics this will correspond to a double well. The point V (φ) = 0 is no
longer the vacuum

∂V (φ)

∂φ
= 4Aφ3 + 2Bφ = 0

or (2Aφ2 +B)φ = 0

⇒ φ = 0 , φ = ±
√

−B
2A

We can now see how we can use this formalism to describe particles and their interactions.
We developed a diagramatic representation of interactions.
→ Feynman diagrams
The interactions that we described so far are by using a single scalar field
In nature we are familiar so far with gravity, E&M, weak, and strong interactions.

Force Gravity E&M Weak Strong
Mediator Graviton Photon W±, Z-bosons Gluons
Spin +2 +1 +1 +1
mass 0 0 ∼ 80, ∼ 90GeV 0

gauge symmetry spacetime diff. U(1) SU(2) SU(3)

How can we describe these interactions?
Standard Model → SU(3)C × SU(2)L × U(1)Y local gauge interactions.
In the modern language of elementary particles, interactions correspond to invariances

of the Lagrangian under some local symmetry.
Interaction ↔ invariance under a local gauge symmetry
Symmetries of the Lagrangian correspond to conserved currents
consider a free scalar field calL = 1

2
∂µφ∂

µφ− 1
2
m2φ2

It is invariant under the discrete symmetry φ→ −φ
consider two free scalar fields with equal mass m

L =
1

2
[∂µφ1∂

µφ1 + ∂µφ2∂
µφ2]−

1

2
m2(φ2

1 + φ2
2) (7.1)

with the transformations
(
φ1

φ2

)

→
(

cosα sinα
− sinα cosα

)(
φ1

φ2

)
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where α is a global constant.
The Lagrangian in eq. (7.1) is invariant under the rotations in the φ1, φ2 plane.
α is a continuous parameter → global continuous symmetry, α 6= α(x).
Consider the complex field

Φ =
1√
2
(φ1 + iφ2)

Φ∗ =
1√
2
(φ1 − iφ2)

The lagrangian in terms of Φ, with Φ†Φ = 1
2
(φ2

1 + φ2
2)

L = (∂µΦ)
†(∂µΦ)−m2Φ†Φ (7.2)

In terms of Φ the rotation becomes

Φ =
1√
2
[(cosαφ1 + sinαφ2) + i(− sinαφ1 + cosαφ2)]

Φ =
1√
2
[(cosα− i sinα)φ1 + i(cosα− i sinα)φ2]

= e−iαΦ

⇒ Φ → e−iαΦ

Φ∗ → eiαΦ∗

The continuous symmetry in terms of Φ is a symmetry under a phase transformation.
The symmetry is a global U(1) symmetry.
→ arbitrary choice of the phase → continuous global symmetry
What happens if α = α(x)?

Φ(x) → e−iα(x)Φ(x)

∂µΦ (−i∂µα(x)Φ(x) + ∂µΦ(x)) e
−iα(x)

L → ηµν
[
∂µ(e

−iα(x)Φ)
]† [

∂ν(e
−iα(x)Φ)

]
+m2

(
e−iα(x)Φ

)† (
e−iα(x)Φ

)

ηµν [∂µΦ(x)− i(∂µα(x))Φ(x)]† [∂νΦ(x)− i(∂να(x))Φ(x)]† +m2Φ†Φ

if α 6= α(x) the derivative term ∂α(x) drops out.
We have to fix the Lagrangian to get a Lagrangian which is invariant under local phase

transformaions α = α(x).
We redefine the derivative as ∂µ → ∂µ + aµ(x) where aµ(x) is a function of x.
Under local phase transformations

aµ(x) → a′µ(x) = aµ(x) + i∂µα(x)
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where α(x) is a scalar function of x. Then

(∂µ + aµ(x))Φ(x) → (∂µ + a′µ(x))(e
−iα(x)Φ(x))

= e−iα(x)(∂µ + a′µ(x) + i∂µα(x)− i∂µα(x))Φ(x)
= e−iα(x)(∂µ + a′µ(x))Φ(x)

We now get that the Lagrangian is invariant under the local phase transformations.

Φ(x) → Φ′(x) = e−iα(x)Φ(x)

requiring local phase invariance → introduce aµ(x)

→ local gauge field

→ the electromagnetic field
All interactions in the Standard Model are gauge interactions
→ invariance under local phase transformations + internal symmetries
electromagnetic interactions ↔ continuous local symmetry

8 The electromagnetic field

Maxwell’s equations (ǫ0 = µ0 = c = 1)

~∇ · ~E = ρem (8.1)

~∇× ~E = −∂
~B

∂t
(8.2)

~∇ · ~B = 0 (8.3)

~∇× ~B = ~Jem +
∂ ~E

∂t
(8.4)

Define Jµem = (ρem,~jem)

In terms of scalar and vector potential V and ~A

~E = −~∇V − ∂ ~A

∂t
~B = ~∇× ~A (Bi = ǫijk∂jAk)

so (~∇× ~∇× ~A)i = ǫijk∂j(ǫklm∂lAm)k

= ǫijkǫklm∂j∂lAm = (δilδjm − δimδjl)∂j∂lAm
= ∂i∂jAj − ∂j∂jAi = (~∇(~∇ · ~A))i − ~∇2 ~Ai
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⇒ ~∇(~∇ · ~A)− ~∇2 ~A = ~jem −
∂2 ~A

∂t2
− ∂

∂t
~∇V (8.5)

~∇ · ~E = −~∇2V − ∂

∂t
~∇ · ~A = ρem

or

(

∂2 ~A

∂t2
− ~∇2 ~A

)

+ ~∇∂
∂t
V + ~∇(~∇ · ~A) = ~jem

(
∂2V

∂t2
− ~∇2~V

)

− ∂

∂t

∂

∂t
V − ∂

∂t
(~∇ · ~A) = ρem

we can write this in four vector notation

defining 4−−vector potential Aµ = (V, ~A) ; Aµ = (V,− ~A)

∂ν∂
νAµ − ∂µ(∂νAν) = ∂ν(∂

νAµ − ∂µAν)
= ∂νF νµ = Jµem

where we defined the electromagnetic field strength tensor

Fµν = ∂µAν − ∂νAµ) = −Fνµ

F0i = ∂0Ai − ∂iA0 = (−~∇V − ∂t ~A)i = ( ~E)i

Fij = ∂iAj − ∂jAi = −(~∇× ~A)k = −ǫijk∂iAj = −( ~B)k

hence Fµν =







0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0







(8.6)

The elecromagentic field strength tensor and hence Maxwell’s equations are invariant
under the gauge transformations

Aµ → A′µ = Aµ + ∂µχ

where χ is a scalar function.

F µν → F ′µν = ∂µ(Aν + ∂νχ)− ∂ν(Aµ + ∂µχ)

= ∂µAν − ∂νAµ + ∂νχ− ∂µχ
= ∂µAν − ∂νAµ = F µν

⇒ we can always choose ∂µA
µ = 0 (Lorentz gauge) (8.7)

If ∂µA
µ = f 6= 0 → ∂µ(A

µ + ∂µχ) = 0 → ∂µ∂
µχ = −f

⇒ in free space (Jµ = 0) we have ∂ν∂
νAµ = 0
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→ massless KGE for each component of Aµ

→ Aµ is the wave function of the photon
→ Aµ is a four vector → photon has spin 1

Plane–wave solutions :
Aµ = ǫµe−i(wt−

~k·~r)

where

ǫµ = polarization four vector

kµ = (w,~k) → wave 4–vector

From the wave equation for Aµ → k·k = 0 ⇒ w2 = ~k2 ⇔ E2 = p2c2 (for m = 0)
From the Lorentz gauge condition

∂µA
µ = 0 ⇒ ǫ · k = 0 ⇒ ǫ0 =

~ǫ · ~k
w

⇒ ǫ′µ = ǫµ + akµ is equivalent ǫµ for any a = costant
⇒ choose ǫ0 = 0 ⇒ ǫµk

µ = ~ǫ · ~k = 0

⇒ for ~k = (0, 0, kz) → ǫµx = (0, 1, 0, 0) , ǫµx = (0, 0, 1, 0)

2 polarization states ǫµR,L =
(0, 1,±i, 0)√

2
← circular polarization

8.1 Electromagentic interactions

We introduce electromagnetic interactions via the minimal substitution in the equations
of motion

E → E − eV , ~p→ ~p− e ~A
where e is the electric charge.

relativistically : pµ → pµ − eAµ , ∂µ → ∂µ + ieAµ

The KG equation becomes

(∂µ + ieAµ)(∂
µ + ieAµ)φ+m2φ

(∂µ∂
µ +m2)φ = −IE[Aµ∂µφ+ ∂µ(A

µφ)] + e2AµA
µφ

(8.8)

We saw that the minimal coupling prescription and the gauge condition Aµ → Aµ + ∂µχ
are the as the local phase invariance

φ(x)→ e−iα(x)φ(x)→ local U(1) symmetry

The conserved current is now

Jµ = i(φ∗∂µφ− φ∂µφ∗)− 2eAµ(x)φ∗(x)φ(x)

The second term provides the coupling of the scalar field to the electromagnetic field
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9 The Dirac equation

The Schrödinger equation: i~∂
∂t
ψ = Ĥψ is linear in i~∂

∂t
→ linear in E

since Pµ = i~∂µ & P 2 = E2 − ~P 2 = m2, the KGE is quadratic in ∂
∂t
.

Dirac wanted to find a relativistically covariant equation which is linear in i~∂
∂t

i.e.

linear in energy→ linear in the Hamiltonian→ linear in the generator of time translations
→ linear in time + relativistically covariant ⇒ linear in −i~~∇
−i~~∇ → the quantum generator of spatial translations

relativistically E2 = ~p2c2 +m2c4 ⇒ E = ±
√

~p2c2 +m2c4

i~
1

c

∂

∂t
ψ(~r, t) = ±

√

~p2 +m2c2

we have to get rid of the
√

write

√

~p2 +m2c2 = αipi + βm (9.1)

Diraq → find αi, β such (9.1) holds?

⇒ covariant equation lineas in i~∂
∂t

and −i~~∇
Take the square of eq. (9.1)

~p2 +m2c2 =
∑

pipi +m2c2 = (αipi + βmc)2

= (αipi + βmc)(αjpj + βmc)

= αiαjpipj + (αiβ + βαi)pimc + β2m2c2

For the euation to hold we must impose the following requirements

1 β2 = 1

2 αiβ + βαi = 0 ← no linear term in pi in the square

these conditions can hold only if αi and β are matrices with αi, β anti–commuting
matrices

3 αiα2j + αjαi = 0 i 6= j

4 α2
i = 1 i = j

can we find αi, β that satisfy these conditions?

1 2 x 2 matrices αi = σi

σ1 =

(
0 1
1 0

)

; σ2 =

(
0 −i
i 0

)

; σ1 =

(
1 0
0 −1

)

;

σ2
i = 1 ; σiσj + σjσi = 0 for i 6= j

But we lack a 2x2 β matrix that satisfies 1 & 2.
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2 3 x 3 matrices

No solutions ←→ solution must be even order.

Proof: Assume an odd order solution

Assume: A β matrix which is diagonal. As in the 2x2 we can always diagomalise at
least one matrix

β =





λ1 · · · 0
0 · · · 0
0 · · · λn



 β2 = 1 ⇒ λi = ±1

We don’t know how may λi are positive or negative? Prove that Trβ = 0

In that case: # of +1 eigenvalues = # of -1 eigenvalues

⇒ β must be even

αiβ + βαi = 0 / · α
αiβαi + βα2

i = 0 ⇒ αiβαi + β = 0

⇒ Trβ = −Tr(αiβαi) = −Tr(αiαiβ) = −Trβ
⇒ trβ = −Trβ ⇒ Trβ = 0 → βnxn with n–even

3 at order 4 i.e. 4x4 matrices → there is a solution

αi =

(
0 σi
σi 0

)

β =

(
I2x2 0
0 I2x2

)

where σi are 2x2 Pauli matrices

9.1 The Dirac equation

i~
1

c

∂

∂t
Ψ(~x, t) = (−i~~α · ~∇+ βmc)Ψ(~x, t) (9.2)

The wave function Ψ =







ψ1

ψ2

ψ3

ψ4







is a 4–component vector (not a four spacetime vector)

2 components are spin ↑ spin ↓ particles
2 components are spin ↑ spin ↓ anti–particles
consequences:

1 The Dirac equation predicts the existence of anti–particles

2 Time and space derivatives are linear
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Multiply eq. (9.2) by β, recalling that β2 = 1

i~β
1

c

∂

∂t
Ψ(~x, t) = (−i~β~α · ~∇+ β2mc)Ψ(~x, t)

or i~( β
1

c

∂

∂t
+ β~α · ~∇)Ψ(~x, t) = mcΨ(~x, t)

↓ ↓
γ0 + γi = βαi = −αiβ

hence i~(γ0
∂

∂ct
+ γi · ∂i)Ψ(~x, t) = mcΨ(~x, t)

or i~(ηµνγµ∂ν)Ψ = i~γν∂νΨ = i~/∂Ψ = mcΨ

γµpµΨ = mcΨ

/pΨ = mcΨ → (/p−mc)Ψ = 0 ← free Dirac equation

Setting ~ = c = 1 ⇒ (i/∂ −m)Ψ = 0

Lowest order Dirac γµ matrices → 4x4 → massive particles
massless particles → no constraint on β ⇒ 2x2 solution → Pauli matrices
The Dirac equation is of the form i~∂

∂t
Ψ = HΨ

H = c~α · ~p+ βmc2

hermiticity → H = H† ⇔ αi = α†
i β = β†

⇒ γ0† = γ0αi = γ0γi(γ0γi)† = γi†γ0† = γi†γ0

γ0γi†γ0 = γi

summarise γ0γµγ0 = γµ† µ = 0, 1, 2, 3

together with {γµ, γν} = γµγν + γνγµ = 2ηµν

are the two properties that define the Dirac γ–matrices

representation γ0 =

(
I2 0
0 −I2

)

γi =

(
0 σi
−σi 0

)

i = 1, 2, 3

where σi, i = 1, 2, 3 are the Pauli matrices
Solutions of the Dirac equation → 4–component objects → spinors (not 4–vectors)

ψ =







ψ1

ψ2

ψ3

ψ4







Each component obeys the KGE by construction

E2 = H2 = ~p2 +m2 ⇒ E2Iψ = (~p2 +m2)Iψ
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Spin of the Dirac Particles
How do we prove that the Dirac equation correspond to spin 1/2 particles?

Show: There exist an operator ~S such that ~J = ~L+ ~S is a constant of the motion, and

~S2|s〉 = s(s+ 1)|s〉 = 3

4
I|s〉 (~ = 1)

Note: ~L = ~r × ~p is not a constant of the motion:

H = βm+ ~α · ~p = βm+ αipi
~L = Lxî+ Ly ĵ + Lxk̂

e.g . Lz = (xpy − ypx)

[Lz, H ] = [x,H ] py − [y,H ] px = iαxpy − iαypx = i(~α× ~p)z (~ = 1)

in general:
[

~L,H
]

= i~α× ~p 6= 0

⇒ we need
[

~S,H
]

= −i~α× ~p

This is true if ~S =
1

2
Σ with Σj =

(
σj 0
0 σj

)

we want : [Sj , αipi + βm] = −i(~α × ~P )j

= [Sj , αi] pi + [Sj, β]m

[Sj , β] =

(
A

A

)(
I
−I

)

−
(
I
−I

)(
A

A

)

= 0 → Sj =

(
A

A

)

[Sj, αi] = ∼ αk ∼
(
A

A

)(
0 σi
σi 0

)

−
(
0 σi
σi 0

)(
A

A

)

=

(
0 σjσi − σiσj

σjσi − σiσj 0

)

= −i
(

0 2σk
2σk 0

)

− 2iαk

Defining Sj =
1

2

(
σj 0
0 σj

)

we get the desired result

Then ~S21

4

(
Σ2
x + Σ2

y + Σ2
z

)
=

3

4
I ⇒ spin =

1

2

underline : [Li, Sj] = 0

Magnetic moment of the Dirac equation
In an electromagnetic field we make the usual minimal substitutions

H → H − eV , ~p → ~p− e ~A

where e is the electric charge.
In the Dirac equation we obtain
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H − eV = ~α · (~p− e ~A) + βm

Note: We no longer get the KG equation when squaring

(H − eV )2 =
∑

j,k

αjαk(pj − eAj)(pk − eAk) +m2

= (~p2 − e ~A)2 +m2 −
∑

j 6=k
(αjαkpjAk + αjαkAjpk)

For j 6= k : αjαk =

(
0 σj
σj 0

)(
0 σk
σk 0

)

=

(
σjσk 0
0 σj

)

= iǫjkl

(
σl 0
0 σl

)

= iǫjklΣl

where we used

[σi, σj] = 2iǫijkσk

{σi, σj} = 2δij

⇒ σiσj = δij + iǫijkσk

PjAkf = (−i∇jAk)f = Ak(−i∇jf)− i(∇jAk)f = (AkPj − i(∇jAk))f

ǫijlΣl∇jAk = Σlǫljk∇jAk = Σl(~∇× ~A)l = ~Σ · ~B

we get : − e
∑

j 6=k
(αjαkpjAk + αjαkAjpk)

= −e
∑

j 6=k
(αjαkAjpk + αjαkAkpj)− e~Σ · ~B

= −e
∑

j 6=k
(αjαk + αkαj)Ajpk − e~Σ · ~B = −e~Σ · ~B

Hence : (H − eV )2 = (~p− e ~A)2 +m2 − e~Σ · ~B

(H − eV ) = m

(

1 +
(~p− e ~A)2 − e~Σ · ~B

m ∗ 2

) 1
2

NR limit ≃ m+
1

2m
(~p− e ~A)2 − e

2m
~Σ · ~B

This correspond to a magnetic moment

µ =
e

m
~S = ge(

e

2m
)~S

where ge = 2 (experiment ⇒ 2.0023193...) where the (0.0023193...) are quantum field
theory corrections.
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Great success of Dirac equation. (g-2) of the muon is of great contemporary interest
and substantial experimental effort to measure it.

Dirac density and current
To give a probabilistic interpretation of the Dirac wave function ψ we have to construct

a conserved current jµ.

We have : ( iγµ ∂µ −m )ψ = 0 (9.3)

ψ†(−iγµ† ~∂µ −m ) = 0

using γµ† = γ0γµγ0

⇒ ψ†(−iγ0γµγ0 ~∂µ −m) = 0 / · γ0

⇒ ψ†γ0(−iγµ ~∂µ −mγ0) = 0

We define the Dirac adjoint ψ̄ = ψ†γ0.

⇒ ψ̄(iγµ ~∂µ +m) = 0 (9.4)

multiplying (9.3) by ψ̄ from the left and
(9.4) by ψ from the right

we get iψ̄γµ~∂µψ + iψ̄γµ ~∂µψ = i∂µ(ψ̄γ
µψ) = 0

so jµ = ψ̄γµψ ⇒ ∂µj
µ = 0

⇒ jµ is our conserved current.

Then : ρ = j0 = ψ̄γ0ψ = ψ†(γ0)2ψ = ψ†ψ =

4∑

α=1

|ψα|2 ≥ 0

jj = ψ̄γj = ψ†γ0γjψ = ψ†αjψ

→ ρ is positive definite but we still get negative energy
the negative energy solutions correspond to antiparticles. The Dirac field describes a

multi–state solution, i.e. it is a quantum field.

9.2 Solutions of the Dirac equation

ψ =







ψ1

ψ2

ψ3

ψ4







Each component obeys the Klein–Gordon equation.

ψ = u(E, ~p)e−ip·x = u(E, ~p)e−i(Et−~p·~x)
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→ positive energy plane wave solution

(iγµ∂µ −m)ψ = (γµpµ −m)u = 0

writing u =

(
φ

χ

)

=







φ1

φ2

χ1

χ2







(9.5)

(γ0E − ~γ · ~p−m)

(
χ

φ

)

=

[(
I 0
0 −I

)

E −
(

0 σj
−σj 0

)

pj −m
(
I 0
0 I

)](
φ

χ

)

=

(
E −m −~σ · ~p
~σ · ~p −E −m

)(
φ

χ

)

= 0

⇒ (E −m) φ = ~σ · ~p χ
~σ · ~p φ = (E +m) χ

⇒ χ =
~σ · ~p
E +m

φ

Recall that ~S =
1

2
~Σ =

1

2

(
~σ 0
0 ~σ

)

⇒ Sz =
1

2







1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1







Hence φ = N

(
1

0

)

for spin up along z–axis

φ = N

(
0

1

)

for spin down along z–axis

also have : ~σ·~p
(
1

0

)

=

(
0 1
1 0

)(
1

0

)

px+

(
0 −i
i 0

)(
1

0

)

py+

(
1 0
0 −1

)(
1

0

)

pz =

(
pz

px + ipy

)

Similarly : ~σ · ~p
(
0

1

)

=

(
px − ipy
pz

)

=⇒ u↑ = N







1
0
pz

E+m
px+ipy
E+m







u↓ = N







0
1

px−ipy
E+m
pz

E+m







Normalisation is calculated from ρ = ψ†ψ = u†u = 2E
2E is the relativistic particle density per unit volume

This gives N2
[

1 +
px2+p2y+p

2
z

(E+m)2

]

= 2E
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Using ~p 2 = E2 −m2 gives

N2

[

1 +
(E −m)(E +m)

(E +m)2

]

= 2E

⇒ N2

(
2E

E +m

)

= 2E

⇒ N =
√
E +m

For a particle in the rest frame pmu = (m, 0, 0, 0) ⇒ ~p = 0 we get

=⇒ u↑ = N







1
0
0
0







u↓ = N







0
1
0
0







In the non–relativistic limit u↑ → spin up u↓ → spin down fields.
For anti–particles of 4–momentum (E, ~p) we need a solution with pµ → (−E,−~p)

ψ = v(E, ~p)eipµx
µ

= v(E, ~p)ei(Et−~p·~x)

from the Dirac Equation : (iγµ∂µ −m)ψ = (−γµpµ −m)v(E, ~p) =
[(
−I 0
0 I

)

E +

(
0 σj
−σj 0

)

pj −m
(
I 0
0 I

)]

v(E, ~p) =

(
−E −m ~σ · ~p
−~σ · ~p E −m

)(
φ

χ

)

= 0

⇒ ~σ · ~pχ = (E +m)φ ⇒ φ =
~σ · ~p
E +m

χ

~σ · ~pφ = (E −m)χ

Like the 4–momentum, spin is reversed

=⇒ v↓ = N







px−ipy
E+m
pz

E+m

0
1






v↑ = N







pz
E+m
px+ipy
E+m

1
0







9.3 Charge conjugation

Consider the KGE for a charged particle in an electromagnetic field

~p → ~p− e ~A
E → E − eV
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(E − eV )2 = (~P − e ~A)2 +m2

In quantum mechanics E → i~∂t, ~p → − i~~∇

⇒ (i~∂t − eV )2φ(~x, t) = (−i~~∇− e ~A)2φ(~x, t) +m2φ(~x, t)

The complexified equation

(−i~∂t − eV )2φ∗ = (i~~∇− e ~A)2φ∗ +m2φ∗

⇒ (i~∂t + eV )2φ∗ = (−i~~∇ + e ~A)2φ∗ +m2φ∗

Hence if φ = e−i(Et−~p·~x) = e−iEt+~p·~x is a solution of the KGE with E > 0, ~p.

φ∗ = ei(Et−~p·~x) = e−i(E(−t)+~p·~x)

φ∗ is a solution of the KGE with E > 0, ~p→ −~p and e→ −e, m = m0.

This operation is : φ → φ∗

e → − e

called charge conjugation C. The KGE is invariant under charge conjugation.
The Dirac equation is also invariant under charge conjugation. ψ → negative energy solution.

What is the charge conjugation operation that leaves the Dirac equation invariant

ψ → ψC = Cψ∗ → charge conjugation C

Such that ψC is a positive energy solution with e→ −e.
To find C write

γµ(i∂µ − eAµ)ψ −mψ = 0 ← Dirac eq.

→ γµ(∂µ + ieAµ)ψ + imψ = 0

⇒ γµ∗(∂µ − ieAµ)ψ∗ − imψ∗ = 0

−Cγµ∗C−1(∂µ − ieAµ)ψC + imψC = 0

Hence we need

Cγµ∗C−1 = −γµ
i .e. γµC = −Cγ∗µ

Since all γµ are reall, except γ2 (which is purely imaginary) in our standard represen-
tation we can take

C = iγ2 = i

(
0 σ2
−σ2 0

)

= i







0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0







=







0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0







For free particles we have v↑C = u↑ v↓C = −u↓
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9.4 Parity invariance

Similarly to charge conjugation we can also extract the transformation properties of the
Dirac wave function under parity transformations

define : ψ(~r, t) → ψP (~r, t) = Pψ(−~r, t)

invariance : we want to find P such that ψP is also a solution

Dirac equation : → (iγµ∂µ −m)ψ(~r, t) = 0

→ (γµ∂µ + im)ψ(~r, t) = 0

→ (γ0∂0 + γj∂j + im)ψ(~r, t) = 0

~r → − ~r → (γ0∂0 − γj∂j + im)ψ(−~r, t) = 0

ψ → ψP → (Pγ0P−1∂0 − PγjP−1∂j + im)ψP (~r, t) = 0

Hence for invariance to hold we need

Pγ0P−1 = γ0

PγjP−1 = −γj

⇒ Pγ0 = γ0P , Pγj = −Pγj

This relations are satisfied by

P = γ0 =







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1







(9.6)

For a particle at rest ψ = u(m,~0)e−imt =
√
2m







1
0
0
0







e−imt ⇒ ψP = Pψ = +ψ

For an anti–particle at rest ψ = v(m,~0)e+imt =
√
2m







0
0
0
1







e+imt ⇒ ψP = Pψ = −ψ

⇒ particle and anti–particles have opporite intrinsic parity.
For KGE the parity transformation is

φ(~r, t)→ φP (~r, t) = φ(−~r, t)
Since φ(~r, t) is a scalar function under LT

φ′(~r′, t′) = φ(~r, t)
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which follows from the KGE

(
∂2

∂t2
− ~∇2 +m2

)

φ(~r, t) = 0

P →
(
∂2

∂t2
− ~∇2 +m2

)

φ′(−~r, t) = 0

Hence φ and φ′ are solutions of the same equations.
In the case of the Dirac equation the scalar is

Φ = ψ̄ψ = ψ†γ0ψ

check : Φ(~r, t) = ψ†(~r, t)γ0ψ(~r, t)

ΦP (~r, t) = ψ†(−~r, t)γ0†
︸ ︷︷ ︸

ψP

γ0 γ0ψ(−~r, t)
︸ ︷︷ ︸

Pψ(−~r,t)

= ψ†(−~r, t) γ0 ψ(−~r, t)
= Φ(−~r, t)

→ ψ̄ψ transforms as a scalar under parity transformations.
Similarly, jµ is a true vector.

jµ(~r, t) = ψ†γ0γµψ(~r, t)

jµP (~r, t) = ψ†(−~r, t)γ0†γ0γµγ0ψ(−~r, t)

But γ0†γ0γµγ0 = γµγ0 = γ0γµ for µ = 0

= −γ0γµ for µ = 1, 2, 3

Hence : jP0(~r, t) = j0(−~r, t) , ~jP (~r, t) = −~j(−~r, t)
As we would expect from a true 4–vector (t, ~x P→(t,−~x)

We define the matrix

γ5 = iγ0γ1γ2γ3 =

(
0 I2×2

I2×2 0

)

(9.7)

in our representation.
We will see that weak interactions involve the axial current

JµA = ψ̄γµγ5ψ = ψ†γ0γµγ5ψ

under parity transformations ψ → ψP = γ0ψ(−~r, t)

JPA
µ
= ψ†(−~r, t)γ0†γ0γµγ5γ0ψ(−~r, t)

now {γµ, γ5} = 0 forµ = 0, 1, 2, 3

(γ5)
2 = I
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Hence

JPA
0
(~r, t) = −JA0(−~r, t) , ~JPA (~r, t) =

~JA(−~r, t)
As expected for an axial vector.

Similarly : ΦP = ψ̄γ5ψ = ψ†γ0γ5ψ a pseudo scalar

ΦPP (~r, t) = ψ†(−~r, t)γ0†
︸ ︷︷ ︸

ψP†

γ0γ5 γ0ψ(−~r, t)
︸ ︷︷ ︸

ψP

= −ψ̄(−~r, t)γ5ψ(−~r, t)
= −ΦP (−~r, t)

9.5 Massless Dirac particles

The Dirac equation : Hψ = i~
∂ψ

∂t
=
(

−i~~α · ~∇+ βm
)

ψ

where

~α =

(
0 ~σ
~σ 0

)

The positive energy free particle solutions are

ψ = u(E, ~p)e−i(Et−~p·~x)

For m = 0 ⇒ E = |~p| and u =
(
φ

χ

)
gives

EIu = ~α · ~pu =

(
0 ~σ · ~p

~σ · ~p 0

)

u

hence :

(
|~p| −~σ · ~p
−~σ · ~p |~p|

)(
φ

χ

)

= 0 ⇒ ~σ · ~pχ = |~p|φ
~σ · ~pφ = |~p|χ (9.8)

⇒ χ =
~σ · ~p
|~p| φ & φ =

~σ · ~p
|~p| χ ⇒ χ =

(
~σ · ~p
|~p|

)2

χ

⇒
(
~σ · ~p
|~p|

)2

= I

⇒ Λ =
~σ · ~p
|~p| is the helicity operator with Λ2 = I

and eigenvalues Λ = ±1 → spin
along

against
~p → right

left
handed

Helicity operator: projection of spin on ~p

|~p| .
⇒ for massless particles with m = 0 the 2 components spinors χ and φ are eigenstates
of the helicity operator.

For massless particles helicity is a Lorentz invariant.
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Note that if ψ represents a massless particle them

γ5ψ =

(
0 I
I 0

)(
φ

χ

)

=

(
χ

φ

)

=

(
Λφ

φ

)

=

(
Λφ

Λχ

)

= Λψ (Λ2 = 1)

Hence, γ5 is the helicity operator for massless particles (minus helicity for massless
anti–particles).

In the case of massless particles we can decompose the Dirac equation into two equa-
tions for the two helicity eigenstates.

We can introduce the basis

γ0 =

(
0 I
I 0

)

; γj =

(
0 σj
−σj 0

)

; γ5 =

(
−I 0
0 I

)

This basis is called the chiral basis. In this basis

(
γ0 − ~γ · ~p

)
(
φ

χ

)

=

(
0 |~p| − ~σ · ~p

|~p|+ ~σ · ~p 0

)(
φ

χ

)

= 0

Hence, in this basis,

~σ · ~p
|~p| χ = +1χ ;

~σ · ~p
|~p| φ = −1φ

Therefore, in this basis χ and φ are the eigenstates of the helicity operator with eigenvalues
+1 and −1 respectively. We denote,

χ = ψR ; φ = ψL

ψL and ψR are two component spinors that tranform as (1
2
, 0) and (0, 1

2
) representations

of the Lorentz group.
A Dirac spinor can be written as

ψ =

(
ψL
ψR

)

ψL, ψR are called Weyl spinors

We define the operators

PL,R =

(
1± γ5

2

)

In the chiral basis we have

PL =
1

2

[(
1 0
0 1

)

−
(
−1 0
0 1

)]

=

(
1 0
0 0

)

, PL
2 = PL

PR =
1

2

[(
1 0
0 1

)

+

(
−1 0
0 1

)]

=

(
0 0
0 1

)

, PR
2 = PR

(9.9)

and

PRPL = PLPR = 0

PL + PR =
1 + γ5

2
+

1− γ5
2

= 1

PLγ
µ = γµPR ; PRγ

µ = γµPL
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Hence, we have PLψ =

(
ψL
0

)

= ψL

PRψ =

(
0

ψR

)

= ψR

Furthermore, from PRPL = 0 we have PRψL = 0, PLψR = 0.
The weak interactions were observed experimentally to have the vector minus axial–

vector form, (V − A), i.e.

(JµV − JµA)fi = ψ̄fγ
µ(1− γ5)ψ

If i is a massless particle then (1−γ5)ψi vanishes for helicity +1, i.e. only left–handed
fields interact.

The same applies to particle f since

ψ̄fγ
µ(1− γ5)ψi = ψ†

fγ
0(1 + γ5)γµψi = ψ†

f (1− γ5)γ0γµψi =
[
(1− γ5)ψf

]†
γ0γµψi

This is non–vanishing only if the f–particle is a left–handed field.
In the Standard Model only left–handed fields interact via the weak interactions.

The Langrangian density that gives the Dirac equation of motion

LD = ψ̄iγµ∂µψ −mψ̄ψ =

ψ̄(P 2
L + P 2

R)iγ
µ∂µψ −mψ̄(P 2

L + P 2
R)ψ =

ψ†PRγ
0iγµ∂µPRψ + ψ†PLγ

0iγµ∂µPLψ −mψ†PRγ
0PLψ −mψ†PLγ

0PRψ =

ψ†
Rγ

0iγµ∂µψR + ψ†
Lγ

0iγµ∂µψL −m(ψ†
Rγ

0ψL + ψ†
Lγ

0ψR) =

ψ̄Riγ
µ∂µψR + ψ̄Liγ

µ∂µψL −m(ψ̄RψL + ψ̄LψR).

The first two terms are the kinetic terms, whereas the last two are the Dirac mass terms.
We see that the kinetic terms containing the derivatives involve L ↔ L and R ↔ R

terms, whereas the mass terms involve L↔ R and R↔ L terms. This is a crucial result
for modern particle physics.

9.6 Majorana fields

So far we encountered Weyl and Dirac spinors.
A Majorana spinor is a Dirac spinor in which ψL and ψR are not independent.

Rather ΨM =

(
ψL

iσ2ψ∗
L

)

→ same # of D.o.f as Weyl spinor

A Majorana spinor is invariant under charge conjugation

ΨC
M = ΨM

in a Majorana spinor we have ψR = iσ2/ψ
∗
L.

Majorana spinor → neutral field → its own anti–particle ⇒ mΨ̄MΨM .
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10 Classification of elementary particles

We assembled some of the ingredients that are needed to classify elementary particles.

We saw : spin: - 0 scalars; - 1
2
fermions; - +1 gauge bosons; - +2 graviton;

mass

Spin & mass are the Casimir labels of the Poincare group

charge − electric − weak − strong

where the charges depend on the particle interactions.

Additional properties :
Light heavy

Leptons Hadrons
don’t interact strongly interact strongly

1940′s electron neutrino proton neutron
fermions e νe P N

τ ≤ 1032years τ 1
2
∼ 15min

bosons γ

The electron neutrino was suggested By Pauli to account for observed spread of energy
in nuclear β–decay. It was observed experimentally in 1956.

The lifetime τ depends on global and local conservation rules for different interactions.

The process of beta decay

νe e

N

P

In Fermi theory GF P̄ γ
µNēγννe ← four Fermi interaction, with GF ∼ 10−5.

In modern particle physics the interaction is mediated by a heavy vector boson
Isospin symmetry → classify elementary particles → broken symmetry

1 Proton and neutron form a doublet of Isospin
s = 1

2
m = 939MeV; 938MeV e− charge + 1, 0

if we turn off eletromagnetic interactions we cannot distinguish between the proton
and the neutron

SU(2)I – Isospin – global continuous SU(2) symmetry, which is exact if we ignore
E&M interactions. Isospin symmetry is approximate in nature versus E&M which is
exact.

In the 1950’s a slew of particles (resonances) were discovered
All the particles that interacted strongly formed families of Isospin interactions
Examples:
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2 pions
m(π0) ∼ 139MeV ; m(π±) ∼ 139.5MeV
spin = 0
Isospin = +1 → triplet

3 Kaons
m(K+) ∼ 439.7MeV ; m(K0) ∼ 497, 8MeV
Spin = 0
Isospin = 1

2
→ doublet

4 P− and N̄0

m(P−) ∼ 938MeV ; m(N̄0) ∼ 939MeV
Spin = 1

2

Isospin = 1
2

5 Sigmas
m(Σ+) ∼ 1189.36MeV ; m(Σ0) ∼ 1192.46MeV ; m(Σ−) ∼ 1197.34MeV
Spin = 1

2

Isospin = +1

6 Λ0

m(Λ0) = 1115.6MeV
Spin = 1

2
Isospin = 0

7 η
m(η) = 458.8MeV
Spin = 0 Isospin = 0

Classification: states with same spin and comperable mass form Isospin families
Additionally, the resonances are classified by their lifetime and decay products. The

observed resonances decay via their strong, electromagnetic, and weak interactions. The
decays are typified by the decay rates which are inversely propotional to their lifetime.

Strong ∼ 10−24 sec

E&M ∼ 10−18 sec

Weak ∼ 10−8 sec

Hadrons – strongly interacting
baryons. spin = n+ 1

2
n = 0, 1, ...

mesons. spin = n n = 0, 1, ...

Leptons – not strongly interacting
charged → e, µ, , τ
neutral → νe, νµ, νµ

gauge bosons. spin 1 γ; W±, Z; G

All interactions respect the familiar conservation laws, e.g. → charge, energy, momen-
tum, angular momentum.
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In addition: some additional conservation laws must be imposed e.g. the process

P → e+ π0

respects conservation of charge, angular momentum and energy, but is not observed in
nature, with τP ≤ 1032years. Proton decay is forbidden in the renormalisable Standard
Model but is predicted to occur in many extensions of the Standard Model. Consequently,
there are many experimental searches looking for proton decay. Furthermore, some degree
of proton instability is necessary to create an excess of matter over anti–matter. Without
such excess, all of the protons would have annihilated with anti–protons in the early
universe and there would have been non left to form galaxies, stars, planets, and us. On
the other had “we know it in our bones” that the proton has to be lond lived. Otherwise,
we would have decayed long ago.
⇒ introduce conserved baryon charge B(P ) = +1, B(P̄ ) = −1, B(L) = 0 = B(M)

⇒ P 9 e+ π0

Similarly for leptons

µ− → e− ν̄e νµ allowed

µ− → e− γ forbidden

Introduce Le, Lµ, Lτ

Le = +1 for e− and νe

Le = −1 for e+ and ν̄e

Le = 0 for everyone else

Therefore, for the process µ− → e− ν̄e νµ

µ− → e− ν̄e νµ
spin 1

2
→ 1

2
1
2

1
2

Jf = j1 + j2 − j3 = 1
2

charge −1 → −1 0 0
Lµ +1 → 0 0 +1
Le 0 → +1 −1 0

Baryon & Lepton numbers are observed to be exactly conserved charges in nature.
Some conservation laws may be approximate, e.g.

K+ → π+π0 → ∼ 20% branching ratio

τ(K+) ∼ 10−8sec → weak decay?

why not strong K+ decay?

Gellmann & Nishijima → suggested a new additive conserved quantum number.
S – strangeness

S(P ) = S(π) = 0

S(K+) = S(K0) = +1

S(Λ, Σ) = −1
S(Ξ) = −2
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Strong & electromagnetic interactions conserve strangeness
Weak interaction violates strangeness
→ classification by Isospin is not sufficient to classify hadronic states
→ need a larger symmetry group S such that

SU(2)I ⊂ G← SU(2)I is a subgroup of G

G =?→ G = SU(3)flavour → Gellmann & Neeman → the eightfold way

11 Unitary groups SU(n)

simple unitary group of rank n where the rank is the number of mutualy commuting
diagonal generators.

Unitary : U †U ⇒ U † = U−1

Simple : DetU = 1

Examples : n = 1 , ψ → Uψ , U † = U−1 → U = eiα ⇒ U † = e−iα = U−1

n = 2 ,

(
ψ1

ψ2

)

→
(
A B
C D

)(
ψ1

ψ2

)

U =

(
A B
C D

)

, U † =

(
A∗ C∗

B∗ D∗

)

, U−1 =
1

(AD − BC)

(
D −B
−C A

)

U † = U−1 ⇒ A∗ =
D

DetU
, D∗ =

A

DetU
, C∗ = − B

DetU
, A∗ = − C

DetU
(11.1)

Unitary matrices: U † = U−1 ⇒ U †U = I

Det(U−1) = (DetU)−1 ; Det(U †) = (DetU)∗

U † = U−1 ⇒ (DetU)∗ =
1

DetU
⇒ |DetU | = +1

Since |DetU | = 1 we get from equations (11.1) that

|A| = |D| & |B| = |C|

The most general 2x2 unitary matrix can therefore be written as

U =

(
A B
C D

)

=

(
eiα 0
0 eiβ

)(
cos θ sin θ
− sin θ cos θ

)(
eiγ 0
0 eiδ

)

which is the most general solution of the equations in (11.1).
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# of D.O.F. in U is 4: θ + three of α, β, γ, δ.
The phases appearing in U are α + γ, α + δ, β + γ, β + δ.
in a 2x2 unitary matrix there are 4 D.O.F.
generalisation: An NxN unitary matrix has N2 D.O.F.

Theorem: A unitary matrix U can be written as U = eiH , where H is hermitian
(H† = H).

Assume an hermitian NxN matrix: H = S + iA,
where S is a real symmetric matrix and A is a real antisymmetric matrix.

The # of D.O.F. in H : S → N +

(
N2 −N

2

)

=
N(N + 1)

2

where N is the number of diagonal terms

A → N2 −N
2

=
N(N − 1)

2

Hence: # of D.O.F. in H :
N(N + 1)

2
+
N(N − 1)

2
= N2

A unitary NxN matrix also has N2 degrees of freedom.
In U(2) write the most general 2× 2 unitary matrix
we need 4 independent hermitian matrices:
The space of 2× 2 hermitian matrices is spanned by the basis:

H =

[(
1 0
0 1

)

, ~τ

]

Where ~τ are the Pauli matrices

τ1 =

(
0 1
1 0

)

, τ2

(
0 −i
i 0

)

, τ3 =

(
1 0
0 −1

)

general H–matrix H = β

(
1 0
0 1

)

+ ~α · ~τ

general U(2) matrix : U = ei(βI+~α·~τ)

The S in an SU(2) matrix stands for Simple, which means that DetU = 1
If U = eiH then DetU = eiTrH

In general: if DetA 6= 0⇒ DetA = DetPAP−1 = DetAD = λ1 · · ·λn
If DetA 6= 0⇒ TrA = TrPAP−1 = TrAD = λ1 + · · ·+ λn
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Hence, if U = eA DetU = Det eA =

= Det(I + A+
A2

2
+ · · · ) =

= Det(I + PAP−1 +
PAP−1PAP−1

2
+ · · · ) =

= Det(I + AD +
A2
D

2
+ · · · ) =

= Det







eλ1

·
·

eλn







=

= eλ1 · · · eλn = eλ1+···+λn = eTrA

⇒ Det(eA) = eTrA

Hence, detU = eiTrH ⇔ DetU = 1 ⇒ TrH = 0

⇒ β = 0 , TrI = 2 , Trτj = 0

Therefore, the most general SU(2) matrix with ~τ = (τ1, τ2, τ3).

U = ei~α·~τ ≃ I + i~α · ~τ
Find the most general hermitian 3x3 matrix H3×3 #(D.O.F.) = 9 .

Requiring DetU = 1 ⇒ TrH = 0 ⇒ #(D.O.F.) = 8
For SU(2) we have 3–matrices & 3 coefficients
For SU(3) we have 8–matrices & 8 coefficients
Such that DetU = eiTrH = 1
U = ei~α·

~λ ← ~λ are hermitian matrices with Trλj = 0 λ1, · · · , λ8

The number of SU(2) group generators is three

The number of SU(3) group generators is eight

For SU(2) we have only one diagonal hermitian matrix with trace H2×2 = 0

→ τ3 =

(
1 0
0 −1

)

The other two matrices are τ1 =

(
0 1
1 0

)

τ2

(
0 −i
i 0

)

For SU(2) → only one diagonal matrix

Find the ~λ matrices in SU(3)

65



# of diagonal matrices : λ =





α 0 0
0 β 0
0 0 γ



 with Trλ = 0⇒ λ =





α 0 0
0 β 0
0 0 −α− β





→ Two diagional matrices

λ3 =





1 0 0
0 −1 0
0 0 0



 λ8





1 0 0
0 1 0
0 0 −2





The importance of the diagonal matrices is that they provide the maximal set of mutually
commuting operators whose eigenvalues characterise the elementary particles.

The other ~λ matrices are not diagonal

λ1





0 1 0
1 0 0
0 0 0



 , λ2





0 −i 0
i 0 0
0 0 0





λ4





0 0 1
0 0 0
1 0 0



 , λ5





0 0 −i
0 0 0
i 0 0





λ6





0 0 0
0 0 1
0 1 0



 , λ7





0 0 0
0 0 −i
0 i 0





(λ1, λ2, λ3) form an SU(2) subgroup of SU(3).
sungroup: a subgroup of generators that satisfy commutation relations among them-

selves, e.g, [λ1, λ2] = iλ3, etc.

in SU(2) : ψ → Uψ , U → 2× 2 matrix, ψ − a 2 component vector

take
1

2
τ3 =

(
1
2

0
0 −1

2

)

:

(
1
2

0
0 −1

2

)(
1

0

)

=
1

2

(
1

0

)

(
1
2

0
0 −1

2

)(
0

1

)

= −1
2

(
0

1

)

The spinors
(
1
0

)
&
(
0
1

)
are eigenvectors with eigenvalues +1

2
& − 1

2

These are the eigenstates of τ3.
In SU(2) we cannot characterise these states with an additional eigenvalue.
We can characterise the spin exactly only in one direction, say along the z–axis

In SU(3) the analog of τ3 is λ3 → 1
2
λ3 =





1
2

0 0
0 −1

2
0

0 0 0





66



The three eigenvectors of 1
2
λ3 are:





1
2

0 0
0 −1

2
0

0 0 0









1
0
0



 =
1

2





1
0
0



 ,





1
2

0 0
0 −1

2
0

0 0 0









0
1
0



 = −1
2





0
1
0



 ,





1
2

0 0
0 −1

2
0

0 0 0









0
0
1



 = 0





0
0
1





Similarly to SU(2) the physical states can be characterised by the eigenvalues of the
operator (1

2
λ3)

The eigenvectors of 1
2
λ3 are also eigenvectors of λ8 → 1

2
λ8 =






1
2
√
3

0 0

0 1
2
√
3

0

0 0 − 1√
3






where we normalise the generators to have the same normalisation given by

Tr(
1

2
λ3)

2 = Tr(
1

2
λ8)

2 =
1

2

1

2






1√
3

0 0

0 1√
3

0

0 0 − 2√
3










1
0
0



 =
1√
12





1
0
0



 ,
1

2






1√
3

0 0

0 1√
3

0

0 0 − 2√
3










0
1
0



 =
1√
12





0
1
0





1

2






1√
3

0 0

0 1√
3

0

0 0 − 2√
3










0
0
1



 = − 1√
3





0
0
1





There are no additional diagonal matrices among λ1, · · · , λ8. Therefore, these are
eigenvectors of λ3 and λ8 only.
⇒ Eigenstates (representations) of SU(3) are characterised by eigenvalues of λ3 and

λ8.
In SU(2) we classified particles according to the eigenvalues of τ3.

11.1 Graphical description

We define T3 =
1

2
λ3

Y =
1√
3
λ8

In SU(2) we had a doublet with 2 eigenvalues 1
2
, − 1

2

Graph

(
0

1

) (
1

0

)

T3 =
1

2
λ3 T3 = −

1

2
T3 = +

1

2

Using 1
2
(τ1 ± iτ2) we can move from

(
1
0

)
↔
(
0
1

)
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τ+ =
1

2
(τ1 + iτ2) =

1

2

[(
0 1
1 0

)

+ i

(
0 −i
i 0

)]

=

(
0 1
0 0

)

τ− =
1

2
(τ1 − iτ2) =

1

2

[(
0 1
1 0

)

− i
(
0 −i
i 0

)]

=

(
0 0
1 0

)

τ+

(
1

0

)

=

(
0 1
0 0

)(
0

1

)

=

(
1

0

)

τ−

(
1

0

)

=

(
0 0
1 0

)(
1

0

)

=

(
0

1

)

τ+ ↓=↑ , τ+ ↑= 0 , τ+ ↑=↓ , τ+ ↓= 0

The proton and the neutron form an Isospin doublet
→ Therefore, T3(P ) =

1
2

, T3(N) = −1
2

For SU(3) we characterise the states by T3 & Y .

→ (T3, Y ) plane :

(T3, Y ) :





1
0
0



 = (
1

2
,
1

3
)

(T3, Y ) :





0
1
0



 = (−1
2
,
1

3
)

(T3, Y ) :





0
0
1



 = (0,−2
3
)

0

0

1

1

0

0

0

0

1

T3

Y

→ graphical representation of the fundamental triplet representation of SU(3)
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The physical quantities
T3 – third component of Isospin (same as for SU(2)).
Y – hypercharge
We can exchange the τ1, τ2, τ3 generators of SU(2) with

τ± =
1

2
(τ1 ± iτ2)&τ3

Similarly in SU(3) define τ± = 1
2
(λ1 ± iλ2)

τ+ =





0 1 0
0 0 0
0 0 0



 τ− =





0 0 0
1 0 0
0 0 0





τ+





1
0
0



 = 0 τ+





0
1
0



 =





1
0
0



 τ+





0
0
1



 = 0

τ−





1
0
0



 =





0
1
0



 τ−





1
0
0



 = 0 τ−





0
0
1



 = 0

The three proints on the graphic triangular representation of the triplet of SU(3) form a

doublet {





1
0
0



 ,





0
1
0



} and a singlet





0
0
1



 of SU(2).

If we use only λ1, λ2, λ3 we can only exchange





1
0
0



 &





0
1
0



 but cannot act on





0
0
1





→ therefore we have a doublet and singlet of SU(2)

SU(3) → SU(2)I × U(1)Y
3 = 2 1

3
+ 1− 3

2

triplet doublet singlet

The representations of SU(3) decompose under SU(2)× U(1).

In SU(3) we can form generators that exchange





1
0
0



 &





0
0
1





(λ4 ± iλ5)exchanges





1
0
0



&





0
0
1





(λ6 ± iλ7)exchanges





0
1
0



&





0
0
1





we user here the other SU(3) generators that are not in SU(2)I .
For every particle we know both T3 & Y
Hence SU(3) ⊃ SU(2)I × U(1)Y
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in SU(2) we can have higher order representations

For example 3 : −1 0 +1 T1 T2 T3



0
0
1









0
1
0









1
0
0









0 1 0
1 0 1
0 1 0









0 −i 0
i 0 −i
0 i 0









1 0 0
0 0 0
0 0 −1





Check that the generators of the triplet representation T1, T2, T3 satisfy the SU(2) algebra
[Ti, Tj] = iǫijkTk.

Any 3 n× n matrices that satisfy [Ti, Tj ] = iǫijkTk form a representatio of the SU(2)
algebra.

The proton & neutron formed a doublet of SU(2)I .
In the fundamental representation of SU(3)
There isn’t a third particle with m(?) ∼ m(P ) ∼ m(N) that fits
⇒ P, N form an Isospin doublet but are not part of an SU(3) triplet
Can it be that P, N form an Isospin doublet in a higher order representation of SU(3)
The SU(3) generators obey the algebra

[Ti, Tj] = ifijkTk (11.2)

with fijk totally antisymmetric under exchange of any two indices

and f123 = 1 f147 =
1

2
f156 = −

1

2
f246 =

1

2
f257 =

1

2

f345 =
1

2
f367 = −

1

2
f458 =

√
3

2
f678 =

√
3

2

All others vanish
→ matrices of higher order representations satisfy the 11.2 algebra
For SU(2) we have a solution at any order with matrices (2ℓ+ 1)(2ℓ+ 1)
For SU(3) there isn’t a solution at every order (e.g. order 2)
To find the higher order representations we use a different method. Similar to the

addition of angular momentum for SU(2).

For SU(2) ψα = {| ↑〉, | ↓〉}, S2| ↑〉 = 1

2
(
1

2
+ 1)| ↑〉 S2| ↓〉 = 1

2
(
1

2
+ 1)| ↓〉

Sz| ↑〉 = +
1

2
| ↑〉 Sz| ↓〉 = −

1

2
| ↓〉

ψ, φ two spin 1
2
wave functions

ψα ⊗ φβ : Triplet







| ↑ψ↑φ〉 T = 1 T3 = +1
1√
2
(| ↑ψ↓φ〉+ | ↓ψ↑φ〉) T = 1 T3 = 0

| ↓ψ↓φ〉 T = 1 T3 = −1

these are the symmetric combinations

Singlet( 1√
2
| ↑ψ↓φ〉 − | ↓ψ↑φ〉) T = 0 T3 = 0

this is the antisymmetric combination

70



by taking the product of two Isospin doublets we get states with Isospin 1 or 0.

2× 2 = 3 S + 1 A

We built a higher 3 representation with spin 1 from the 2 representation with spin 1
2
.

Graphically:
1
2

− 1
2

+ 1
2

− 1
2

+

=
−1 0 +1

1
2

− 1
2

+

+1−1 0

0

+ singlet

We can repeat the graphic analysis for SU(3) with the product ψαφβ where ψα and
φβ are two triplets of SU(3), and α, β = 1, 2, 3.

0,+2/3

1/2,−1/3−1/2,−1/3

I

0,−2/3

1/2,−1/3−1/2,−1/3

0,−4/3

Y
−1,2/3 +1,2/30,2/3

1/2,1/3−1/2,1/3

+1,2/30,2/3−1,2/3

0,−4/3

1/2,−1/3−1/2,−1/3

The product 3× 3 = 6 + 3̄ gives rise to the sextet and 3̄ representations of SU(3).
Inside the sextet we have

6 =







(−1, 2
3

(0, 2
3
) (+1, 2

3
) → SU(2)I triplet

(−1
2
,−1

3
) (1

2
,−1

3
) → SU(2)I doublet

(0,−4
3
) → SU(2)I singlet

which decomposes under SU(3) ⊃ SU(2)× U(1) as
6 = 3 2

3
+ 2− 1

3
+ 1− 4

3

and the 3̄ decomposes as
3̄ = 2− 1

3
+ 1 2

3
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we get the 3̄ representation. Note that 3̄ 6= 3, whereas in SU(2) 2̄ = 2.
Are there physical particle that fit the 6 & 3̄ together with P, N?
Not yet look at another possibility 3× 3̄. Multiply 3̄ at every point of 3.

Y

I
0,0

−1/2,−1 +1/2,−1

+1,0

1/2,+1−1/2,+1

−1,0

−1/2,1/3 1/2,1/3

0,−2/3

3× 3̄ = 8 + 1 → octet + singlet
under SU(2)× U(1) the octet decomposes as 8 = 2+1 + 30 + 2−1 + 10
The octet has a physical assignment

Σ  1192.50 Σ  1198.36+−Σ  1197.3

Λ  1115.60

Ξ  1314.90−Ξ  1321.3

P 938.3N 939.6

The spin of the particles is s = 1
2
and baryon number B = +1.

We can find a relation between the electric charge and the Isospin T3 and hypercharge
Y

Q = αT3 + βY
Q(P ) = +1 = α · ( 1

2
) + β · 1

Q(N) = 0 = α · (−1
2
) + β · 1

}

⇒ α = 1 , β =
1

2

Q = T3 +
1
2
Y → holds for the other particles in the octet
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Second exaple: mesons spin = 0 ; Baryon number = 0.

+Π  139.6Π  139.6− 0Π  134.9
0η  548.8

+Κ  493.6

  Κ0

0Κ  497.6

+Κ 

Question: which representations can represent particles and why?
8 → Baryons, mesons
3, 3̄, 6, 6̄ don’t represent integrally charged particles.

2
3

Q =Q=
3
1

1
2

1
2

1
23T + Y = + .1

3
Q= = 2

3

1
2 3

1
3
1+ .1

2
Q= =

1
2

2
3

+ .Q= 0 =
3
1Q=

3
1

Perhaps the physical representations are those that yield integrally charged states.
Another physical representation: 10

∆− ∆0 ∆+ ∆++ I = 3
2

Y = 1
Y ∗− Y ∗0 Y ∗+ I = 1 Y = 0

Ξ∗− Ξ∗0 I = 1
2

Y = −1
Ω− I = 0 Y = −2

S = 3
2
, B = 3

2

m(∆) ∼ 1230− 1234MeV

l 150MeV

m(Y ∗) ∼ 1382MeV

l 150MeV

m(Ξ∗) ∼ 1531MeV

The Ω− was predicted in Gellman’s “The eightfold way” with m(Ω−) ∼ 1680MeV and
was discovered in 1964.

The SU(3) representations are obtained from products of 3, 3̄.
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Physical Unphysical

3× 3̄ = 8 + 1 3× 3 = 6 + 3̄
3× 3× 3 = 10 + 8 + 8 + 1
3̄× 3̄× 3̄ = 10 + 8 + 8 + 1

Questions: Only some products of 3 and 3̄ are physical. Why? Is there a physical
meaning to the 3, 3̄?

Gellmann & Zweig: The baryons & mesons are made of more elementary building
blocks → quarks.

s

du

antiquarks

3
11

2 ,
d

s
,0 3

2

3
11

2 ,
u

quarks

Q( up ) = 2
3

Q( antiup ) = −2
3

Q(down) = −1
3

Q(antidown) = 1
3

Q(strange) = −1
3

Q(antistrange) = 1
3

The spin of the quarks must be s = 1
2
⇒ s(P, N) = 1

2
.

The physical states correspond to bound states of

quark–antiquark → 3× 3̄

quark–quark–quark → 3× 3× 3

antiquark–antiquark–antiquark → 3̄× 3̄× 3̄

T3 Y Q = T3 +
1
2
Y

u 1
2

1
3

2
3

d −1
2

1
3

−1
3

s 0 −2
3

−1
3

T3 Y Q = T3 +
1
2
Y

ū −1
2
−1

3
−2

3

d̄ 1
2
−1

3
1
3

s̄ 0 2
3

1
3

Under charge conjugation we have

s

u d

u

s

d

C.C.
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In SU(2) 2 = 2̄

In SU(3) 3 6= 2̄

mesons & baryons in the quark model
We can now see how the proton & neutron and all the other slew of hadron resonances

fit in the quark model.
3× 3× 3 = (6 + 3̄) = 6× 3 + 3̄× 3 = 10 + 8 + 8 + 1
baryons

1

2
Y=1 T =

Y=0 T= 1

1

2
Y=−1 T =

uududd

uusudsdds

ssd ssu

uuuuududdddd

uususdsdd

ssd ssu

(0,+1)

(−1,1/2)

(−2,0)sss

(+1,3/2)

The 10 is the symmetric representation uuu → spin = 3
2
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P = uud N = udd

β–beta decay from the quark point of view

νe

e−N

P

νe

e−

P

N

W

u

d

d

u

d

u

νe

e−

N P

W

mesons 3× 3̄ = 8 + 1

−Π  +Π  

  Κ0
u s   Κ

+

d u

u u

d d

0Π  

s s

η  0

s u s dΚ +   Κ0

u d

d s
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π0 =
1√
2
(uū− dd̄)

η =
1√
6
(uū+ dd̄− 2ss̄)

η′ =
1√
3
(uū+ dd̄+ ss̄)

where π0, η ∈ 8 and η′ ∈ 1.
The decaplet is a fully symmetric representation of SU(3) and spin.

∆++ = u↑u↑u↑ ← :
1√
2
(λ1 − iλ2)

∆+ =
1√
3
(u↑u↑d↑ + u↑d↑u↑ + d↑u↑u↑)

∆0 =
1√
3
(u↑d↑d↑ + d↑u↑d↑ + d↑d↑u↑)

∆− = d↑d↑d↑

to go down the aile we operate with a lowering operator ւ= 1√
2
(λ4 − iλ5), etc.

y∗+ =
1√
3
(u↑u↑s↑ + u↑s↑u↑ + s↑u↑u↑)

Y ∗0 =
1√
6
(u↑d↑s↑ + u↑s↑d↑ + d↑u↑s↑ + d↑s↑u↑ + s↑u↑d↑ + s↑d↑u↑)

Ω− = s↑s↑s↑

What is the wave function of the Proton?
The Proton is orthogonal to ∆+. Both are combinations of uud.

P = (αuud+ βudu+ γduu)

P ·∆+ = 0 ⇒ α + β + γ = 0⇒ 2 solutions

PA =
1√
2
(ud− du)u asymmetric under 1↔ 2

PS =
1√
6
[(ud+ du)u− uud] symmetric under 1↔ 2

Nice ... But ...
Problems:

1) ∆++ = u↑u↑u↑ fully symmetric → conflict with Pauli’s spin–statistics relation

2) charm was discovered su(3)flavour → not enough. SU(4)f 4 =
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u
d

s

c

In 1974 J/Ψ particle was discovered with m ∼ 3.1GeV. spin = 0. cc̄.

bottom was discovered in 1978 m(B −meson) ≈ 10GeV. Spin = 0. bb̄.

top was discovered in 1994 mt ∼ 175GeV.

To resolve the conflict with Pauli’s exclusion principle a new quantum number is
introduced – colour.

All colour bound states form colour singlets. Hence the ∆++ wave function is asym-
metric under colour and symmetric under flavour × soin × space quantum numbers.

(qqq)coloursinglet =
1√
6
(RGB − RBG+BRG−BGR +GBR−GRB)

This wave–function is asymmetric under exchange of any two colour.
→ quarks are in the fundamental representation of SU(3)C .

q =





R
G
B



 q̄ =





R

G
B





SU(3)colour is a new degree of freedom, different from SU(3)f .
SU(3)colour is exact. SU(3)f is approximate and accidental.
Similarly to SU(3)f we can introduce SU(4)f . u, d, , s, c.
SU(3)f violated by mass differences of O(100MeV).
SU(4)f violated by mass differences of O(1GeV).
The representations would be:

44̄ → mesons (33̄)colour = 8 + 1

4 · 4 · 4 → baryons (3 · 3 · 3)colour = 10 + 8 + 8 + 1

quarks have spin 1/2 → fermions
The problem of flavour is an important open question under experimental

and theoretical research.

SU(3)colour → Exact symmetry → strong interactions

U(1)E.M. → Exact symmetry → E & M interactions

under colour : q → Uq = ei~α(x)·
~λq ~λ = (λ1, · · · , λ8); ~α = (α1, · · · , α8)
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gauge symmetry → local phase invariance → gauge bosons ψ̄(∂µ + i ~Aµ · ~λ)ψ, ~A =
(A1, · · · , A8).

The strong interactions correspond to local phase invariance under SU(3)colour.
Quarks are observed only as confined states inside hadrons and mesons
→ not observed as free quarks

observed electric charge is integral Q(u) =
2

3
Q(d) = −1

3

Q(c) =
2

3
Q(s) = −1

3

The bound states are (qqq) and qq̄ ⇒ only integrally charged combinations are observed.
To resolve the conflict with Pauli’s exclusion principle a new quantum number is

introduced – colour.
All colour bound states form colour singlets. Hence the ∆++ wave function is asym-

metric under colour and symmetric under flavour × soin × space quantum numbers.

(qqq)colour singlet =
1√
6
(RGB −RBG +BRG−BGR +GBR−GRB)

This wave–function is asymmetric under exchange of any two colour.
→ quarks are in the fundamental representation of SU(3)C .

q =





R
G
B



 q̄ =





R
G
B





SU(3)colour is a new degree of freedom, different from SU(3)f .
SU(3)colour is exact. SU(3)f is approximate and accidental.
Similarly to SU(3)f we can introduce SU(4)f . u, d, , s, c.
SU(3)f violated by mass differences of O(100MeV).
SU(4)f violated by mass differences of O(1GeV).
The representations would be:

4× 4̄ → mesons (33̄)colour = 8 + 1

4× 4× 4 → baryons (3 · 3 · 3)colour = 10 + 8 + 8 + 1

quarks have spin 1/2 → fermions
The problem of flavour is an important open question under experimental

and theoretical research.

SU(3)colour → Exact symmetry → strong interactions

U(1)E.M. → Exact symmetry → E & M interactions

under colour : q → Uq = ei~α(x)·
~λq ~λ = (λ1, · · · , λ8); ~α = (α1, · · · , α8)

gauge symmetry → local phase invariance → gauge bosons ψ̄(∂µ + i ~Aµ · ~λ)ψ, ~A =
(A1, · · · , A8).
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The strong interactions correspond to local phase invariance under SU(3)colour.
Quarks are observed only as confined states inside hadrons and mesons
→ not observed as free quarks

observed electric charge is integral Q(u) =
2

3
Q(d) = −1

3

Q(c) =
2

3
Q(s) = −1

3

The bound states are (qqq) and qq̄ ⇒ only integrally charged combinations are observed.
What about the weak interactions?

E&M → U(1) Abelian local symmetry

Weak → SU(2) local symmetry
Strong → SU(3) local symmetry

}

→ non–Abelian

Consider the E&M vs weak interactions

fj
j=1,2

if

i=1,2

Wµ
ij

f2

f1

f= doublet

SU(2)

qe
Aµ

U(1)
f f

The E&M interactions don’t change the identity of the particle
In the weak interactions f1 may be different from f2
The gauge bosons W µ

i are in the adjoint representation n × n̄ = (n2 − 1) + 1 →
SU(n) adjoint representation

W µ
α µ = 0, 1, 2, 3 Lorentz index

α = 1, 2, 3 gauge group index

Couplings:

Q(u) =2/3 −−> Q(d)=−1/3 

W

u d

+
W

−

d u

W

u

0

u

W
0

d d
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The current in the Lagrangian has the form

(
ū , d̄

)

(
3∑

i=1

τiW
µ
i = ~τ · ~W µ

)(
u
d

)

=
(
ū , d̄

)
[(

0 1
1 0

)

W µ
1 +

(
0 −i
i 0

)

W µ
2 +

(
1 0
0 −1

)

W µ
3

](
u
d

)

=
(
ū , d̄

)
[

W µ
3 W µ

1 − iW µ
2

W µ
1 + iW µ

2 −W µ
3

](
u
d

)

=

W µ
3

(
ūu− d̄d

)
+ (W µ

1 + iW µ
2 )d̄u + (W µ

1 − iW µ
2 )ūd

d

W
−

u u

W
+

du

W

u

3

d

W

d

3

In SU(3):

(
ū1 , ū2 , ū3

)

(
8∑

i=1

λjA
µ
j = ~λ · ~Aµ

)



u1
u2
u3





where λj are the Gellmann matrices with j = 1, ..., 8
Unification of E&M and weak interactions(Glashow 1961; Weinberg; Salam 1968) Problems:

Weak interactions also involve leptons

W
−

−e

−νe

N P

+

N P

W
+

e

νe

However, ifW± ∈ SU(2) we must also haveW 0 ∈ SU(2)

−e −e

W
0

Do these currents exist in nature?

? indetifyW 0 = γ → photon?

−e −e

γ

νe νe

γ

ν is neutral → does not couple to γ
Must have a new W 0 that couples to ν
The new W 0 must be a mixture of W 3 and γ such that Q(W±) = ±1.
We saw: Weak interactions only couple to left–handed fields whereas E&M couples to

both left & right handed fields
→ only (eL, νL) and (uL, dL) interact weakly
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(eL, eR) and (uL, uR, dL, dR) interact E&M
Q(νL) = 0.

So far no need for νR i.e. no strong, weak or E&M interactions for νR.
Left–handed fields form doublets of SU(2)W .
Right–handed fields are singlets of SU(2)W .

(
νe
e

)

L

(
u

d

)

L
eR uR dR(

νµ
µ

)

L

(
c

s

)

L
µR cR sR

(
ντ
τ

)

L

(
t

b

)

L
τR tR bR

The quarks are triplets of SU(3)color.
The leptons are singlets of SU(3)color.
The SU(2)W doublets have TW3 quantum numbers.
The SU(2)W singlets have TW3 = 0.
We have to introduce a U(1) symmetry to incorporate E&M charges
SU(2)W × U(1)Y
But U(1)Y 6= U(1)e.m.
All SU(2) representations must have the same U(1)Y charge,

but Q(eL) 6= Q(νL)
⇒ U(1)Y 6= U(1)e.m.
Combination : Qe.m. = T3W + 1

2
Y

Find values for Y such that Qe.m. is reproduced for the different particle states.

T3
1
2
Y Qe.m. T3

1
2
Y Qe.m.

νL
1
2
−1

2
0 uL

1
2

1
6

2
3

eL −1
2
−1

2
−1 dL −1

2
1
6
−1

3

eR 0 −1 −1 uR 0 2
3

2
3

νR 0 0 0 dR 0 −1
3
−1

3

How can we write a four vector current jµ that will incorporate both the weak & electro-
magnetic interactions?

J+
µ (x) = χ̄Lγµτ+χL , J−

µ (x) = χ̄Lγµτ−χL

J3
µ(x) = χ̄Lγµ

1

2
τ3χL

= (ν̄eē
−)Lγµ

1

2

(
1 0
0 −1

)(
νe
e−

)

L

=
1

2
ν̄eLγ

µνL −
1

2
ēLγ

µeL

where τ± = 1
2
(τ1 ± iτ2) and χL

=
(
νe
e−

)

L
. We can write this in the form

J iµ = χ̄Lγµ
1

2
τiχL with i = 1, 2, 3.

These currents couple to the vector bosons

W µ± =
1√
2
(W µ1 ∓ iW µ2)

using the identity
1

2
(τ1W

1 + τ2W
2) =

1√
2
(τ+W+ + τ−W−)
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We can write
1√
2
(J+
µW

+µ + J−
µW

−µ)

︸ ︷︷ ︸

charged currents

+ J3
µW

3µ

︸ ︷︷ ︸

neutral current

=

3∑

i=1

J iµW
iµ

The electromagentic current is given by

Jµe.m.Aµ = eQ
︸︷︷︸

electric charge coupling

ψ̄γµψAµ = e
︸︷︷︸

coupling

ψ̄γµ Q
︸︷︷︸

charge

ψAµ

where Aµ is the E&M vector boson, i.e the photon.

The new U(1) current
1

2
g′
︸︷︷︸

gauge coupling

ψ̄γµ Y
︸︷︷︸

hypercharge

ψ Bµ
︸︷︷︸

gauge field

The neutral SU(2) current is gψ̄γµT3ψW
3
µ with T3 =

τ3
2

To get consistency with the charge assignment we should have

Q = T3 +
1

2
Y ⇒ Je.m.µ = J3

µ +
1

2
JYµ

we obtain this by making a rotation on Bµ, W
3
µ .

(
Aµ
Zµ

)

=

(
cos θW sin θW
− sin θW cos θW

)(
Bµ

W 3
µ

)

=

(
cos θWBµ + sin θWW

3
µ

− sin θWBµ + cos θWW
3
µ

)

or inversely

(
Bµ

W 3
µ

)

=

(
cos θW − sin θW
sin θW cos θW

)(
Aµ
Zµ

)

θW −→ Weinberg angle

we get : gJ3
µW

3µ +
g′

2
JYµ B

µ

= gJ3
µ(sin θWA

µ + cos θwZ
µ) +

g′

2
JYµ (cos θWA

µ − sin θwZ
µ)

= (g sin θWJ
3
µ + g′ cos θW

JYµ
2
)Aµ + (g cos θWJ

3
µ − g′ sin θW

JYµ
2
)Zµ

The first term is the electromagnetic interaction

eJe.m.µ Aµ = e(J3
µ +

1

2
JYµ )A

µ

Therefore we have to impose

e = g sin θW = g′ cos θW =⇒ tan θW =
g′

g

We can express the neutral current interaction in the form

g

cos θW
(J3
µ − sin2 θWJ

e.m.
µ )Zµ =

g

cos θW
JNCµ Zµ
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We now have a new neutral current, coupling neutrinos to Zµ

νe

Ζµ
Τ3

L

νe

This neutral current was proposed by Glashow in 1961
and observed at CERN in 1970

→ We still have a problem
→ E&M interactions → Long range → mγ = 0
→ Weak interactions → Short range → mW±;Z 6= 0
How ? → symmetry breaking
Lagrangian is invariant, but vacuum → symmetry breaking
The vacuum → the states of lowest energy
The Higgs mechanism Consider a real scalar field with the Lagrangian

L = T − V =
1

2
(∂µφ)

2 − (
1

2
µ2φ2 +

1

4
λφ4)

V (φ) =
1

2
µ2φ2 +

1

4
λφ4 with λ > 0

This Lagrangian is invariant under the transformation φ → − φ
For µ2 > 0 the potential looks like

V(  )φ

φ

The Lagrangian describes a self–interacting scalar field with coupling λ and mass µ.
The ground state correspond to 〈φ〉 = 0 and it obeys the reflection symmetry of the
Lagrangian.

For µ2 < 0 the potential looks like
V( φ)

φ
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The potential has two minima at
∂V

∂φ
= φ(µ2 + λφ2) = 0

⇒ 〈φ〉 = ±v with v =

√

−µ2

λ

The extremum φ = 0 does not correspond to the minimum of the energy.
We perform perturbative calculation around the classical minimum φ = v or φ = −v.

we write φ(x) = v + η(x)

η(x) represents quantum fluctuations about this minimum.
Substituting into the Lagrangian we obtain

L′ =
1

2
∂µ(v + η)∂µ(v + η)− 1

2

(

µ2(v + η)2 +
λ

4
(v + η)4

)

=
1

2
(∂µη)

2 −
(
µ2

2
(v2 + 2ηv + η2) +

λ

4
(v4 + 4v3η + 6v2η2 + 4vη3 + η4)

)

=
1

2
(∂µη)

2 +
λv2

2
(v2 + 2ηv + η2)− λ

4
(v4 + 4v3η + 6v2η2 + 4vη3 + η4)

=
1

2
(∂µη)

2 − λv2η2 − λvη3 − λη4

4
+ const

The field η has a mass term with the correct sign

mη =
√
2λv2 =

√

−2µ2

The higher terms in η are self–interaction terms. We do perturbation theory around a
stable minimum φ = v + η.

η is a massive field
The reflection symmetry is broken by the choice of the vacuum.
Consider now a complex scalar field

φ =
(φ1 + iφ2)√

2
.

L = (∂µφ)
∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2

L is invariant under the global U(1) symmetry

φ→ eiαφ

For λ and µ2 < 0 we rewrite the Lagrangian

L =
1

2

(
(∂µφ1)

2 + (∂µφ2)
2
)
− 1

2
µ2(φ2

1 + φ2
2)−

1

4
λ(φ2

1 + φ2
2)

2

There is now a circle of minima

V( φ)

φ
1

φ
2 η

ζ
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at φ2
1 + φ2

2 = v2 with v2 = −µ
2

λ

We translate the field φ to 〈φ1〉 = v, 〈φ2〉 = 0.
Expand the Lagrangian around the vacuum with

φ(x) =
1√
2
(v + η(x) + iζ(x))

L′ =
1

2

(
(∂µη)

2 + (∂µζ)
2
)
+ µ2η2 + constant

+ (cubic & quartic terms in η & ζ)

The term µ2η2 is a mass term for the η field mη =
√

−2µ2 as before.
There is no corresponding mass term for ζ → massless scalar field
Goldstone theorem → spontaneously broken continuous global symmetry

→ Goldstone boson
Consider now a complex scalar field coupled to a continuous U(1) symmetry

φ(x)→ eiα(x)φ(x)

As we saw local phase invariance requires that we replace ∂µ by

Dµ = ∂µ − ieAµ

and the gauge field Aµ transforms as

Aµ → Aµ +
1

e
∂µα

The gauge invariant Lagrangian is

L = (∂µ + ieAµ)φ
∗(∂µ − ieAµ)φ− µ2φ∗φ− λ(φ∗φ)2 − 1

4
FµνF

µν

For µ2 > 0 → Lagrangian for charged self–interacting scalar field with mass µ

For µ2 < 0 expand φ(x) =
1√
2
(v + η(x) + iζ(x))

→ L′ =
1

2

(
(∂µη)

2 + (∂µζ)
2
)
− λv2η2 + 1

2
e2v2AµA

µ

−evAµ∂µζ −
1

4
FµνF

µν + interaction terms

The particle spectrum appears to be

massless Goldston boson ζ with mζ = 0

massive scalar η with mη =
√
2λv2

massive vector boson Aµ with mA = ev
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However, this interpretation should be revised

massless Aµ → 2T physical degrees of freedom

massive Aµ → 2T + 1L physical degrees of freedom

where did the third degree of freedom come from ? Note that to lowest order

φ =
1√
2
(v + η(x) + iζ(x)) ∼= 1√

2
(v + η(x)) ei

ζ(x)
v

→ use a different set of fields h, θ, Aµ

φ→ 1√
2
(v + h(x))ei

θ(x)
v

Aµ → Aµ +
1

ev
∂µθ

substitute into L. We get

L′′ =
1

2
(∂µh)

2 − λv2h2 + 1

2
e2v2AµA

µ − λvh3 − 1

4
λh4

+
1

2
e2AµA

µh2 + ve2AµA
µh− 1

4
FµνF

µν

The Goldstone boson disappeared altogether
→ The Goldstone boson is absorbed as the longitudenal mode of Aµ
→ only 2 physical fields h and Aµ.
We are ready to see how the Higgs mechanism operates in the Standard Model.

L = (∂µΦ)
†(∂µΦ)− µ2(Φ†Φ)− λ(Φ†Φ)2

with Φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)

The Lagrangian is invariant under the gauge transformation

Φ → Φ′ = ei
αaτa

2 Φ

The covariant derivative Dµ = ∂µ + ig
τa
2
W a
µ a = 1, 2, 3

under Φ(x)→ Φ′(x) = (1 + i
~α · ~τ
2

)Φ(x)

~Wµ → ~Wµ −
1

g
∂µ~α− ~α× ~Wµ

The gauge invariant Lagrangian is

L = (∂µΦ + ig
1

2
~τ · ~WµΦ)

†(∂µΦ + ig
1

2
~τ · ~W µΦ)− V (Φ)− 1

4
~Wµν · ~W µν

where ~Wµν = ∂µ ~Wν − ∂ν ~Wµ − g ~Wµ × ~Wν

Take µ2 < 0 , λ > 0
The potential has a minimum at

Φ†Φ =
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) = −

µ2

2λ
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Expand about a minimum. Choose

φ1 = φ2 = φ4 = 0 , φ2
3 = −

µ2

λ
= v2

Expand Φ(x) about the vacuum〈Φ0〉 =
1√
2

(
0
v

)

Φ(x) =
1√
2

(
0

v + h(x)

)

The three additional degrees of freedom are absorbed as the longitudenal components of
W µ

1 , W
µ
2 ,W µ

3 . The mass term

∣
∣
∣
∣

(

g
~τ

2
· ~Wµ

)

Φ

∣
∣
∣
∣

2

=
g2

8

∣
∣
∣
∣

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)(
0
v

)∣
∣
∣
∣

2

=
g2v2

8

[
(W 1

µ)
2 + (W 2

µ)
2 + (W 3

µ)
2
]
→ 3 massive vector bosons

Now consider the Lagrangian of the SU(2)W × U(1)Y of the Standard Model coupled
to Φ

Φ =

(
φ+

φ0

)

with φ+ =
1√
2
(φ1 + iφ2)

φ0 =
1√
2
(φ3 + iφ4)

The Lagrangian density of the Higgs field is given by:

L =

∣
∣
∣
∣

(

∂µ − ig ~T · ~Wµ − ig′
Y

2
Bµ

)

Φ

∣
∣
∣
∣

2

− V (Φ)

where ~T = ~τ
2
and

V (Φ) = µ2Φ†Φ+ λ
(
Φ†Φ

)2

The relevant term for the gauge boson masses

∣
∣
∣

(

g ~τ
2
· ~Wµ + g′ 1

2
Bµ

)

Φ
∣
∣
∣

2

=
∣
∣
∣
∣

(

g

2

[(
0 1
1 0

)

W 1
µ +

(
0 −i
i 0

)

W 2
µ +

(
1 0
0 −1

)

W 3
µ

]

+ g′

2

(
1 0
0 1

)

Bµ

)

Φ

∣
∣
∣
∣

2

= 1
4

∣
∣
∣
∣

[

g

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)

+ g′
(
Bµ 0
0 Bµ

)]

1√
2

(
0
v

)∣
∣
∣
∣

2

= 1
8

∣
∣
∣
∣

(
gW 3

µ + g′Bµ g(W 1
µ − iW 2

µ)
g(W 1

µ + iW 2
µ ) −gW 3

µ + g′Bµ

)(
0
v

)∣
∣
∣
∣

2

= 1
8
v2
(
g
(
W 1
µ + iW 2

µ

)
,
(
−gW 3

µ + g′Bµ

))
(
g (W 1µ − iW 2µ)
−gW 3µ + g′Bµ

)
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= g2v2

8

[
(W 1

µ)
2 + (W 2

µ)
2
]
+ v2

8
(g′Bµ − gWµ)(g

′Bµ − gW µ)

= 1
4
g2v2W+µW−µ + 1

8
v2(g2 + g′2)

(−gW 3
µ+g

′Bµ)
2

(√
g2+g′2

)2

=
(
1
2
gv
)2
W+
µ W

−µ + 1
2
v2

(g2+g′2)
4

(

−gW 3
µ+g

′Bµ√
g2+g′2

)2

+ 0
(
gW 3

µ + g′Bµ

)2

M2
W± W+

µ W
−µ + 1

2
M2

ZZ
2
µ + 1

2
MAA

2
µ

The first term is the mass term for W+, W−,

MW± =
1

2
gv

Recalling that

tan θW =
g′

g
; sin θW =

g′
√

g2 + g′2

the normalised Aµ and Zµ field combinations are

Aµ =
g′W 3

µ + gBµ
√

g2 + g′2
with MA = 0

Zµ =
g′W 3

µ − gBµ
√

g2 + g′2
with MZ =

1

2
v
√

g2 + g′2

which gives
MW

MZ

=
g

√

g2 + g′2
= cos θW

which is verified experimentally to high precision
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