MATH191: Problem Sheet 10

1. Write each of the following series using the \sum notation. The ratio test shows that one of them is convergent, and one is divergent; the convergence or divergence of the third cannot be determined using this test. Which is which?
a)

$$
\frac{1}{1^{3}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots+\frac{1}{r^{3}}+\cdots
$$

b)

$$
\frac{1}{0!}+\frac{2}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\cdots+\frac{2^{r}}{r!}+\cdots
$$

c)

$$
\frac{1!}{3}+\frac{2!}{3^{2}}+\frac{3!}{3^{3}}+\frac{4!}{3^{4}}+\cdots+\frac{r!}{3^{r}}+\cdots
$$

2. Calculate the radius of convergence R of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} x^{n}
$$

Write down the series when $x=R$ and explain why it converges by using the alternating series test. Write down the series when $x=-R$, and explain why it diverges. Hence state all of the (real) values of x for which the power series is convergent.
3. Calculate the radius of convergence R of the power series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2} 3^{n}} x^{n} .
$$

Write down the series when $x=R$ and when $x=-R$, and explain why it is divergent in each case. Hence state all of the (real) values of x for which the power series is convergent.

