
Chapter 1

Functions and Graphs

1.1 Numbers (1.2.1, 1.2.4)

The most fundamental type of number are those we use to count with: 0, 1, 2, . . ..
These are called the natural numbers: the set of all natural numbers is denoted N.

N = {0, 1, 2, 3, . . .}.

Next we encounter the whole numbers or integers: the set of all integers is denoted
Z.

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
Clearly every natural number is an integer: that is N ⊂ Z.
Third, there are the fractions or rational numbers: the set of all rational numbers

is denoted Q. The rational numbers are those which can be written in the form p/q,
where p and q are integers and q 6= 0. In set notation,

Q = {p

q
: p, q ∈ Z, q 6= 0}.

Since any integer n can be written as n/1, every integer is a rational number:
that is Z ⊆ Q.

Finally there are the real numbers: all numbers which can be written with a
decimal expansion. The set of all real numbers is denoted R. Not every real number

is rational: for example
√

2 and π can’t be written in the form p/q. Such real
numbers are called irrational.

Thus we have
N ⊂ Z ⊂ Q ⊂ R.

Later on we’ll come across the Complex numbers C.
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Interval notation

Interval notation is a very convenient way of denoting sets of real numbers. If a and
b are real numbers with a ≤ b, we write [a, b] for the set of all real numbers x with
a ≤ x ≤ b. That is,

[a, b] = {x ∈ R: a ≤ x ≤ b}.

Notice that this is really a collection of real numbers: thus [1, 4] does not just

contain the numbers 1, 2, 3, 4, but everything between 1 and 4 (for example, π).

Similarly we use the notation (a, b) for the same set excluding the endpoints:

(a, b) = {x ∈ R: a < x < b}.

We can mix square and round brackets:

[a, b) = {x ∈ R: a ≤ x < b}.
(a, b] = {x ∈ R: a < x ≤ b}.

When we don’t want an upper or lower limit, we can use the symbol ∞:

[a,∞) = {x ∈ R: a ≤ x}
(−∞, b) = {x ∈ R:x < b}

You should never put a square bracket next to ∞ or −∞: ∞ is a convenient
symbol, but it is not a real number.

1.2 Functions, Domain and Range (2.1, 2.2)

We often write expressions like y = f(x). Here f is a function: we regard f as
a machine, which, when we feed it a real number x, either spits out another real
number f(x) or tells us it doesn’t like x. For example, if f(x) = 1/x, then if we feed

f any real number x 6= 0, spits out the real number 1/x: if we accidentally feed it

x = 0, it complains (remember ∞ is not a real number).
Since we don’t want our machine to complain, we have to be careful only to feed

it allowable numbers.
The Maximal Domain of f is the set of all inputs x which don’t make the machine

complain (so f(x) is a real number). Thus the maximal domain of f(x) = 1/x is

(−∞, 0) ∪ (0,∞). Sometimes we want to restrict the choice of inputs: a domain of

f is any set of allowed inputs x: thus [2, 5] is a domain of f(x) = 1/x, but [−2, 2] is

not (it contains 0, which is disallowed).
The Range of f is the set of possible output values y.
The zeros of f are all the possible input values x such that the output f(x) = 0.

Also called roots.

2



1.3 Polynomials (2.4)

Polynomials are a very simple type of function:

f(x) = c0 + c1x + c2x
2 + · · · + cnxn.

The degree of the polynomial is the largest power of x that appears.

1. Degree 0: constants f(x) = c0.

2. Degree 1: linear functions f(x) = c0 + c1x.

3. Degree 2: quadratics f(x) = c0 + c1x + c2x
2.

4. Degree 3: cubics f(x) = c0 + c1x + c2x
2 + c3x

3.

Examples f(x) = x2 − 4. Draw graph. The maximal domain is R. The range is

[−4,∞). Two zeros, ±2.

f(x) = x3 − 3x. Draw graph. The maximal domain is R. The range is R. Three

zeros, 0 and ±
√

3.

The maximal domain of a polynomial is always R. Polynomials are also contin-

uous (you can draw the graph without taking your pen off the paper) and smooth

(there are no sharp corners in the graph).

1.4 Rational functions (2.5)

A rational function is one which can be written in the form

f(x) =
g(x)

h(x)
,

where g(x) and h(x) are polynomials.

Example

x3 − 3x2 + 5

2x4 + x − 3
.

Unlike polynomials, the maximal domain of a rational function may not be R:
they explode whenever h(x) = 0. The zeros of a rational function are exactly the

points where g(x) = 0.

Examples f(x) = 1/x. Draw graph. The maximal domain is (−∞, 0) ∪ (0,∞).

The range is (−∞, 0) ∪ (0,∞). The line x = 0 is a vertical asymptote. f is not
continuous: it jumps at x = 0. f has no zeros.

f(x) = (x + 2)/(x − 1)2. Don’t try to draw graph. The maximal domain is

(−∞, 1) ∪ (1,∞). f has one zero, at x = −2.
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1.5 Modulus (1.2.4)

The modulus |x| of a real number x is just its size: thus |x| = x if x ≥ 0, and |x| = −x
if x < 0.

Examples f(x) = |x|. Draw graph. The maximal domain in R. The range is

[0,∞). There is one zero, at x = 0. f is continuous, but not smooth (there is a

sharp corner at x = 0).

f(x) = |x2 − 4|. Draw graph. The maximal domain is R. The range is [0,∞).
There are two zeros, at x = ±2. f is continuous, but not smooth.

f(x) = |x2 + 1| is just the same as f(x) = x2 + 1.

1.6 Even and Odd Functions (2.2.4)

An even function f(x) is one for which f(−x) = f(x) for all values of x (in the

maximal domain). Thus the graph to the left of the y-axis can be obtained from the
graph to the right by reflecting in the y-axis.

Examples are x2, |x|, x4 + 2x2 + 3, any polynomial with only even powers.

An odd function f(x) is one for which f(−x) = −f(x) for all values of x (in the

maximal domain). Thus the graph to the left of the y-axis can be obtained from the
graph to the right by rotating about the origin.

Examples are x, 1/x, x3 − 3x, any polynomial with only odd powers.

Unlike numbers, most functions are neither even nor odd. Example f(x) = x−3.
Any polynomial with both even and odd powers is neither even nor odd.

To decide whether a function f(x) is even, odd, or neither, work out f(−x) and

decide whether it is equal to f(x), to −f(x), or to neither of these.

Examples: f(x) = x
x+2 , f(x) = sin(x3), f(x) = sin(|x|), f(x) = sin(x)

x . Note last

is not defined at x = 0.

1.7 Inverse functions (2.2.2)

Suppose f is a function: that is, if we input a real number x, it outputs a real number

y. The inverse function f−1 is the function which takes the output of f and tells us

what the input was. Thus if y = f(x) then x = f−1(y).

Example f(x) = x + 3. Then f−1(x) = x − 3. (If y = x + 3, then x = y − 3, so

f−1(y) = y− 3. However a function doesn’t care what letter I use to define it, so we

can also write f−1(x) = x − 3.) Draw graphs.

Thus determining the inverse function boils down to solving the equation y =
f(x) for x in terms of y.
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Example f(x) = x/(x − 2). To find the inverse function, write y = x/(x − 2)

and solve for x. y(x − 2) = x, yx − x = 2y, x(y − 1) = 2y, x = 2y/(y − 1). Thus

f−1(y) = 2y/(y − 1), or f−1(x) = 2x/(x − 1). Show graphs.

Notice the reflection rule: since finding the inverse function is just interchanging

the roles of x and y, the graph of f−1(x) is the graph of f(x) reflected in the line
y = x.

Problem: not every function has an inverse. Consider for example f(x) = x2.

Should we say that f−1(4) = 2, or −2? We can’t decide. Can see this problem on

the graphs: draw graph of x2 and reflection in y = x. The problem is that f(x) = x2

is two to one: there are two values of x which give rise to each value f(x).

We say that f(x) is one to one (or 1 − 1) if different values of x always give

different values of f(x): that is, if x1 6= x2, then f(x1) 6= f(x2).

One to one functions f(x) always have inverses: the maximal domain of f−1(x)

is the range of f(x), so may not be the same as the maxiaml domain of f(x).

Examples f(x) = x3 is 1− 1. The maximal domain and the range of f(x) are R,

and the same is true of f−1(x) = 3
√

x.

f(x) = ex is 1 − 1. f(x) has maximal domain R, and range (0,∞). The inverse

f−1(x) = ln(x) has maximal domain (0,∞), and range R. (Pretend we know about

these functions for now.)

If f(x) is not 1− 1, and we want to talk about its inverse, we have to restrict the

domain of f(x) to one where it is 1 − 1.

Example f(x) = x2 is not 1 − 1 on its maximal domain, but it is 1 − 1 on the

domain [0,∞). If we restrict to this domain, then f(x) has an inverse f−1(x) = +
√

x.

Draw graphs. (Could just as well have chosen other domain).

Note: if f(x) is continuous, then it is 1 − 1 on an interval precisely when it is
either strictly increasing or strictly decreasing there. Pictures.

1.8 Trigonometric Functions (2.6)

Draw a circle of radius 1, and pick a point P = (x, y) on the circle, at angle θ to the
horizontal.

Then sin θ = y, cos θ = x, and tan θ = y/x(= sin θ/ cos θ).
Notice that −1 ≤ sin θ, cos θ ≤ 1 for any value of θ: i.e. the range of sin and cos

is [−1, 1]. On the other hand, tan θ can take any real value: the range of tan is R.

By pythagoras’s theorem, sin2 θ + cos2 θ = 1.
You should always express angles in radians rather than degrees: there are very

good reasons for this, which will become clear during the course. Remember that a
full revolution (360 degrees) is 2π radians, so (give values of 180, 90, 60, 30 degrees).
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Special angles: (Use 30-60-90 and 45-45-90 rules)

0 π/6 π/4 π/3 π/2

sin 0 1/2 1/
√

2
√

3/2 1

cos 1
√

3/2 1/
√

2 1/2 0

tan 0 1/
√

3 1
√

3

Graphs of the trigonometric functions

Draw graphs of sin θ, cos θ and tan θ. Note that cos is even and sin and tan are odd.
A function f(x) is periodic with period T or T -periodic if f(x + T ) = f(x) for all

x.
Thus sin and cos are 2π-periodic, tan is π-periodic.
Also define cot θ = 1/ tan θ = cos θ/ sin θ, cosec θ = 1/ sin θ and sec θ = 1/ cos θ.
Draw graph of cot θ: odd and π-periodic.

Trigonometric identities

Hand out trigonometric identities and talk about them.
We can derive other identities from these.

Example To get an expression for cos(3θ) in terms of cos θ, write cos(3θ) =

cos(2θ + θ), and observe

cos(2θ + θ) = cos 2θ cos θ − sin 2θ sin θ (4)

= (2 cos2 θ − 1) cos θ − 2 sin θ cos θ sin θ (10, 11)

= 2 cos3 θ − cos θ − 2 sin2 θ cos θ

= 2cos3 θ − cos θ − 2(1 − cos2 θ) cos θ (1)

= 2 cos3 θ − cos θ − 2 cos θ + 2cos3 θ

= 4cos3 θ − 3 cos θ.

Check: Try θ = 0. Then cos 3θ = cos 0 = 1, and cos θ = 1, so the right hand side

is 4(1)3−3 = 4−3 = 1. So this checks. Try θ = π/3. Then cos 3θ = cos π = −1, while

cos θ = cos π/3 = 1/2. Thus the right hand side is 4(1/2)3 − 3/2 = 1/2 − 3/2 = −1.
So this checks.

Inverse trigonometric functions

The trigonometric functions are periodic, and so are “∞ to 1”. In order to consider
their inverse functions, we have to restrict their domain to a principal domain, just

as we did for f(x) = x2.

The principal domain of y = sin x (draw graph) is [−π/2, π/2]. Thus the principal

value of sin−1 x lies in [−π/2, π/2]. (There are infinitely many angles whose sine is x:
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we pick the one which lies between −π/2 and π/2.) Draw graph. Maximal domain

[−1, 1], range [−π/2, π/2].

The principal domain of y = cos x (draw graph) is [0, π]. Thus the principal value

of cos−1 x lies in [0, π]. Draw graph. Maximal domain [−1, 1], range [0, π].

The principal domain of y = tan x (draw graph) is [−π/2, π/2]. Thus the prin-

cipal value of tan−1 x lies in [−π/2, π/2]. Draw graph. Maximal domain R, range

[−π/2, π/2].

NB On your calculator, sin−1 x, cos−1 x and tan−1 x may be called arcsin x,
arccos x, and arctan x. Your calculator should automatically give the principal values
of these functions. Make sure it’s set on radians.

Trigonometric Equations

Consider solving the equation sin θ = 1/2 for θ. One solution is θ = sin−1(1/2) =

π/6. However there are infinitely many other solutions (draw graph). These are

π/6+2nπ, where n is any integer, and (π−π/6)+2nπ, where n is any integer. Thus

the general solution of sin θ = 1/2 is

θ =

{

π/6 + 2nπ n ∈ Z

(π − π/6) + 2nπ n ∈ Z.

We can rewrite the equation as sin θ = sin π/6. By the same argument, the
general solution of the equation sin θ = sin α is

θ =

{

α + 2nπ n ∈ Z

(π − α) + 2nπ n ∈ Z.

Example Find the general solution of sin θ = 1/
√

2. Write 1/
√

2 = sin α: here

α + sin−1(1/
√

2) = π/4. Thus the general solution is

θ =

{

π/4 + 2nπ n ∈ Z

(π − π/4) + 2nπ n ∈ Z.

Analogously, the general solution of the equation cos θ = cos α is

θ = ±α + 2nπ n ∈ Z,

and the general solution of the equation tan θ = tan α is

θ = α + nπ n ∈ Z.

Example Find the general solution of tan θ = 3. Write 3 = tan α: thus α =

tan−1(3) = 1.2490 = 0.3976π. Thus the general solution is θ = 0.3976π + nπ, or
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θ = (0.3976 + n)π. That is, the values of θ with tan θ = 3 are 0.3976π, 1.3976π,
2.3976π, . . . and −0.6024π, −1.6024π, −2.6024π, etc.

A second type of trigonometric equation can be solved by a trick. These are
equations of the form a cos θ + b sin θ = c, where a, b, and c are fixed. To solve this,

consider a right-angled triangle with sides a and b, and hypoteneuse R =
√

a2 + b2:

let φ be the angle between a and R (so φ = tan−1(b/a)). Then a = R cos φ and
b = R sinφ. Thus

a cos θ + b sin θ = R cos φ cos θ + R sinφ sin θ = R cos(θ − φ).

Our equation therefore becomes

cos(θ − φ) = c/R,

which we can solve in the usual way. Writing c/R = cos α, we have

cos(θ − φ) = cos α,

which has general solution
θ − φ = ±α + 2nπ,

or
θ = ±α + 2nπ + φ.

Since R =
√

a2 + b2 and φ = tan−1(b/a), we have α = cos−1(c/
√

a2 + b2, so we
can write the general solution of a cos θ + b sin θ = c as

θ = ± cos−1(
c√

a2 + b2
) + 2nπ + tan−1 b

a
.

However, rather than remember this formula, it is better to work through the
steps for each example.

Example Find the general solution of the equation cos θ + 2 sin θ = 1.

Consider the triangle with sides 1, 2, and
√

5, and let φ be the angle tan−1 2 =

1.1071. Then 1 =
√

5 cos φ and 2 =
√

5 sin φ. Hence cos θ + 2 sin θ =
√

5 cos θ cos φ +√
5 sin θ sin φ =

√
5 cos(θ − φ).

Solving cos θ+2 sin θ = 1 is the same as solving
√

5 cos(θ−φ) = 1, or cos(θ−φ) =

1/
√

5. Now cos−1(1/
√

5) = 1.1071, so the general solution is

θ − φ = ±1.1071 + 2nπ,

or
θ = φ ± 1.1071 + 2nπ = 1.1071 ± 1.1071 + 2nπ

so θ = 2nπ or θ = 2.2142 + 2nπ.
The first type of solution is easy to check: if θ = 2nπ then sin θ = 0 and cos θ = 1,

so cos θ + 2 sin θ = 1. For the second type, we can check that cos(2.2142) = −0.6

and sin(2.2142) = 0.8, so cos(2.2142) + 2 sin(2.2142) = 1.
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1.9 Polar Coordinates (2.6.6)

Sometimes, instead of describing a point P by its Cartesian coordinates (x, y) (the

horizontal and vertical distances from the origin), it’s convenient to represent it by
its distance r and angle θ from the origin. Draw picture.

To convert from Cartesian to polar coordinates, use the formulae

r =
√

x2 + y2 tan θ = y/x,

and to convert from polar to Cartesian coordinates, use the formulae

x = r cos θ y = r sin θ.

Examples Let P be the point with Cartesian coordinates (2, 1). To find its polar

coordinates: r =
√

22 + 12 =
√

5, and tan θ = 1/2 so θ = tan−1(1/2) = 0.4636(=

0.1476π). So the polar coordinates of P are (r, θ) = (
√

5, 0.1476π).

Let P be the point with polar coordinates (2, π/3). To find its Cartesian coordi-

nates: x = 2cos π/3 = 2(1/2) = 1 and y = 2 sin π/3 = 2(
√

3/2) =
√

3.

Note:

a) When P is the origin, θ is not defined.

b) Beware when using the formula tan θ = y/x to calculate θ: when you calculate

tan−1(y/x) on your calculator, it will return the principal value of tan−1(y/x),

which lies between −π/2 and π/2 (i.e. x > 0). When determining θ, you have

to look at the sign of x: if x > 0 then θ = tan−1(y/x); if x < 0 then θ =

tan−1(y/x) + π; if x = 0 then θ = π/2 or −π/2 depending on whether y > 0 or

y < 0. For example, let P have Cartesian coordinates (−2,−2). Then r =
√

8.

If we work out tan−1(−2/ − 2) = tan−1(1), we get π/4, which is clearly wrong.

Since x < 0, we have to add π to this to get θ: θ = 5π/4.

1.10 Limits (7.8, 7.9)

We look at the behaviour of f(x) as x approaches a certain value. Let’s start with
some intuitive examples:

Examples

a) f(x) = x2. Clearly when x is very close to 2, f(x) is very close to 4. We say

f(x) → 4 as x → 2, or limx→2 f(x) = 4. (Boring: this is because x2 is continuous

at x = 2).
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b) f(x) = 1/x. When x is negative and very close to 0, f(x) is a very large negative

number. When x is postive and very close to 0, f(x) is a very large positive

number. We say limx→0− f(x) = −∞ and limx→0+ f(x) = ∞. limx→0 f(x) does
not exist, since the limit depends on which side you approach 0 from.

c) Now consider the Heaviside step function

f(x) =

{

0 if x < 0
1 if x ≥ 0.

We have limx→0− f(x) = 0 and limx → 0+f(x) = 1. Thus limx→0 f(x) doesn’t

exist. However, if we look close to x = 2 then clearly limx→2 f(x) = 1.

d) Notice that the limit says nothing at all about f(a) itself: if we defined a function
by

f(x) =

{

x2 if x 6= 2
99 if x = 2,

Then we still have limx→2 f(x) = 4, even though f(2) = 99.

This motivates the definition of continuity:
The function f(x) is continuous at x = a if

a) a is in the maximal domain of f(x).

b) limx→a f(x) = f(a).

f(x) is continuous if it is continuous at all values of x.

Examples f(x) = x2 is continuous. The Heaviside step function is continuous

everywhere except at x = 0. f(x) = 1/x is continuous everywhere except at x = 0.

f(x) =

{

x2 if x 6= 2
99 if x = 2

is not continuous at x = 2, since limx→2 f(x) isn’t equal to f(2).

Some more examples: Rational functions

Example 1: f(x) = (x2 + 3)/(x − 2) as x → 1. Clearly when x is very close to 1,

f(x) is very close to f(1) = −4. Hence limx→1 f(x) = −4, and f(x) is
continuous at x = 1.
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Example 2: f(x) = (x2 + 3)/(x − 2) as x → 2. When x is very close to 2, then

x2 + 3 is very close to 7. However as x gets closer and closer to 2 from
above, x − 2 becomes a smaller and smaller positive number. Hence
limx→2+ f(x) = ∞. When x tends to 2 from below, x − 2 becomes a

smaller and smaller negative number: hence limx→2− f(x) = −∞. Since

the limits don’t agree, limx→2 f(x) doesn’t exist.

Example 3: You should always try to simplify f(x) before calculating the limit.

Consider f(x) = (x2 − 1)/(x − 1) as x → 1. Simplifies to f(x) = x + 1

provided that x 6= 1. Hence limx→1 f(x) = 2. Note, however, that f(x)

is not continuous at x = 1, since f(1) = (12 − 1)/(1 − 1) is not defined,

i.e. 1 isn’t in the maximal domain of f(x).

A very important example: sincx

Consider the function f(x) = sin x/x as x → 0. Show graph. Appears that

limx→0 sinx/x = 1. Give geometric interpretation.

Notice that f(x) is not continuous at x = 0, since f(0) = sin 0/0 is not defined.
However, we can define a new function

sincx =

{

sin x if x 6= 0
1 if x = 0.

Then sincx is continuous at x = 0.
Another type of example can be solved using a trick. Consider f(x) = sin 2x/x.

Then we can write f(x) = 2 sin 2x/2x. As x → 0, 2x → 0 also, so sin 2x/2x → 1 as

x → 0. Hence f(x) → 2 as x → 0.

Limits as x → ±∞
Sometimes these limits exist: limx→∞ 1/x = 0, limx→−∞ 1/x = 0. Sometimes they
don’t: limx→∞ sinx doesn’t exist.

The limit of a non-constant polynomial as x → ±∞ is always ±∞:

a) f(x) = x2 + 3x + 3 ∼ x2 → ∞ as x → ∞ and as x → −∞.

b) f(x) = 2x3 − 3x2 − 2 =∼ 2x3 → ∞ as x → ∞ and → −∞ as x → −∞.

For rational functions, it depends on the degrees of the polynomials on the top
and bottom:

a) If the degree of the numerator is greater than the degree of the denominator, then
the limit is ±∞.

f(x) =
x3 + 1

3x2 − 2x + 1
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∼ x3

3x2

=
x

3
,

so f(x) → ∞ as x → ∞ and f(x) → −∞ as x → −∞.

b) If the degree of the numerator is less than the degree of the denominator, then
the limit is 0:

f(x) =
x3 + 1

2x4 − x2 + 2

∼ x3

2x4

=
1

2x
,

so f(x) → 0 as x → ∞ and as x → −∞.

c) If the degrees are the same, the limit is a non-zero real number:

f(x) =
x3 + 1

2x3 − 3x + 2

∼ x3

2x3

=
1

2
,

so f(x) → 1/2 as x → ∞ and as x → −∞.

The sandwich rule

Suppose that g(x) ≤ f(x) ≤ h(x) for all large x, and that g(x) → 0 and h(x) → 0

as x → ∞. Then f(x) → 0 as x → ∞.

Example Consider f(x) = sin x/x as x → ∞. Since sin x always lies between −1
and 1, we have

−1

x
≤ sin x

x
≤ 1

x

for all x > 0, and hence sin x/x → 0 as x → ∞.
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Asymptotes

Recall that we talked about horizontal and vertical asymptotes earlier: for example
f(x) = 1/(x − 1) has a vertical asymptote x = 1 and a horizontal asymptote y = 0.
We can now define these terms:

The line x = a is a vertical asymptote of f(x) if limx→a− f(x) = ±∞ or limx→a+ f(x) =
±∞ or both.

The line y = b is a horizontal asymptote of f(x) if limx→∞ f(x) = b or limx→−∞ f(x) =
b or both.
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Chapter 2

Differentiation (8.1–8.3, 9.5)

2.1 Rate of Change (8.2.1–5)

Recall that the equation of a straight line can be written as y = mx + c, where m
is the slope or gradient of the line, and c is the y-intercept (i.e. the value of y when

x = 0).

Example y = 2x + 1. Draw it. The slope 2 can also be looked on as the rate of

change of y with respect to x: when x increases by 1, y increases by 2. For example,
if x represents time in seconds, and y represents distance travelled in meters, then
the rate of change of y with respect to x is the speed of travel.

If the relationship between y and x is more complicated, for example y = x2,
then the rate of change of y wrt x is different for different values of x.

Example What is the rate of change of y wrt x when x = 1? When x = 1, y = 1.

If x increases by a small amount δ, then y increases to (1 + δ)2 = 1 + 2δ + δ2, in

other words y increases by 2δ + δ2. Thus

Rate of change =
Change in y

Change in x
=

2δ + δ2

δ
= 2 + δ.

To find the instantaneous rate of change at x = 1, we let δ → 0, to obtain 2.
Thus the car is travelling at 2 m/s at time 1.

In general, let y = f(x). The rate of change of y with respect to x at x = x0 is
given by

dy

dx

∣

∣

∣

∣

x0

= lim
δ→0

f(x0 + δ) − f(x0)

δ
.

Example Return to the example y = f(x) = x2, and let x0 be any value of x.

14



Then

dy

dx

∣

∣

∣

∣

x0

= lim
δ→0

f(x0 + δ) − f(x0)

δ

= lim
δ→0

(x0 + δ)2 − x2
0

δ

= lim
δ→0

x2
0 + 2x0δ + δ2 − x2

0

δ

= lim
δ→0

(2x0 + δ)

= 2x0.

Thus at time x0, the speed of the car is 2x0. Equivalently, at time x the speed
of the car is 2x. We also write

dy

dx
= 2x, y′ = 2x,

df

dx
= 2x, or f ′(x) = 2x.

The rate of change is called the derivative of y wrt x, or the derivative of f(x) wrt

x, or just the derivative of f(x).

Geometrically f ′(x0) is the slope of the tangent to y = f(x) at x = x0 (picture).

Thus the equation of this tangent is y = f ′(x0)x + c, where c is the y-intercept.
In order to work out c, we use the fact that the tangent passes through the point
(x0, f(x0)). Putting x = x0 and y = f(x0) in the equation we get f(x0) = f ′(x0)x0+

c, so c = f(x0) − f ′(x0)x0, and hence the equation of the tangent is

y = f ′(x0)x + f(x0) − f ′(x0)x0,

or
y = f(x0) + f ′(x0)(x − x0).

Example Find the equation of the tangent to the curve y = x2 at x0 = 3.
When x0 = 3 we have f(x0) = 9, and f ′(x0) = 2x0 = 6. Hence the equation of

the tangent is
y = 9 + 6(x − 3)

or
y = 6x − 9.
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2.2 Derivatives of common functions: rules of differen-
tiation (8.3.1–7)

Recall that if f(x) = x2, then f ′(x) = 2x. We found this with our bare hands:

f ′(x) = lim
δ→0

(x + δ)2 − x2

δ
= lim

δ→0
2x + δ = 2x.

We can do the same thing for other common functions.

Example Let f(x) = x3. Then

f ′(x) = lim
δ→0

(x + δ)3 − x3

δ

= lim
δ→0

x3 + 3x2δ + 3xδ2 + δ3 − x3

δ

= lim
δ→0

(3x2 + 3xδ + δ2)

= 3x2.

Thus
d

dx
x3 = 3x2.

To find the derivative of xn for other values of n, we need to be able to work out
(x + δ)n. To do this, we have the binomial theorem: to work out (a + b)n, we don’t
have to work out

(a + b)(a + b)(a + b) . . . (a + b),

we can use

(a+b)n = an+

(

n
1

)

an−1b+

(

n
2

)

an−2b2+

(

n
3

)

an−3b3+· · ·+
(

n
n − 1

)

abn−1+bn,

where
(

n
r

)

=
n!

(n − r)!r!
.

Rather than work out the coefficients

(

n
r

)

using this formula, we can use Pascal’s

triangle. Draw it. Thus, for example

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4.

Example Expand (1 + 2x)5 using the binomial theorem.
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(1 + 2x)5 = 15 + 5(1)4(2x) + 10(1)3(2x)2 + 10(1)2(2x)3 + 5(1)(2x)4 + (2x)5

= 1 + 5(2x) + 10(4x2) + 10(8x3) + 5(16x4) + (32x5)

= 1 + 10x + 40x2 + 80x3 + 80x4 + 32x5.

We can use this to work out the derivative of xn for any n. Let f(x) = xn. Then

f ′(x) = lim
δ→0

(x + δ)n − xn

δ

= lim
δ→0

xn + nxn−1δ + terms in δ2, δ3 etc. − xn

δ

= lim
δ→0

(nxn−1 + terms in δ, δ2 etc.)

= nxn−1.

Thus
d

dx
xn = nxn−1.

This gives d
dxx2 = 2x and d

dxx3 = 3x2 in agreement with our earlier calculations.

We can also now calculate, for example

d

dx
x57 = 57x56.

Example Calculate the equation of the tangent to the graph y = x28 at x = 1.

Write y = f(x) = x28. We want to use the formula for the tangent at x = x0:

y = f(x0) + f ′(x0)(x − x0),

so since x0 = 1 the equation is

y = f(1) + f ′(1)(x − 1).

Now f(1) = 128 = 1, and f ′(x) = 28x27, so f ′(1) = 28. Hence the equation of the
tangent is

y = 1 + 28(x − 1),

or
y = 28x − 27.
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Derivative of sin x and cos x

Let f(x) = sinx. We can calculate f ′(x) using what trigonometric identity (16):

f ′(x) = lim
δ→0

sin(x + δ) − sinx

δ

= lim
δ→0

2
cos
(

2x+δ
2

)

sin
(

δ
2

)

δ

= lim
δ→0

cos(x +
δ

2
)
sin(δ/2)

(δ/2)

= cos x.

Thus d
dx sin x = cos x.

Similarly d
dx cos x = − sin x (exercise).

Example Find the equation of the tangent to the graph y = sin x at x = 0.
Write f(x) = sinx and x0 = 0. We want to use our formula

y = f(x0) + f ′(x0)(x − x0)

for the equation of the tangent. We have f(x0) = sin 0 = 0 and f ′(x0) = cos 0 = 1,
so the equation is

y = 0 + 1(x − 0),

or y = x.

To find derivatives of other functions, we need some rules of differentiation

The constant multiplication rule

If k is a constant, then d
dxkf(x) = kf ′(x).

Examples

a) d
dx3x2 = 3(2x) = 6x.

b) d
dx5x4 = 20x3.

c) d
dx2 sin x = 2cos x.
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The sum rule

If u and v are functions of x, then d
dx(u+v) = du

dx + dv
dx . Alternatively, (u+v)′ = u′+v′.

Examples

a) d
dx(x3 + 2x + 1) = 3x2 + 2. Similarly, we can work out the derivative of any

polynomial.

b) d
dx(x2 + 2 sin x − cos x) = 2x + 2cos x + sinx.

The product rule

If u and v are functions of x, then (uv)′ = uv′ + u′v.

Examples

a) Let f(x) = x2 sinx. We let u = x2 and v = sin x. Thus u′ = 2x and v′ = cos x.

The product rule says that f ′(x) = x2 cos x + 2x sin x.

b) Let f(x) = cos2 x = cos x cos x. We let u = v = cos x. Then u′ = v′ = − sin x.

The product rule says that f ′(x) = cos x(− sin x)+(− sin x) cos x = −2 sin x cos x.

Note f ′(x) = − sin(2x).

c) Let f(x) = x2 sin x cos x. We let u = x2 sinx and v = cos x. Thus u′ = x2 cos x +

2x sin x (part a)), and v′ = − sin x. The product rule says that

f ′(x) = (x2 sin x)(− sin x)+(x2 cos x+2x sin x) cos x = x2(cos2 x−sin2 x)+2x sin x cos x.

(Note f ′(x) = x2 cos 2x + x sin 2x.)

The quotient rule

If u and v are functions of x, then

(u

v

)′
=

vu′ − uv′

v2
.

Examples

a) Let f(x) = 1/x. We let u = 1 and v = x, so u′ = 0 and v′ = 1. The quotient rule
says that

f ′(x) =
x(0) − (1)(1)

x2
= −1/x2.
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b) Let f(x) = tan x = sinx
cos x . We let u = sin x and v = cos x. Thus u′ = cos x and

v′ = − sinx. Thus

f ′(x) =
cos x cos x − sin x(− sin x)

cos2 x
=

cos2 x + sin2 x

cos2 x
=

1

cos2 x
= sec2 x.

c) Let f(x) = 1/xn. We let u = 1 and v = xn, so u′ = 0 and v′ = nxn−1. The
quotient rule says that

f ′(x) =
xn(0) − (1)nxn−1

x2n
=

−n

xn+1
.

Written another way,

d

dx
x−n = −nx−n−1,

so we can see that
d

dx
xn = nxn−1

whether n is positive or negative. In fact, we have d
dxxa = axa−1 for any number

a. Some examples:

d) Let f(x) =
√

x = x1/2. Then f ′(x) = (1/2)x−1/2 = 1
2
√

x
.

e) Let f(x) = 1
3
√

x
= x−1/3. Then f ′(x) = −(1/3)x−4/3 = −1

3x 3
√

x
.

The chain rule

Let f(x) = g(h(x)). Then f ′(x) = g′(h(x))h′(x).

Examples

a) Let f(x) = (4x − 1)3. Let g(x) = x3 and h(x) = 4x − 1, so f(x) = g(h(x)). We

have g′(x) = 3x2 and h′(x) = 4. Thus

f ′(x) = g′(h(x))h′(x) = 3(4x − 1)2 · 4 = 12(4x − 1)2.

b) Let f(x) = sin(3x + 2). Let g(x) = sin x and h(x) = 3x + 2, so f(x) = g(h(x)).

We have g′(x) = cos x and h′(x) = 3. Thus

f ′(x) = g′(h(x))h′(x) = cos(3x + 2) · 3 = 3 cos(3x + 2).

More generally, d
dx sin(ax+b) = a cos(ax+b) and d

dx cos(ax+b) = −a sin(ax+b).
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c) Let f(x) = (sin x + cos 3x)3. Let g(x) = x3 and h(x) = sin x + cos 3x, so f(x) =

g(h(x)). We have g′(x) = 3x2 and h′(x) = cos x − 3 sin 3x. Thus

f ′(x) = g′(h(x))h′(x) = 3(sin x + cos 3x)2(cos x − 3 sin 3x).

d) Let f(x) = tan((sin x + cos 3x)3). Let g(x) = tan x and h(x) = (sin x + cos 3x3),

so f(x) = g(h(x)). We have g′(x) = sec2(x) and h′(x) = 3(sin x+cos 3x)2(cos x−
3 sin 3x), so

f ′(x) = g′(h(x))h′(x) = sec2((sin x+cos 3x)3) · 3(sin x+cos 3x)2(cos x− 3 sin 3x).

The Inverse Function Rule

Let y = f−1(x) (so x = f(y)). Then

dy

dx
=

1

f ′(y)
.

Examples

a) Let y =
√

x (so x = y2, and we have f(y) = y2. Then

dy

dx
=

1

2y
=

1

2
√

x
.

Thus
d

dx

√
x =

1

2
√

x
.

This agrees with our earlier way of calculating this: d
dxx1/2 = frac12x−1/2.

b) Let y = sin−1(x) (so x = sin y, and we have f(y) = sin y. Then

dy

dx
=

1

cos y
=

1
√

1 − sin2 y
=

1√
1 − x2

.

Thus
d

dx
sin−1(x) =

1√
1 − x2

.

c) Similarly, it can be shown that

d

dx
cos−1(x) =

−1√
1 − x2

.
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d) Let y = tan−1(x) (so x = tan y, and we have f(y) = tan y. Then

dy

dx
=

1

sec2 y
=

1

1 + tan2 y
=

1

1 + x2
.

Thus
d

dx
tan−1(x) =

1

1 + x2
.

2.3 An application: the Newton-Raphson method (9.5.8)

This is a method for getting an approximate solution to the equation f(x) = 0 in
cases where we can’t get an exact solution. Suppose that, by drawing a graph of
f(x) we can see that there is a solution α (so f(α) = 0). The aim is to get a good
approximation to α. From the graph we can make an initial guess x0 at α. The idea
(draw picture) is that the place x1 where the tangent to the graph at x0 hits the
x-axis is a better approximation than x0.

The equation of the tangent is

y = f(x0) + f ′(x0)(x − x0),

which intersects the x-axis when y = 0, so

f(x0) + f ′(x0)(x − x0) = 0,

or

x − x0 =
−f(x0)

f ′(x0)
.

Thus the tangent hits the x-axis when

x = x0 −
f(x0)

f ′(x0)
.

Thus

x1 = x0 −
f(x0)

f ′(x0)
.

Now we can take x1 as our new guess for α, and use the same method to get a
better guess

x2 = x1 −
f(x1)

f ′(x1)
.

We can repeat this as many times as we like to get better and better guesses x3,
x4, and so on. In general

xn+1 = xn − f(xn)

f ′(xn)
.
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Example Consider the equation x = cos x. By drawing the graphs of x and cos x,
we can see that there is a solution somewhere between x = 0 and x = π/2. Let’s
take x0 = 1 as our initial guess at the solution.

We need to write the equation in the form f(x) = 0, which we do by setting

f(x) = x − cos x. Then f ′(x) = 1 + sinx. Thus the formula

xn+1 = xn − f(xn)

f ′(xn)

becomes

xn+1 = xn − xn − cos xn

1 + sin xn
.

So

x1 = x0 −
x0 − cos x0

1 + sin x0
= 1 − 1 − cos(1)

1 + sin(1)
= 0.750364.

This should be a better approximation than x0 to the solution.
For the next approximation

x2 = x1 −
x1 − cos x1

1 + sin x1
= 0.750364 − 0.750364 − cos(0.750364)

1 + sin(0.750364)
= 0.739113.

Then

x3 = x2 −
x2 − cos x2

1 + sin x2
= 0.739085,

and

x4 = x3 −
x3 − cos x3

1 + sin x3
= 0.739085.

Thus the solution is x = 0.739085 to six decimal places. Note that we got this on the
third step, but we had to go as far as the fourth step to know that it was accurate
to six decimal places.

Example Show graphically that the equation x3 = tan−1(x) has three solutions,
and find an approximation to the positive solution which is correct to four decimal
places.

From the graph, it is clear that there are three solutions x = 0 and x = ±α. We
want to find an approximation to α. In order to be sure that the method finds α
and not 0, we’ll make sure that our initial guess is bigger than α: let’s take x0 = 2.

Write the equation as f(x) = x3 − tan−1(x) = 0. Then f ′(x) = 3x2 − 1
1+x2 . So

xn+1 = xn − f(xn)

f ′(xn)
= xn − x3

n − tan−1(xn)

3x2
n − 1

1+x2
n

.

Thus
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x1 = 2 − 23 − tan−1(2)

3 · 22 − 1
1+22

= 2 − 8 − 1.107149

12 − 1
5

= 2 − 6.892851

11.8
= 1.415860.

Then

x2 = x1 −
x3

1 − tan−1(x1)

3x2
1 − 1

1+x2
1

= 1.084510.

x3 = x2 −
x3

2 − tan−1(x2)

3x2
2 − 1

1+x2
2

= 0.937997.

x4 = x3 −
x3

3 − tan−1(x3)

3x2
3 − 1

1+x2
3

= 0.903896.

x5 = x4 −
x3

4 − tan−1(x4)

3x2
4 − 1

1+x2
4

= 0.902031.

x6 = x5 −
x3

5 − tan−1(x5)

3x2
5 − 1

1+x2
5

= 0.902025.

Thus the solution is x = 0.902025, which is correct to at least 4 decimal places.

In fact, (0.902025)3 − tan−1(0.902025) = −0.00000093.

2.4 Differentiability (8.2.4)

The derivative f ′(a) gives the slope of the tangent to the graph y = f(x) at x = a.

If there is no well-defined tangent at x = a, or if f(x) isn’t continuous at x = a, then

we say that f(x) is not differentiable at x = a. Thus f(x) is differentiable at x = a if

a) f(x) is continuous at x = a, and

b) The graph of y = f(x) has a well-defined (non-vertical) tangent at x = a.

We say that f(x) is differentiable if it is differentiable at x = a for every value of
a.

Examples 1/x, |x|, | sin x|.
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2.5 Higher derivatives (8.3.13)

The derivative f ′(x) of a function f(x) is also a function, and may be differentiable

itself. Differentiating a function y = f(x) twice yields the second derivative, which

is written f ′′(x), f (2)(x), d2f
dx2 , y′′ or d2y

dx2 . It tells us the rate of change of f ′(x) wrt x:

i.e. how the slope of the tangent to y = f(x) is changing as x changes.

Similarly, the second derivative f ′′(x) may be differentiable, yielding the third

derivative f ′′′(x), f (3)(x), or d3f
dx3 . In general, we get the nth derivative f (n)(x) or dnf

dxn

by differentiating f(x) n times in succession.

We say that f(x) is n times differentiable if it is possible to differentiate it n
times in succession, and that it is infinitely differentiable or smooth if there is no
limit to the number of times it can be differentiated.

Examples

a) Let f(x) = x3 + 2x2 + 3x + 1. Then f ′(x) = 3x2 + 4x + 3, f ′′(x) = 6x + 4,

f ′′′(x) = 6, and f (n)(x) = 0 for all n ≥ 4. Thus f(x) is smooth.

b) Let f(x) = sin x. Then f ′(x) = cos x, f ′′(x) = − sin x, f ′′′(x) = − cos x, f (4)(x) =

sin x, and so on for ever. Thus f(x) is smooth.

c) Let f(x) = 1
x = x−1. Then f ′(x) = −x−2, f ′′(x) = 2x−3, f ′′′(x) = −6x−4,

f (4)(x) = 24x−25, and so on. f(x) isn’t differentiable at x = 0 (since 0 isn’t in its

maximal domain), but it is smooth everywhere else.

2.6 Maclaurin Series and Taylor Series (9.5.1–2)

Suppose that f(x) is a smooth function, and suppose that it can be written as

f(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 · · ·

or equivalently as

f(x) =
∞
∑

r=0

arx
r.

Then we can work out the coefficients ar by repeatedly differentiating f(x):

f(0) = a0.

f ′(x) = a1 + 2a2x + 3a3x
2 + 4a4x

3 + · · · , so f ′(0) = a1.

f ′′(x) = 2a2 + 6a3x + 12a4x
2 + · · · , quad so f ′′(0) = 2a2 or a2 = f ′′(0)/2.
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f ′′′(x) = 6a3 + 24a4x + · · · , so f ′′′(0) = 6a3 or a3 = f ′′′(0)/6.

f (4)(x) = 24a4 + · · · , so f (4)(0) = 24a4 or a4 = f (4)(0)/24.

In general

an = f (n)(0)/n!,

so

f(x) = f(0) + f (1)(0)x +
f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 + · · ·

or more concisely

f(x) =

∞
∑

r=0

f (r)(x)

r!
xr.

(where we take 0! to be 1).

This is called the Maclaurin Series expansion of f(x). Note that we have simply

made the assumption that it is possible to write f(x) in this way: we’ll see more

later about which functions f(x) this is possible for, and for which values of x it
makes sense.

Examples

a) Let f(x) = x3 + 2x2 + 2x + 1. We have f(0) = 1, f ′(x) = 3x2 + 4x + 2, so

f ′(0) = 2, f ′′(x) = 6x + 4, so f ′′(0) = 4, and f ′′′(x) = 6, so f ′′′(0) = 6. Then

f (n)(x) = 0 for all n ≥ 4, so f (n)(0) = 0 for all n ≥ 4. Thus the Maclaurin series
expansion is

1 + 2x +
4

2!
x2 +

6

3!
x3 = x3 + 2x2 + 2x + 1.

Thus for polynomials, we just recover the original polynomial.

b) Let f(x) = sinx. We have f(0) = 0, f ′(x) = cos x, so f ′(0) = 1, f ′′(x) = − sin x,

so f ′′(0) = 0, f ′′′(x) = − cos x, so f ′′′(0) = −1, f (4)(x) = sin x, so f (4)(0) = 0,

f (5)(x) = cos x, so f (5)(0) = 1, and so on for ever. Thus

sin x =
1

1!
x +

−1

3!
x3 +

1

5!
x5 +

−1

7!
x7 + · · · ,

or

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

c) Similarly, the Maclaurin series expansion of cos x is

cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · ·
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Working out the factorials in the series for sin x we get

sin x = x − x3

6
+

x5

120
− x7

5040
+ · · · ,

and the denominators get small very quickly. If x is also small, then the terms in
the Maclaurin series get small very quickly: for example

sin(0.1) = (0.1) − (0.1)3

6
+

(0.1)5

120
− (0.1)7

5040
+ · · ·

= (0.1) − 1

6000
+

1

12000000
− 1

50400000000
+ · · ·

Thus we can get a good approximation to sin(0.1) by just taking the first few
terms.

The first approximation is sin(0.1) = 0.1. The second is sin(0.1) = 0.1 −
1/6000 = 0.09983333 . . .. The third is sin(0.1) = 0.1 − 1/6000 + 1/12000000 =

0.09983341666 . . ., and so on. In fact, sin(0.1) = 0.099833416647 . . ..

Maclaurin’s theorem is very good for getting approximations to f(x) when x is
very small, but what happens if, for example, we want to get an approximation to
sin(10)? The Maclaurin series tells us that

sin(10) = 10 − 103

3!
+

105

5!
− 107

7!
+

109

9!
− · · · ,

or

sin(10) = 10 − 1000

6
+

100000

120
− 10000000

5040
+

1000000000

362880
− · · ·

The terms do eventually get small (for example 1035

35! = 0.00012 . . .), but it takes

a long time.
One way to deal with this is to change variable, setting y = x − a for some a, so

that when x is close to a, y is close to 0. This change of variable gives the Taylor

series expansion of f(x) about x = a:

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3 + · · · ,

or

f(x) =

∞
∑

r=0

f (n)(a)

n!
(x − a)n.

This is good for approximating f(x) when x is close to a (so that x−a is small).

Examples
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a) Let f(x) = x3 +x2 +x+1, and let a = 1. We have f(a) = 4, f ′(x) = 3x2 +2x+1,

so f ′(a) = 6, f ′′(x) = 6x + 2, so f ′′(a) = 8, and f ′′′(x) = 6, so f ′′′(a) = 6. Then

f (n)(x) = 0 for all n ≥ 4, so f (n)(a) = 0 for all n ≥ 4. Thus the Taylor series

expansion of f(x) about x = 1 is

f(x) = 4+6(x− 1)+
8

2!
(x− 1)2 +

6

3!
(x− 1)3 = 4+6(x− 1)+4(x− 1)2 +(x− 1)3.

Thus for a polynomial, we are simply rewriting it as a polynomial in x − a.

b) Find an approximation for f(x) = 1/x near x = 1 by using the first three terms
in the Taylor series expansion.

We have f(1) = 1. f ′(x) = −1/x2, so f ′(1) = −1. f ′′(x) = 2/x3, so f ′′(x) = 2.
Hence

1

x
= 1 − (x − 1) +

2

2!
(x − 1)2 = 1 − (x − 1) + (x − 1)2 = x2 − 3x + 3.

Tricks

x sinx, sin2 x, cos2 x.

2.7 L’Hopital’s rule (9.5.3)

What is limx→0
sin x

x ? If we write sin x as its Maclaurin series expansion, then

sin x

x
=

x − x3

3! + x5

5! + · · ·
x

= 1 − x2

3!
+

x4

5!
+ · · · ,

and it is obvious that limx→0
sinx

x = 1.

Similarly, consider limx→0
1−cos x

x . We have

1 − cos x

x
=

1 − (1 − x2

2! + x4

4! − · · ·
x

=
x2

2! − x4

4! + · · ·
x

=
x

2!
− x3

4!
+ · · · ,

and it is obvious that limx→0
1−cos x

x = 0.

We can do the same to work out any limit limx→a
f(x)
g(x) where f(a) = g(a) = 0.

Expand f(x) and g(x) as Taylor series about x = a to get

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·
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g(x) = g(a) + g′(a)(x − a) +
g′′(a)

2!
(x − a)2 + · · ·

and so

f(x)

g(x)
=

f ′(a)(x − a) + f ′′(a)
2! (x − a)2 + · · ·

g′(a)(x − a) + g′′(a)
2! (x − a)2 + · · ·

=
f ′(a) + f ′′(a)

2! (x − a) + · · ·
g′(a) + g′′(a)

2! (x − a) + · · ·
,

from which it is clear that

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

This is L’Hôpital’s rule. Note it only works when f(a) = g(a) = 0.

If f ′(a) = g′(a) = 0, then we can extend this to show that the limit is f ′′(a)
g′′(a) : if

these are both 0, then it is f ′′′(a)
g′′′(a) , etc.

Examples

a) What is limx→2
x2−x−2

x−2 ? We have f(x) = x2 − x − 2 and g(x) = x − 2, so

f ′(x) = 2x − 1 and g′(x) = 1. Hence f ′(2) = 3 and g′(2) = 1, so the limit is 3.

b)

lim
x→0

sinx − x

x3
= lim

x→0

cos x − 1

3x2

= lim
x→0

− sinx

6x

= lim
x→0

− cos x

6
= −1

6
.

2.8 The exponential function (2.7.1, 8.3.9)

Functions of the form f(x) = ax, where a > 1 is a constant, are called exponential

functions.

Notice that a0 = 1, a1 = a, ax is large when x is large, and a−x = 1
ax is small,

but positive, when x is large. Thus all of the exponential functions are increasing
and have range (0,∞). Draw graphs of 2x, 3x, 4x.

Exponential functions have the following important properties:

ax1ax2 = ax1+x2

ax1

ax2
= ax1−x2

akx = (ak)x = bx where b = ak.
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By the last property, we only need to understand one exponential function and

we understand them all: for example 4x = 22x, 3x = 2kx where k is the number with

2k = 3.
We choose a preferred value of a in such a way that ax is its own derivative.
Define the exponential function f(x) = exp(x) to be the function with f ′(x) =

f(x) and f(0) = 1.

This is enough to tell us its Maclaurin series expansion: since f (n)(0) = 1 for all
n, we have

exp(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞
∑

r=0

xr

r!
.

It can be shown (not hard, but quite a lot of work), that exp(x) = ex, where

e = exp(1) = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+ · · · = 2.7182818 . . .

.
Thus ex and exp(x) are just different ways of writing the same function, which

has the crucial property that

d

dx
ex = ex.

Draw graph. Note maximal domain is R, range is (0,∞), increasing, neither
even nor odd.

2.9 The logarithmic function (2.7.2, 8.3.9)

The inverse function of f(x) = ax is called the logarithm to base a, written loga.
Thus if y = ax then x = loga y.

The inverse of the exponential function y = ex is called the natural logarithm,
written ln (so ln is just another way of saying loge). Thus if y = ex then x = ln y.

We can draw the graph of y = ln x by using the reflection rule. The maximal
domain in (0,∞), the range is R, and ln x is increasing.

To differentiate ln x, we use the inverse function rule: if y = f−1(x) (so x = f(y)),

then dy
dx = 1

f ′(y) . In this case, y = ln x (so x = f(y) = ey), so

dy

dx
=

1

f ′(y)
=

1

ey
=

1

x
.

Thus
d

dx
(ln x) =

1

x
.

The properties of the exponential function give corresponding properties of the
logarithm:
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ex1ex2 = ex1+x2 translates to ln(x1x2) = ln x1 + ln x2.
ex1

ex2 = ex1−x2 translates to ln x1
x2

= ln x1 − ln x2.

enx = (ex)n translates to ln xn = n lnx.
Thus for example

ln

(√
10x

y2

)

= ln(
√

10x) − ln(y2)

=
1

2
ln(10x) − 2 ln y

=
1

2
(ln(10) + ln x) − 2 ln y.

ln x doesn’t have a Maclaurin series expansion, since x = 0 isn’t in the maximal
domain of ln x. However, it is possible to calculate the Maclaurin series of ln(1 + x)

(this comes down to the same thing as finding the Taylor series of ln x about x = 1).

Have f(x) = ln(1 + x), so f(0) = ln(1) = 0.

f ′(x) = 1
1+x , so f ′(0) = 1

1 = 1.

f ′′(x) = −1
(1+x)2

, so f ′′(0) = −1.

f ′′′(x) = 2
(1+x)3

, so f ′′′(0) = 2.

f ′′′′(x) = −6
(1+x)4 , so f ′′′′(0) = −6.

Thus

ln(1 + x) = x − x2

2
+

x3

3
− x4

4
+

x5

5
− · · ·

This expansion clearly doesn’t make sense if x ≤ −1, since ln is only defined for
x > 0. We shall see later that it also doesn’t make sense if x > 1: in that case, the
numerators of the terms grow faster than the denominators. It does, however, work
for x = 1, when we get

ln 2 = 1 − 1

2
+

1

3
− 1

4
+

1

5
− · · ·

Because the terms get small very slowly, we need to take very many terms to get
an accurate approximation to ln 2.

2.10 Hyperbolic functions (2.7.3, 8.3.9)

The hyperbolic functions sinhx, cosh x, and tanh x are defined in terms of ex: their
relationship with the ordinary trig functions will become clear when we do complex
numbers.

We have sinhx = ex−e−x

2 , cosh x = ex+e−x

2 , and tanh x = sinhx
cosh x . We can also

define sechx etc. by analogy with the trig functions.
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Notice that sinh(−x) = e−x−e−(−x)

2 = − sinhx, so sinh x is an odd function. Draw

graph. Odd, maximal domain and range are R, increasing.
Similarly cosh x is even, its maximal domain is R, and its range is [1,∞).

tanh x is odd, its maximal domain is R, and its range is (−1, 1).

Notice that d
dxe−x = −e−x, so it follows that d

dx sinhx = cosh x and d
dx cosh x =

sinhx. By the quotient rule, we have

d

dx
tanh x =

d

dx

sinhx

cosh x
=

cosh2 x − sinh2 x

cosh2 x
= 1 − tanh2 x.

In fact, there’s another way to write cosh2 x − sinh2 x. Notice that cosh2 x −
sinh2 x = (cosh x + sinhx)(cosh x − sinhx). Now cosh x + sinhx = ex and cosh x −
sinhx = e−x, so cosh2 x−sinh2 x = exe−x = e0 = 1. Compare this with the standard

trig identity cos2 x + sin2 x = 1.
In fact, every standard trig identity has a corresponding version for hyperbolic

trig functions, which can be obtained by Osborn’s rule: change the sign of term
which involves a product (or implied product) of two sines.

For example sin(A + B) = sin A cos B + cos A sin B becomes sinh(A + B) =

sinhA cosh B+coshA sinh B. cos(A+B) = cos A cos B−sinA sin B becomes cosh(A+

B) = cosh A cosh B+sinhA sinh B. To understand what is meant by an implied prod-

uct the identity tan(A + B) = tan A+tan B
1−tan A tan B becomes tanh(A + B) = tanh A+tanh B

1+tanh A tanh B

since tan A tan B = sinA sinB
cos A cos B involves an implied product of two sines.

Finally, let’s work out the Maclaurin series expansions of sinhx and cosh x. We
can either do this directly, by differentiating, or we can note that

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · · ,

e−x = 1 − x +
x2

2!
− x3

3!
+

x4

4!
− x5

5!
+ · · · .

Thus

cosh x =
ex + e−x

2
= 1 +

x2

2!
+

x4

4!
+ · · ·

and

sinh x =
ex − e−x

2
= x +

x3

3!
+

x5

5!
+ · · ·

Thus the series for cosh x consists of the even terms of that for ex, and the series
for sinh x consists of the odd terms. Compare this with the series expansions of sin x
and cos x.
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2.11 Implicit Differentiation (8.3.11)

Sometimes it is difficult (or impossible) to put the relationship between x and y in

the form y = f(x). In such cases, we have to use implicit differentiation to find dy
dx .

Examples

a) Consider the circle of radius 1 centred on the origin. The equation of this circle

is x2 + y2 = 1. Find the slopes of the tangents to the circle at the points

(x0, y0) = (1/2,
√

3/2) and (x1, y1) = (1/2,−
√

3/2).

We could write the equation as y =
√

1 − x2, but it is easier to leave it the way it

is. We differentiate both sides of the equation wrt x. This gives 2x + d
dx(y2) = 0.

What is d
dx(y2)? We can write y2 as f(y), where f(y) = y2, and then by the

chain rule
d

dx
(f(y)) = f ′(y)y′ = 2y

dy

dx
.

Thus

2x + 2y
dy

dx
= 0,

or
dy

dx
= −x

y
.

So the slope of the tangent at (x0, y0) = (1/2,
√

3/2) is

−x0

y0
= − 1/2√

3/2
=

−1√
3
.

Similarly, the slope of the tangent at (x1, y1) = (1/2,−
√

3/2) is 1/
√

3.

The general rule which we use in implicit differentiation, is

d

dx
f(y) = f ′(y)

dy

dx
.

b) Find the equation of the tangent to the curve

x3 − 4x2y + y3 = 1

at the point (x0, y0) = (1, 2).

Differentiating the equation with respect to x we get

3x2 − 4
d

dx
(x2y) + 3y2 dy

dx
= 0.
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What is d
dx(x2y). We have to use the product rule:

d

dx
(x2y) = x2 dy

dx
+ y

d

dx
(x2) = x2 dy

dx
+ 2xy.

Thus we have

3x2 − 4x2 dy

dx
− 8xy + 3y2 dy

dx
= 0.

Collecting the terms in dy
dx , we get

(4x2 − 3y2)
dy

dx
= 3x2 − 8xy,

so
dy

dx
=

3x2 − 8xy

4x2 − 3y2
.

Thus when (x, y) = (x0, y0) = (1, 2), we have

dy

dx
=

3 − 16

4 − 12
=

13

8
.

The equation of the tangent at (x0, y0) is

y = y0 +
dy

dx
(x − x0),

or

y = 2 +
13

8
(x − 1).

We can simplify this to
8y = 16 + 13(x − 1),

or
8y = 3 + 13x.

2.12 Stationary points (9.2.1)

We know that f ′(a) gives the slope of the tangent to the graph of y = f(x) at x = a.

Thus when f ′(a) > 0, the graph is increasing at a: when f ′(x) < 0 the graph is

decreasing at a. (Pictures). When f ′(a) = 0, the tangent to the graph at x = a is
horizontal: such a point a is called a stationary point.
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There are three types of stationary point a: a can be a local maximum, a local
minimum, or a point of inflection (draw pictures).

To decide which of the three types a given stationary point a is, consider what
happens to f ′(x) for x near a. Draw pictures of f(x) and f ′(x).

Thus if f ′(a) > 0 then

a) If f ′′(a) > 0 then a is a local minimum.

b) If f ′′(a) < 0 then a is a local maximum.

c) If f ′′(a) = 0 then a is a point of inflection.

In fact the last of these is a little lie: if f ′′′(a) = 0 also, then we have to look

at f ′′′′(a) to decide which case we’re in: in general, we have to keep differentiating

until we find an f (n)(a) which isn’t 0.

Examples

a) Find and classify the stationary points of f(x) = x3 − 6x2 + 9x − 2.

We have f ′(x) = 3x2 − 12x + 9 = 3(x2 − 4x + 3) = 3(x − 1)(x − 3). To find the

stationary points, we have to solve f ′(x) = 0: thus we have stationary points at
x = 1 and at x = 3.

To determine which type they are, we differentiate again: f ′′(x) = 6x− 12. Thus

f ′′(1) = 6− 12 = −6 < 0, so x = 1 is a local maximum. f ′′(3) = 18− 12 = 6 > 0,
so x = 3 is a local minimum.

b) Find and classify the stationary points of f(x) = x2e−x.

We have f ′(x) = 2xe−x − x2e−x = e−x(2x − x2) = e−xx(2 − x). Thus the

stationary points are at x = 0 and x = 2. (Note e−x is never 0).

To classify them, we calculate f ′′(x) = −e−x(2x − x2) + e−x(2 − 2x) = e−x(2 −
4x + x2). Thus f ′′(0) = 2, so 0 is a local minimum; f ′′(2) = e−2(2 − 8 + 4) < 0,
so 2 is a local maximum.

2.13 Graph Sketching

Method:

i) Maximal domain.

ii) Where crosses y axis.

iii) Where crosses x-axis (if possible).
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iv) Stationary points.

v) Behaviour as x → ±∞.

vi) Vertical Asymptotes.

vii) If necessary, see where f ′(x) > 0 and where f ′(x) < 0.

viii) Sketch the graph.

Examples

a) x2 − 3x + 2.

b) x3 − 12x + 3.

c) x−3
x−1 .
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Chapter 3

Integration (F.11)

3.1 The area under a curve (F.11.26–32)

Suppose that f(x) is a continuous function between x = a and x = b (where a ≤ b).
We write

∫ b

a
f(x)dx

for the area under the graph y = f(x) between a and b: the ‘integral of f(x) between
a and b’.

Examples

a) Let f(x) = 2. Then
∫ 4
1 f(x)dx = 6.

b) Let f(x) = x. Then
∫ 6
0 f(x)dx = 18.

By convention, areas underneath the x-axis are taken to be negative: thus, for

example
∫ π
−π sin(x)dx = 0. Also, if b < a then we let

∫ b

a
f(x)dx = −

∫ a

b
f(x)dx.

Thus, for example,
∫ 0

6
xdx = −18.

The first aim of integration is to calculate such areas for as many functions f(x)
as possible.

Given f(x), let F (x) =
∫ x
0 f(x)dx, the area under the graph between 0 and x.

Notice that F (x) is itself a function.

Examples
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a) Let f(x) = 2. Then F (x) =
∫ x
0 2dx = 2x.

b) Let f(x) = x. Then F (x) =
∫ x
0 xdx = x2/2.

Notice that in each case, F ′(x) = f(x). This is always the case: for

F ′(x) = lim
δ→0

F (x + δ) − F (x)

δ

= lim
δ→0

∫ x+δ
0 f(x)dx −

∫ x
0 f(x)dx

δ

= lim
δ→0

∫ x+δ
x f(x)dx

δ
(pic).

But the closer δ gets to 0, the closer
∫ x+δ
x f(x)dx gets to f(x)δ, and hence the

closer
∫ x+δ
x f(x)dx

δ

gets to f(x). Hence F ′(x) = f(x).

Thus F (x) is a function whose derivative is f(x): this is the fundamental theorem

of calculus.

Now
∫ b
a f(x)dx = F (b) − F (a) (picture): thus we have:

∫ b

a
f(x)dx = F (b) − F (a),

where F (x) is a function whose derivative is f(x). F (b)−F (a) is commonly written

[F (x)]ba.

Examples

a) Let f(x) = x2. A function whose derivative is f(x) is F (x) = x3/3. Hence

∫ 3

1
x2dx =

[

x3

3

]3

1

=
33

3
− 13

3
= 9 − 1

3
= 8

2

3
.

b) Let f(x) = cos x. A function whose derivative is f(x) is F (x) = sin x. Hence

∫ π/2

0
cos xdx = [sin x]

π/2
0 = sin(π/2) − sin(0) = 1 − 0 = 1.
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3.2 Definite and indefinite integrals

Notice that if the derivative of F (x) is f(x), then so is the derivative of F (x) + C

for all constants C. Hence we have a choice of functions F (x) with F ′(x) = f(x).

When we’re working out
∫ b
a f(x)dx, this choice doesn’t matter, since

[F (x) + C]ba = F (b) + C − (F (a) + C) = F (b) − F (a) = [F (x)]ba

.
∫ b
a f(x)dx is called a definite integral: it has a definite value (the area under the

curve from a to b. That is, the definite integral is a number.
Sometimes we don’t want to specify a and b: this gives an indefinite integral, in

which we can choose a constant. For example

∫

x2dx =
x3

3
+ C,

where C is a constant. This is the indefinite integral of x2. The indefinite integral
is a function, with an arbitrary constant C.

3.3 Common integrals (F.11.1–15)

We can integrate a lot of functions just by spotting what they’re the derivative of.

For example, we know d
dxxa+1 = (a + 1)xa, so

∫

xadx =
xa+1

a + 1
+ C.

This formula is fine provided a 6= −1. To integrate x−1 = 1/x, remember that
d
dx ln x = 1/x, so

∫

1

x
dx = lnx + C (x > 0).

If x < 0, then d
dx ln(−x) = −1

−x = 1
x , so

∫

1

x
dx = ln(−x) + C (x < 0).

Combining these, we get

∫

1

x
dx = ln(|x|) + C (x 6= 0).
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Similarly we have

∫

sin xdx = − cos x + C

∫

cos xdx = sin x + C

∫

exdx = ex + C

∫

(ax + b)kdx =
1

a(k + 1)
(ax + b)k+1 (k 6= −1)

∫

sin(ax + b)dx =
−1

a
cos(ax + b) + C

∫

cos(ax + b)dx =
1

a
sin(ax + b) + C

∫

eax+b =
1

a
eax+b + C.

See handout of common integrals. Note: using the rules of differentiation, we
can differentiate almost any function. The same is not true of integration: e.g. there

is no good expression for
∫

ex2
dx.

Examples

a)

∫ 4

1
2ex +

1

x
dx = [2ex + ln(|x|)]41 = 2e4 + ln(4) − (2e1 + ln(1)) = 105.146 . . .

b)

∫ π

0
cos(2x)+sin xdx = [

sin(2x)

2
−cos x]π0 =

sin(2π)

2
−cos(π)−(

sin(0)

2
−cos 0) = 0−(−1)−(0−1) = 2.

c)

∫ 2

1

√
2x + 1dx =

∫ 2

1
(2x+1)1/2dx = [

1

3
(2x+1)3/2]21 =

1

3
(53/2−33/2) = 1.9947 . . . .
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Chapter 4

Vectors (6)

Vectors provide a compact language to describe and work with quantities which have
both magnitude and direction (e.g. Force, velocity, electric field).

4.1 Components of a vector (6.31–38)

We’ll work in two dimensions for now (I can draw the pictures).
Since a vector is a quantity with magnitude and direction, we can represent it by

a line, starting at the origin, pointing in the direction of the vector, and with length
the magnitude of the vector.

Draw picture. Vectors are written with lines under them, and printed with bold
letters.

We can thus represent vectors by the endpoint of the line: a = (1, 2) in the
example.

In general, the vector a = (a1, a2) has magnitude or size |a| =
√

a2
1 + a2

2 and

direction given by tan θ = a2/a1 (note connection with polar coordinates).

Example The vector a = (1, 2) has magnitude |a| = |(1, 2)| =
√

12 + 22 =
√

5,

and its direction is given by θ = tan−1(2/1) = 1.107 . . ..

If k is a number (often called a scalar to distinguish it from a vector), then ka

is the vector with components ka = (ka1, ka2). If k > 0 then this has the same

direction as a but k times the magnitude (pics). If k < 0, then ka has the opposite

direction to a. For example, if k = −1 then we get −a = (−a1,−a2), which has the
same magnitude as a but opposite direction.

Vectors are often used to represent displacements between points: for example,
if A = (1, 1) and B = (2, 3) are points, then the displacement between A and B is

the vector ~AB = (1, 2). (Picture). Notice that if C = (1, 3) and D = (2, 5), then

~CD = (1, 2) = ~AB. We represent both points and vectors by pairs of numbers (x, y),
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but a point has position but no size or direction: a vector has size and direction, but
no position.

In general, the displacement between the points A = (x1, y1) and B = (x2, y2) is

the vector ~AB = (x2−x1, y2, y1). The magnitude of this vector | ~AB| =
√

(x2 − x1)2 + (y2 − y1)2

is the distance between A and B. Notice ~BA = − ~AB.

4.2 Addition of vectors (6.32–35)

If a = (a1, a2) and b = (b1, b2), then a + b = (a1 + b1, a2 + b2).

Geometrically, a + b is the vector you obtain by following a by b (picture).
Physically, it is the vector which describes the combination of a and b.

Examples

a) If a spaceship is subject to a force (2, 0) due to the thrust of its engines, and to a

force (0,−1) due to gravity, then the total force on it is (2, 0)+(0,−1) = (2,−1).

b) If a boat is driven at a velocity (3, 1) by its motor against a current with velocity

(−2, 0), then its total velocity is (3, 1) + (−2, 0) = (1, 1).

We can also subtract vectors: a − b is just a + (−b), or (a1 − b1, a2 − b2).

Example Let a = (1, 2), b = (−3, 0), and c = (−1, 1). Then a + b = (−2, 2),

a − c = (2, 1), and a + 2b − 3c = (1, 2) + (−6, 0) + (3,−3) = (−2,−1).

4.3 Unit vectors and coordinate vectors (6.31)

A unit vector is a vector a with magnitude 1: thus (1, 0) or (1/
√

2, 1/
√

2) are unit
vectors.

Since ka (when k > 0) is a vector with the same direction as a but with k times
the magnitude, the unit vector in the direction of a is

â =
1

|a|a =
a

|a| .

Examples Let a = (1, 1). Then |a| =
√

2, so the unit vector in the direction of a

is â = (1/
√

2, 1/
√

2).

Let b = (2,−1). Then |b| =
√

5, so the unit vector in the direction of b is

b̂ = (2/
√

5,−1/
√

5).

The coordinate vectors are unit vectors in the directions of the coordinate axes:
they are written i = (1, 0) and j = (0, 1). (Traditional to omit the hats).

Notice that a = (a1, a2) is the same as a = a1i + a2j. For example, (2,−3) =

2(1, 0) − 3(0, 1) = 2i − 3j.
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4.4 The scalar product (6.41–46, 53–58)

The scalar product or dot product of two vectors is a way of combining two vectors
a and b to obtain a number a · b. Its magic arises from the fact that there are two
equivalent ways to define it: one is easy to calculate, the other is geometric.

Easy to calculate If a = (a1, a2) and b = (b1, b2), then a · b = a1b1 + a2b2.

Geometric If θ is the angle between a and b, then a · b = |a||b| cos θ.

For example, (1, 2) · (−1, 2) = −1 + 4 = 3.
We can use the geometric definition to work out the angle between two vectors.

Since a · b = |a||b| cos θ, we have

θ = cos−1

(

a · b
|a||b|

)

.

Note this gives θ between 0 and π (the principal domain of cos θ).

Example What is the angle between a = (1, 2) and b = (−1, 3)?

It is cos−1(3/
√

5
√

5) = cos−1(3/5) = 0.927 . . ..

In particular, the angle θ between them is π/2 (90 degrees) if and only if a · b = 0.
Two non-zero vectors a and b are perpendicular if and only if a · b = 0.

Important interpretation of scalar product

.
Suppose a is any vector, and n̂ is a unit vector (i.e. describing a direction). We

can divide a into a component in the direction of n̂ and a component perpendicular
to it (draw picture). The size of the component in the direction of n̂ is |a| cos θ =

|a||n̂| cos θ = a · n̂.
The component of a vector a in the direction of a unit vector n̂ is a · n̂.

Example A railway line runs in the direction of the unit vector n̂ = (1/
√

2, 1/
√

2).

A force F = (2, 3) is applied to a train: what is the force acting in the direction of
the rails?

The force is F · n̂ = 2/
√

2 + 3/
√

2 = 5/
√

2.

4.5 Vectors in 3 dimensions

The theory is essentially exactly the same. A vector in 3 dimensions has three

components: a = (a1, a2, a3), and its magnitude is given by |a| =
√

a2
1 + a2

2 + a2
3.

There are three coordinate vectors, i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1). The

unit vector â in the direction of a is â = a

|a| .
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The dot product of two vectors a = (a1, a2, a3) and b = (b1, b2, b3) can be calcu-
lated as a1b1 + a2b2 + a3b3, and is given geometrically as

a · b = |a||b| cos θ.

The component of a in the direction of a unit vector n̂ is a · n̂.

Example A typical exam question. Let a = (2, 1, 3), b = (−1, 0, 1), and c =
2i + j − 2k. Calculate a − 2b, a + b + c, and find the angle θ between a and b.

Start by writing c = (2, 1,−2).

Then a− 2b = (2, 1, 3)− 2(−1, 0, 1) = (4, 1, 1). a+b+ c = (2, 1, 3)+ (−1, 0, 1)+

(2, 1,−2) = (3, 2, 2).

We have |a| =
√

22 + 12 + 32 =
√

14 and |b| =
√

12 + 02 + 12 =
√

2. Finally
a · b = −2 + 3 = 1. Hence

θ = cos−1

(

1√
14

√
2

)

≃ 1.381.
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Chapter 5

Complex numbers (C)

5.1 Historical motivation (3.1)

Consider the equation z2 − z + 1 = 0. Using the formula (−b ±
√

b2 − 4ac)/2a we
get

z =
1 ±

√
−3

2
.

No solutions? If we write j =
√
−1, then we have

z =
1 ±

√

(3)(−1)

2
=

1 ±
√

3
√
−1

2
=

1 ±
√

3j

2
.

There are two solutions, but they are complex numbers: they are of the form

x + yj, where x and y are real numbers, and j =
√
−1. NB j is often written j.

The real numbers are not algebraically closed: you can write down a polyno-
mial equation, using only real numbers, which has no real solutions. The complex
numbers are algebraically closed: any polynomial equation (even involving complex

numbers) has a complex solution. This is one of many mathematical justifications
for considering complex numbers.

In fact, the justifications are not just mathematical: in a deep sense, complex
numbers are the fundamental number system of the universe, and it is our own lim-
itations which cause us to see them as less natural than real numbers (e.g. quantum

mechanics). Even in relatively straightforward physical situations, calculations can
become much easier and more natural if we use complex numbers rather than real
numbers (e.g. complex impedance, section 3.5).

5.2 Basic definitions and properties (3.2)

A complex number z is one of the form

z = x + yj,
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where x and y are real numbers, and j2 = −1. The set of all complex numbers is
written C.

A complex number z has a real part x = ℜ(z), and an imaginary part y = ℑ(z).

For example, if z = 2− 3j, then ℜ(z) = 2 and ℑ(z) = −3 (Note: the imaginary part

doesn’t include the j). If ℑ(z) = 0 then z is a real number. If ℜ(z) = 0 then z is
called an imaginary number — not a very useful term.

Two complex numbers are equal if their real and imaginary parts are equal: i.e.
a + bj = c + dj if a = c and b = d.

If z = a+bj is a complex number, its complex conjugate z̄ is the complex number
z̄ = a − bj obtained by changing the sign of the imaginary part. Note also written
z∗. We have z = z̄ if and only if z is a real number.

Since a complex number z = x + jy is described by two real numbers x and y,
we can represent it by the point (x, y) in the plane. Draw and show some examples.
Real axis and imaginary axis. Note that z̄ is the reflection of z in the real axis.

Arithmetic with complex numbers

Addition and subtraction work just as with vectors: if z1 = x1+jy1 and z2 = x2+jy2

then z1 + z2 = (x1 + x2)+ j(y1 + y2) and z1 − z2 = (x1 −x2)+ j(y1 − y2). Examples:

(2 + j) + (3 − 2j) = 5 − j, (2 − 2j) − (3 − j) = −1 − j.

Notice that if z = x+jy, then z+z̄ = (x+jy)+(x−jy) = 2x. Thus z+z̄ = 2ℜ(z).

Similarly, z − z̄ = (x + jy) − (x − jy) = 2jy. Thus z − z̄ = 2jℑ(z).
For multiplication, we multiply them out the two expressions and remember that

j2 = −1. Thus (2+ j)(3− 2j) = 6− 2j2 +3j − 4j = 8− j, and (2− 2j)(3− j) = (6+

2j2−6j−2j = 4−8j. In general (x1+jy1)(x2+jy2) = (x1x2−y1y2)+(x1y2+x2y1)j.

Note j2 = −1, j3 = −j, j4 = 1, j5 = j, j6 = −1, j7 = −j, j8 = 1, etc.
An important fact is that, for any complex number z, zz̄ is always a real number.

For if z = x + jy, then z̄ = x − jy, and

zz̄ = (x + jy)(x − jy) = x2 − j2y2 + jxy − jxy = x2 + y2.

Thus for example (2 + j)(2 + j) = 22 + 12 = 5. Moreover, zz̄ = x2 + y2 = r2, where
r is the distance of z from the origin in the Argand diagram. We write this distance
as |z|, the modulus of z: thus

zz̄ = |z|2 or |z| =
√

zz̄.

We can use this to divide two complex numbers z1 and z2: if z1 = x1 + jy1 and
z2 = x2 + jy2, then we simplify

z1

z2
=

x1 + jy1

x2 + jy2

by multiplying top and bottom by z̄2 = x2 − jy2: this makes the bottom into a real
number, which we can just divide by.
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Examples

a)

1

j
=

−j

j(−j)
= −j (important).

b)

1 + j

1 − j
=

(1 + j)(1 + j)

(1 − j)(1 + j)
=

2j

12 + 12
= j.

(You can check j(1 − j) = j − j2 = 1 + j).

c)

2 + j

3 − 2j
=

(2 + j)(3 + 2j)

(3 − 2j)(3 + 2j)
=

4 + 7j

32 + 22
=

4

13
+

7

13
j.

5.3 The polar form of complex numbers (3.2.5,3.2.6)

Just as with points (x, y), complex numbers can be represented in polar coordinates:
we can describe a complex number z = x + jy by its distance r from the origin, and
its angle θ with the origin.

We’ve already seen that r = |z| =
√

zz̄ =
√

x2 + y2, the modulus of z. θ is given

by tan θ = y/x, and is called the argument of z, written arg(z).

Remember (from polar coordinates) that tan−1(y/x) is an angle between −π/2

and π/2. Thus we can’t just say arg(z) = tan−1(y/x): we have to look at where z is

in the argand diagram. In fact, it is traditional to give arg(z) as an angle between 0
and 2π: thus we have

arg(z) =























tan−1(y/x) if x > 0, y ≥ 0,
π
2 if x = 0, y > 0,
tan−1(y/x) + π if x < 0,
−π

2 if x = 0, y < 0,
tan−1(y/x) + 2π if x > 0, y < 0.

Examples arg(1) = 0, arg(1 + j) = π/4, arg(j) = π/2, arg(−1 + j) = 3π/4,

arg(−1) = π, arg(−1 − j) = 5π/4, arg(−j) = 3π/2, arg(1 − j) = 7π/4.

If z = x + jy and |z| = r, arg(z) = θ then (draw picture) x = r cos θ and
y = r sin θ. Thus z = r cos θ + jr sin θ, or

z = r(cos θ + j sin θ),
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In fact, we can write this in a better way. Recall

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · ·

Thus

ejθ = 1 + (jθ) +
(jθ)2

2!
+

(jθ)3

3!
+

(jθ)4

4!
+

(jθ)5

5!
+ · · ·

Now j2 = −1, j3 = −j, j4 = 1, j5 = j etc., so

ejθ = 1 + jθ − θ2

2!
− j

θ3

3!
+

θ4

4!
+ j

θ5

5!
− · · ·

=

(

1 − θ2

2!
+

θ4

4!
− · · ·

)

+ j

(

θ − θ3

3!
+

θ5

5!
− · · ·

)

= cos θ + j sin θ.

This is Euler’s formula: ejθ = cos θ + j sin θ.
Thus

z = rejθ,

the polar form of z.

Examples Express the following complex numbers in polar form:

a) z = 1 + j.

We have |z| =
√

2 and arg(z) = tan−1(1) = π/4, so

1 + j =
√

2e
jπ

4 .

b) z = −1.

We have |z| = 1 and arg(z) = π, so

−1 = ejπ.

c) z = −2 − 3j.

We have |z| =
√

22 + 32 =
√

13, and arg(z) = tan−1(−3/ − 2) + π ≃ 4.646, so

−2 − 3j =
√

13e4.646j .

In polar coordinates, multiplication and division of complex numbers becomes
very easy (while addition and subtraction become harder).

If z1 = r1e
jθ1 and z2 = r2e

jθ2, then
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z1z2 = r1e
jθ1r2e

jθ2 = r1r2e
j(θ1+θ2).

(multiply the moduli and add the arguments).

z1

z2
=

r1e
jθ1

r2ejθ2
=

r1

r2
ej(θ1−θ2).

(divide the moduli and subtract the arguments).

Remarks on Euler’s formula ejθ = cos θ + j sin θ

Fjrst, it is important to recognize ejθ as the complex number which is distance 1
from the origin at angle θ (draw picture with circle of radius 1 and a few examples

on it).

Since cos θ and sin θ are unchanged when you add 2π to θ, so is ejθ. Thus

1 = e0j = e2πj = e4πj = e6πj = e−2πj = e−4πj = · · ·

j = eπj/2 = e5πj/2 = e9πj/2 = e−3πj/2 = · · ·
and so on.

e−jθ = cos(−θ) + j sin(−θ) = cos θ − j sin θ = cos θ + j sin θ.

Thus the complex conjugate of ejθ is

ejθ = e−jθ.

(Picture).
Adding the equations

ejθ = cos θ + j sin θ

e−jθ = cos θ − j sin θ

we get

ejθ + e−jθ = 2cos θ

or

cos θ =
ejθ + e−jθ

2
.

Subtracting them gives

sin θ =
ejθ − e−jθ

2j
.
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This shows the relationship between the trigonometric functions cos and sin, and
the hyperbolic functions cosh and sinh. In fact,

cos θ = cosh(jθ),

sin θ =
1

j
sinh(jθ) = −j sinh(jθ).

So, from the point of view of complex numbers cos and cosh are essentially the
same function, as are sin and sinh. This also explains Osborn’s rule: every time we

have a product of two sines, we get (−j)2 = −1.

5.4 de Moivre’s theorem (3.3.1, 3.3.2)

We have ejθ = cos θ + j sin θ. Hence

(cos θ + j sin θ)n = (ejθ)n = ejnθ = cos(nθ) + j sin(nθ).

That is
(cos θ + j sin θ)n = cos(nθ) + j sin(nθ).

This is de Moivre’s theorem. One of its uses is to obtain trigonometric identites
easily. These are of two main types:

First, we can write cos(nθ) and sin(nθ) in terms of cos θ and sin θ. The method
is to write

cos(nθ) + j sin(nθ) = (cos θ + j sin θ)n,

and expand the right hand side using the binomial theorem.

Examples

a)

cos(2θ) + j sin(2θ) = (cos θ + j sin θ)2

= cos2 θ − sin2 θ + 2j sin θ cos θ.

Equating the real parts gives cos(2θ) = cos2 θ − sin2 θ, equating imaginary parts

gives sin(2θ) = 2 sin θ cos θ.

b) With more complicated examples, it’s usual to abbreviate c = cos θ and s = sin θ.

cos(3θ) + j sin(3θ) = (c + js)3

= c3 + 3c2(js) + 3c(js)2 + (js)3

= c3 + 3jc2s − 3cs2 − js3

= (c3 − 3cs2) + j(3c2s − s3).

Thus cos(3θ) = cos3 θ − 3 cos θ sin2 θ, and sin(3θ) = 3 cos2 θ sin θ − sin3 θ.
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c)

cos(5θ) + j sin(5θ) = (c + js)5

= c5 + 5c4(js) + 10c3(js)2 + 10c2(js)3 + 5c(js)4 + (js)5

= (c5 − 10c3s2 + 5cs4) + j(5c4s − 10c2s3 + s5).

Thus cos(5θ) = cos5 θ−10 cos3 θ sin2 θ+5cos θ sin4 θ, and sin(5θ) = 5 cos4 θ sin θ−
10 cos2 θ sin3 θ + sin5 θ.

Second we can write powers of cos θ and sin θ in terms of cos(nθ) and sin(nθ).
To do this, write z = cos θ + j sin θ, so

zn = cos nθ + j sinnθ (5.1)

z−n = cos nθ − j sinnθ. (5.2)

Adding gives

2 cos nθ = zn + z−n,

and subtracting gives

2j sin nθ = zn − z−n.

To get an expression for cosk θ, we write 2 cos θ = z + z−1, so

2n cosn θ =
(

z + z−1
)n

.

Expand this using the binomial theorem, and use (1) and (2) to simplify. Similarly

for sink θ, using 2j sin θ = z − z−1.

Examples

a)

23 cos3 θ = (z + z−1)3

= z3 + 3z2z−1 + 3zz−2 + z−3

= (z3 + z−3) + 3(z + z−1)

= 2 cos 3θ + 6cos θ.

So
4 cos3 θ = cos 3θ + 3cos θ.

b)

(2j)3 sin3 θ = (z − z−1)4

= z3 − 3z + 3z−1 − z−3

= (z3 − z−3) − 3(z − z−1)

= 2j sin 3θ − 6j sin θ.
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Thus
8j3 sin3 θ = 2j sin 3θ − 6j sin θ,

or
4 sin3 θ = − sin 3θ + 3 sin θ.

c)

(2j)4 sin4 θ = (z − z−1)4

= z4 − 4z2 + 6 − 4z−2 + z−4

= 2cos 4θ − 8 cos 2θ + 6.

Thus
8 sin4 θ = cos 4θ − 4 cos 2θ + 3.
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Chapter 6

Series

Adding up (infinitely many) different things: e.g. Maclaurin series

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

Sometimes this makes sense (the series converges): sometimes it doesn’t (the

series diverges).

6.1 Convergence and Divergence (7.6.1)

Recall the notation
n
∑

r=0

ar = a0 + a1 + a2 + · · · + an,

∞
∑

r=0

ar = a0 + a1 + a2 + · · ·

Examples

3
∑

r=0

r2 = 02 + 12 + 22 + 32 = 14.

5
∑

r=1

1

r
=

1

1
+

1

2
+

1

3
+

1

4
+

1

5
(=

137

60
).

∞
∑

r=0

xr

r!
= ex.

∞
∑

r=1

(−1)r+1 x

r
= x − x2

2
+

x3

3
− · · · = ln(1 + x).
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(Note often see (−1)r or (−1)r+1 in series. (−1)r is +1 when r is even, −1 when

r is odd. (−1)r+1 is the other way round. These give us alternating series.)
Finite series always make sense, but infinite ones may or may not.

Given an infinite series
∑∞

r=0 ar, define its partial sums Sn by cutting it off after
an

Sn =

n
∑

r=0

ar

(these all make sense).
Say that the series converges if the partial sums get closer and closer to some

finite value L, i.e. if Sn → L as n → ∞. We write

∞
∑

r=0

an = L.

We say that the series diverges otherwise.

Examples

a) Consider
∞
∑

r=0

1

2r
= 1 +

1

2
+

1

4
+

1

8
+ · · ·

The partial sums are 1, 3/2, 7/4, 15/8, etc., which clearly get closer and closer
to 2. Thus the series is convergent, and

∞
∑

r=0

1

2r
= 2.

b) Consider
∞
∑

r=0

(−1)r = 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + · · ·

The partial sums are 1, 0, 1, 0, 1, 0, etc., which clearly don’t approach any
particular value. Thus the series is divergent.

These examples illustrate an important fact: if the terms ar don’t get closer and

closer to zero, then
∑∞

r=0 ar must diverge.

However (equally important), the opposite is not true. Just because the terms
get closer and closer to zero, it doesn’t mean the series must converge. For example

∞
∑

r=1

1

r
= 1 +

1

2
+

1

3
+ · · ·

diverges.
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6.2 Geometric series (7.3.2, 7.6.1)

One of the few examples when we can actually calculate the value of an infinite
series.

A geometric series is one in which each term is a multiple of the previous one,
i.e.

∞
∑

r=0

arn = a + ar + ar2 + ar3 + · · ·

a is called the first term and r is the common ratio.
The partial sums are given by

Sn = a + ar + ar2 + · · · + arn.

We can work these out with a trick:

rSn = ar + ar2 + · · · + arn + arn+1,

so
Sn − rSn = a − arn+1,

or
Sn(1 − r) = a(1 − rn+1),

or

Sn = a

(

1 − rn+1

1 − r

)

.

What happens as n → ∞. If −1 < r < 1 then rn+1 → 0, and Sn → a
1−r . If

r ≤ −1 or r ≥ 1, then the terms aren’t getting smaller, and the series diverges.
A geometric series

∑

r=0 arn converges to a
1−r if −1 < r < 1, and diverges

otherwise.

6.3 Convergence tests (7.6.2, 7.6.3)

In most examples, it is impossible to work out the partial sums Sn, and we have to
make do with deciding whether the series converges or diverges. There are a number
of tests which help to do this.

The comparison test

We suppose all terms are ≥ 0.

If
∑∞

r=0 ar converges, and 0 ≤ br ≤ ar for all r, then
∑∞

r=0 br also converges. If
∑∞

r=0 ar diverges, and 0 ≤ ar ≤ br for all r, then
∑∞

r=0 br also diverges.

Intuitively obvious.

Examples
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a) Consider the factorial series

∞
∑

r=0

1

r!
= 1 + 1 +

1

2!
+

1

3!
+ · · ·

Each term is less than or equal to the corresponding term in

1 +

∞
∑

r=0

1

2r
= 1 + 1 +

1

2
+

1

4
+

1

8
,

which is 1 plus a convergent geometric series. Hence the factorial series converges
(in fact, to e).

b) Consider the harmonic series

∞
∑

r=1

1

r
= 1 +

1

2
+

1

3
+ · · ·

We group together the terms as follows:

1 +
1

2
+

(

1

3
+

1

4

)

+

(

1

5
+

1

6
+

1

7
+

1

8

)

+

(

1

9
+ · · · + 1

16

)

+ · · ·

We can then see that each bracket is ≥ 1/2, so the series is bigger than

1 +
1

2
+

1

2
+

1

2
+ · · ·

which is divergent. Hence the harmonic series diverges.

c) Consider the series
∞
∑

r=1

1

r2
= 1 +

1

4
+

1

9
+

1

16
+ · · ·

We compare this with the series
∑∞

r=1 ar, where a1 = 1 and

ar =

∫ r

r−1

1

x2
dx

for r ≥ 2. This is a convergent series, since the partial sums are given by

Sn = 1 +

∫ 2

1

1

x2
dx +

∫ 3

2

1

x2
dx + · · · +

∫ n

n−1

1

x2
dx
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= 1 +

∫ n

1

1

x2
dx

= 1 +

[−1

x

]n

1

= 1 + (− 1

n
+ 1)

= 2 − 1

n
→ 2 as n → ∞.

Now ar ≥ 1
r2 for all r, so

∑∞
r=1

1
r2 converges by the comparison test.

The ratio test

Let

l = lim
r→∞

∣

∣

∣

∣

ar+1

ar

∣

∣

∣

∣

.

If l < 1 then
∑∞

r=0 ar converges.

If l > 1 then
∑∞

r=0 ar diverges.

If l = 1 then the ratio test tells you nothing.

Idea: if l < 1, choose r with l < r < 1: then the series is smaller than a geometric
series with common ratio r, so must converge.

Examples

a)

∞
∑

r=0

r2

3r
.

We have ar = r2

3r , so

ar+1

ar
=

(r + 1)23r

r23r+1
=

1

3

(r + 1)2

r2
→ 1

3

as r → ∞. Hence the series converges.

b)

∞
∑

n=1

1

n2
.
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We have an = 1
n2 , so

an+1

an
=

n2

(n + 1)2
→ 1

as n → ∞. Hence the ratio test does not tell us whether this series converges or
diverges.

The alternating series test

Suppose each ar ≥ 0, ar+1 ≤ ar for all r, and ar → 0 as r → ∞. Then

∞
∑

r=0

(−1)rar

converges.

Examples The series

∞
∑

r=1

(−1)r+1

r
= 1 − 1

2
+

1

3
− 1

4
+ · · ·

converges. The series

∞
∑

r=0

(−1)re−r = 1 − e−1 + e−2 − e−3 + · · ·

converges.

6.4 Power series (7.7)

Power series involve a variable x:

∞
∑

r=0

arx
r.

Whether they converge or diverge can depend on the value of x.
Maclaurin series are examples of power series.
Let

l = lim
r→∞

∣

∣

∣

∣

ar+1x
r+1

arxr

∣

∣

∣

∣

= lim
r→∞

|x|
∣

∣

∣

∣

ar+1

ar

∣

∣

∣

∣

.

By the ratio test, the power series converges if l < 1 and diverges if l > 1. That
is, it converges if

|x| < lim
r→∞

∣

∣

∣

∣

ar

ar+1

∣

∣

∣

∣

,
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and diverges if

|x| > lim
r→∞

∣

∣

∣

∣

ar

ar+1

∣

∣

∣

∣

.

Let

R = lim
r→∞

∣

∣

∣

∣

ar

ar+1

∣

∣

∣

∣

,

the radius of convergence of the power series.
The power series converges if −R < x < R, and diverges if x > R or x < −R.

If x = R or x = −R the series may converge or diverge: we have to consider these
cases separately.

Examples

a) Consider the power series
∞
∑

r=0

xr

r!
.

We have ar = 1
r! , so ar

ar+1
= (r+1)!

r! = (r + 1), so R = ∞. Hence the power series

converges for all values of x.

b) Consider the power series
∞
∑

r=1

xr

r
.

We have ar = 1
r , so ar

ar+1
= r+1

r → 1 as r → ∞. Hence R = 1. The power series

converges for −1 < x < 1, and diverges for x > 1 or x < −1. We have to check
the cases x = 1, x = −1 separately.

If x = 1, the power series is
∞
∑

r=1

1

r
,

which diverges. If x = −1, the power series is

∞
∑

r=1

(−1)r

r
,

which converges by the alternating series test.

Hence the power series converges if −1 ≤ x < 1, and diverges otherwise.

c) Consider the power series
∞
∑

n=1

(−1)nxn

n2n
.
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We have an = (−1)n

n2n , so

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

=
(n + 1)2n+1

n2n
= 2

n + 1

n
→ 2

as n → ∞. Hence R = 2, so the power series converges if −2 < x < 2, and
diverges if x < −2 or x > 2.

When x = 2 we have
∞
∑

n=1

(−1)n

n
,

which converges by the alternating series test. When x = −2, we have

∞
∑

n=1

1

n

which diverges.

Hence the power series converges if −2 < x ≤ 2, and diverges otherwise.
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