
Solution to Problem Set 6, M181

Solution to problem 1

a.

In =

∫ π

2

0

cosn(x) dx =

∫ π

2

0

cos(x) cosn−1(x) dx

= [sin(x) cosn−1(x)|
π

2

0
+

∫ π

2

0

sin2(x)(n − 1) cosn−2(x) dx

= 0 + (n − 1)

∫ π

2

0

(1 − cos2(x)) cosn−2(x) dx

= (n − 1)

[

∫ π

2

0

cosn−2(x) dx −
∫ π

2

0

cosn(x) dx

]

= (n − 1) [In−2 − In]

Solving for In we get

In =
n − 1

n
In−2 .

b)

I10 =

∫ π

2

0

cos10(x) dx

Using the reduction formula found in part a:

I10 =
9

10
I8 =

9

10

7

8
I6 = · · · =

9

10

7

8

5

6

3

4

1

2
I0

where for I0 we have

I0 =

∫ π

2

0

cos0(x) dx =
π

2
.

Hence

I10 =
63π

512
.

Solution to problem 2

I =

∫ π

2

0

sin5(x)dx (1)

Using the substitution u = cos(x), we find du = − sin(x)dx. We also need to
change the limits. When x= 0 then u = 1. When x = π

2
then u = 0.

I =

∫ π

2

0

(1 − cos2(x))(1 − cos2(x)) sin(x)dx

1



= −
∫ 0

1

(1 − u2)(1 − u2)du

=

∫ 1

0

(1 − 2u2 + u4)du

= [u − 2

3
u3 +

1

5
u5]1

0

=
8

15
(2)

Solution to problem 3

This integral can be done by substitution u = (x5 + 3)

I =

∫

x4

x5 + 3
dx

=
1

5

∫

du

u

=
1

5
log(u)

=
1

5
log(x5 + 3) + C

Solution to problem 4

I =

∫

x3 + 2x2 + x + 1

x2 + 2
(3)

When integrating rational functions, if the order of the polynomial in the
numerator is greater than in the denominator, then you divide through until
this condition is satisfied.

x3 + 2x2 + x + 1

x2 + 2
=

x(x2 + 2) − 2x + 2x2 + x + 1

x2 + 2

x +
2x2 − x + 1

x2 + 2

x +
2(x2 + 2) − 4 − x + 1

x2 + 2

x + 2 +
−x − 3

x2 + 2
(4)

The above manipulations are equivalent to using the long devision notation. The
denominator is an irreducible quadratic factor, so there is no further expansion
in partial fractions.

2



I =

∫

(x + 2 +
−x − 3

x2 + 2
)dx

=
1

2
x2 + 2x −

∫

x

x2 + 2
dx − 3

∫

1

x2 + 2
dx (5)

=
1

2
x2 + 2x − 1

2
log(x2 + 2) − 3√

2
tan−1

(

x√
2

)

+ C (6)

(7)

The two integrals in equation 6 are standard. To do the integral below the
substitution x =

√
2 tan θ is useful. The

√
2 helps the trigonometric functions

in the numerator and denominator cancel.

I =

∫

1

x2 + 2
)dx

=

∫

√
2 sec2(θ)

2 tan2(θ) + 2
dθ

=

∫

√
2

2
dθ

=

√
2

2
θ + C

=

√
2

2
tan−1(

x√
2
) + C

Solution to problem 5

I =

∫

x + 1

x3(x − 2)2
(8)

This question requires is a more complicated example of the partial fraction
expansion. We need the constants A, B, C, D, and E, in the expansion below.

x + 1

x3(x − 2)2
=

A

x
+

B

x2
+

C

x3
+ +

D

x − 2
+

E

(x − 2)2
(9)

First we create a common denominator on the right hand side. Now the numer-
ators on both sides of the equation are equal.

x + 1 = Ax2(x − 2)2 + Bx(x − 2)2 + C(x − 2)2 + +Dx3(x − 2) + Ex3 (10)

The equation is true for all x. If we choose x = 0

1 = 4C (11)

so C = 1

4
. Now consider x = 2, hence

1 + 2 = 8E (12)

3



and E = 3

8
. Now the right hand side of equation 10 is expanded into a polyno-

mial in x.

x + 1 = (A + D)x4 + (−4 A + B − 2 D + E) x3 + (4 A − 4 B + C)x2

+ (4 B − 4 C)x + 4 C

x coeff. 1 = 4B − 4C (13)

x2 coeff. 0 = 4A − 4B + C (14)

x4 coeff. 0 = A + D (15)

Equation 13 gives B = 1

2
. Equation 14 gives A = 7

16
. Equation 15 gives

D = − 7

16
.

The integral becomes:

I =

∫
(

7

16x
+

1

2x2
+

1

4x3
− 7

16(x − 2)
+

3

8(x − 2)

)

dx (16)

Now we can integrate each of the terms in the integrand.

I =
7

16
ln(x) − 1

2x
− 1

8x2
− 7

16
ln(x − 2) − 3

8(x − 2)2
+ C (17)

Solution to problem 6

The equation for y is given by

y =
√

a2 − x2.

From the surface integral formula we have

surface area =

∫

a

−a

2πy
√

1 + (y′)2 dx

The derivative of y gives

y′ =
x√

a2 − x2

Hence
y
√

1 + (y′)2 = a

and the integral reduces to
∫

a

−a

dx = 2a

and finally
surface area = 4πa2 .

Solution to problem 6

4


