Solution to Problem Set 6, M181

Solution to problem 1

a.

$$
\begin{aligned}
I_{n} & =\int_{0}^{\frac{\pi}{2}} \cos ^{n}(x) d x=\int_{0}^{\frac{\pi}{2}} \cos (x) \cos ^{n-1}(x) d x \\
& =\left[\left.\sin (x) \cos ^{n-1}(x)\right|_{0} ^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}} \sin ^{2}(x)(n-1) \cos ^{n-2}(x) d x\right. \\
& =0+(n-1) \int_{0}^{\frac{\pi}{2}}\left(1-\cos ^{2}(x)\right) \cos ^{n-2}(x) d x \\
& =(n-1)\left[\int_{0}^{\frac{\pi}{2}} \cos ^{n-2}(x) d x-\int_{0}^{\frac{\pi}{2}} \cos ^{n}(x) d x\right] \\
& =(n-1)\left[I_{n-2}-I_{n}\right]
\end{aligned}
$$

Solving for I_{n} we get

$$
I_{n}=\frac{n-1}{n} I_{n-2}
$$

b)

$$
I_{10}=\int_{0}^{\frac{\pi}{2}} \cos ^{10}(x) d x
$$

Using the reduction formula found in part a:

$$
I_{10}=\frac{9}{10} I_{8}=\frac{9}{10} \frac{7}{8} I_{6}=\cdots=\frac{9}{10} \frac{7}{8} \frac{5}{6} \frac{3}{4} \frac{1}{2} I_{0}
$$

where for I_{0} we have

$$
I_{0}=\int_{0}^{\frac{\pi}{2}} \cos ^{0}(x) d x=\frac{\pi}{2}
$$

Hence

$$
I_{10}=\frac{63 \pi}{512}
$$

Solution to problem 2

$$
\begin{equation*}
I=\int_{0}^{\frac{\pi}{2}} \sin ^{5}(x) d x \tag{1}
\end{equation*}
$$

Using the substitution $u=\cos (x)$, we find $d u=-\sin (x) d x$. We also need to change the limits. When $\mathrm{x}=0$ then $\mathrm{u}=1$. When $x=\frac{\pi}{2}$ then $u=0$.

$$
I=\int_{0}^{\frac{\pi}{2}}\left(1-\cos ^{2}(x)\right)\left(1-\cos ^{2}(x)\right) \sin (x) d x
$$

$$
\begin{align*}
& =-\int_{1}^{0}\left(1-u^{2}\right)\left(1-u^{2}\right) d u \\
& =\int_{0}^{1}\left(1-2 u^{2}+u^{4}\right) d u \\
& =\left[u-\frac{2}{3} u^{3}+\frac{1}{5} u^{5}\right]_{0}^{1} \\
& =\frac{8}{15} \tag{2}
\end{align*}
$$

Solution to problem 3

This integral can be done by substitution $u=\left(x^{5}+3\right)$

$$
\begin{aligned}
I & =\int \frac{x^{4}}{x^{5}+3} d x \\
& =\frac{1}{5} \int \frac{d u}{u} \\
& =\frac{1}{5} \log (u) \\
& =\frac{1}{5} \log \left(x^{5}+3\right)+C
\end{aligned}
$$

Solution to problem 4

$$
\begin{equation*}
I=\int \frac{x^{3}+2 x^{2}+x+1}{x^{2}+2} \tag{3}
\end{equation*}
$$

When integrating rational functions, if the order of the polynomial in the numerator is greater than in the denominator, then you divide through until this condition is satisfied.

$$
\begin{align*}
\frac{x^{3}+2 x^{2}+x+1}{x^{2}+2}= & \\
& \frac{x\left(x^{2}+2\right)-2 x+2 x^{2}+x+1}{x^{2}+2} \\
& x+\frac{2 x^{2}-x+1}{x^{2}+2} \\
& x+\frac{2\left(x^{2}+2\right)-4-x+1}{x^{2}+2} \\
& x+2+\frac{-x-3}{x^{2}+2} \tag{4}
\end{align*}
$$

The above manipulations are equivalent to using the long devision notation. The denominator is an irreducible quadratic factor, so there is no further expansion in partial fractions.

$$
\begin{align*}
I & =\int\left(x+2+\frac{-x-3}{x^{2}+2}\right) d x \\
& =\frac{1}{2} x^{2}+2 x-\int \frac{x}{x^{2}+2} d x-3 \int \frac{1}{x^{2}+2} d x \tag{5}\\
& =\frac{1}{2} x^{2}+2 x-\frac{1}{2} \log \left(x^{2}+2\right)-\frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+C \tag{6}
\end{align*}
$$

The two integrals in equation 6 are standard. To do the integral below the substitution $x=\sqrt{2} \tan \theta$ is useful. The $\sqrt{2}$ helps the trigonometric functions in the numerator and denominator cancel.

$$
\begin{aligned}
I & \left.=\int \frac{1}{x^{2}+2}\right) d x \\
& =\int \frac{\sqrt{2} \sec ^{2}(\theta)}{2 \tan ^{2}(\theta)+2} d \theta \\
& =\int \frac{\sqrt{2}}{2} d \theta \\
& =\frac{\sqrt{2}}{2} \theta+C \\
& =\frac{\sqrt{2}}{2} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+C
\end{aligned}
$$

Solution to problem 5

$$
\begin{equation*}
I=\int \frac{x+1}{x^{3}(x-2)^{2}} \tag{8}
\end{equation*}
$$

This question requires is a more complicated example of the partial fraction expansion. We need the constants A, B, C, D, and E, in the expansion below.

$$
\begin{equation*}
\frac{x+1}{x^{3}(x-2)^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}++\frac{D}{x-2}+\frac{E}{(x-2)^{2}} \tag{9}
\end{equation*}
$$

First we create a common denominator on the right hand side. Now the numerators on both sides of the equation are equal.

$$
\begin{equation*}
x+1=A x^{2}(x-2)^{2}+B x(x-2)^{2}+C(x-2)^{2}++D x^{3}(x-2)+E x^{3} \tag{10}
\end{equation*}
$$

The equation is true for all x . If we choose $x=0$

$$
\begin{equation*}
1=4 C \tag{11}
\end{equation*}
$$

so $C=\frac{1}{4}$. Now consider $x=2$, hence

$$
\begin{equation*}
1+2=8 E \tag{12}
\end{equation*}
$$

and $E=\frac{3}{8}$. Now the right hand side of equation 10 is expanded into a polynomial in x.

$$
\begin{aligned}
x+1 & =(A+D) x^{4}+(-4 A+B-2 D+E) x^{3}+(4 A-4 B+C) x^{2} \\
& +(4 B-4 C) x+4 C
\end{aligned}
$$

$$
\begin{align*}
x \text { coeff. } 1 & =4 B-4 C \tag{13}\\
x^{2} \text { coeff. } 0 & =4 A-4 B+C \tag{14}\\
x^{4} \text { coeff. } 0 & =A+D \tag{15}
\end{align*}
$$

Equation 13 gives $B=\frac{1}{2}$. Equation 14 gives $A=\frac{7}{16}$. Equation 15 gives $D=-\frac{7}{16}$.

The integral becomes:

$$
\begin{equation*}
I=\int\left(\frac{7}{16 x}+\frac{1}{2 x^{2}}+\frac{1}{4 x^{3}}-\frac{7}{16(x-2)}+\frac{3}{8(x-2)}\right) d x \tag{16}
\end{equation*}
$$

Now we can integrate each of the terms in the integrand.

$$
\begin{equation*}
I=\frac{7}{16} \ln (x)-\frac{1}{2 x}-\frac{1}{8 x^{2}}-\frac{7}{16} \ln (x-2)-\frac{3}{8(x-2)^{2}}+C \tag{17}
\end{equation*}
$$

Solution to problem 6

The equation for y is given by

$$
y=\sqrt{a^{2}-x^{2}}
$$

From the surface integral formula we have

$$
\text { surface area }=\int_{-a}^{a} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

The derivative of y gives

$$
y^{\prime}=\frac{x}{\sqrt{a^{2}-x^{2}}}
$$

Hence

$$
y \sqrt{1+\left(y^{\prime}\right)^{2}}=a
$$

and the integral reduces to

$$
\int_{-a}^{a} d x=2 a
$$

and finally

$$
\text { surface area }=4 \pi a^{2}
$$

Solution to problem 6

