Solution to Homework Set 3, M181

1. Differentiate with respect to x Last term uses the product rule:

$$
\begin{align*}
y & =x^{5}+x^{-5}+x \ln (x) \tag{i}\\
\frac{d y}{d x} & =\underline{\underline{5 x^{4}-5 x^{-6}+\ln (x)+1}}
\end{align*}
$$

Product rule:

$$
\text { (ii) } \begin{aligned}
y & =x^{3} \sin x \\
\frac{d y}{d x} & =\underline{3 x^{2} \sin x+x^{3} \cos x}
\end{aligned}
$$

Quotient rule:
(iii)

$$
\begin{aligned}
y & =\frac{\ln (x)+3}{x+2} \\
\frac{d y}{d x} & =\frac{\frac{1}{x}(x+2)-(\ln (x)+3)}{(x+2)^{2}}=\xlongequal{\frac{2-2 x-x \ln (x)}{x(x+2)^{2}}} \\
& =\xlongequal{\frac{1}{x(x+2)}-\frac{\ln (x)+3}{(x+2)^{2}}}
\end{aligned}
$$

2. Differentiate with respect to x
(i) $\cos \left(x^{2}\right)$,
(ii) $x^{2} e^{\cos x}$,
(iii) $\sqrt{1+\sin 3 x}$
(i) To find $\frac{d}{d x} \cos \left(x^{2}\right)$ we use the chain rule. The function has the pattern $f(g(x))$, chain rule is

$$
\begin{aligned}
\frac{d}{d x} f(g(x)) & =f^{\prime}(g(x)) g^{\prime}(x) \\
\frac{d}{d x} \cos x^{2} & =-\sin \left(x^{2}\right) \frac{d x^{2}}{d x}=\underline{\underline{-2 x \sin x^{2}}}
\end{aligned}
$$

(ii) To compute the derivative of $x^{2} e^{\cos x}$ we apply the product rule and the chain rule. First we'll look at the derivative of $e^{\cos x}$. Define $v=\cos x$.

$$
\begin{aligned}
y & =e^{v} \Rightarrow \frac{d y}{d v}=e^{v} \\
v & =\cos x \Rightarrow \frac{d v}{d x}=-\sin x \\
\frac{d y}{d x} & =\frac{d y}{d v} \frac{d v}{d x}=\left(e^{v}\right)(-\sin x) \\
\frac{d}{d x}\left(e^{\cos x}\right) & =-\sin x e^{\cos x}
\end{aligned}
$$

Now we can use the product rule.

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2} e^{\cos x}\right) & =2 x e^{\cos x}+x^{2} \frac{d}{d x}\left(e^{\cos x}\right) \\
& =\underline{\underline{2 x e^{\cos x}}-x^{2} \sin x e^{\cos x}}
\end{aligned}
$$

(iii) Chain rule again. To compute the derivative of $\sqrt{1+\sin 3 x}$ we introduce the variable $v=1+\sin 3 x$.

$$
\begin{aligned}
y & =\sqrt{v}=v^{1 / 2} \quad \text { with } \quad v=1+\sin 3 x \\
\frac{d y}{d x} & =\left(\frac{d y}{d v}\right)\left(\frac{d v}{d x}\right) \\
& =\frac{1}{2} v^{-1 / 2} 3 \cos 3 x \\
& =\xlongequal{\frac{3 \cos 3 x}{2 \sqrt{1+\sin 3 x}}}
\end{aligned}
$$

I've gone through these derivatives slowly, step by step. With a little practice you'll be able to do these with a lot less working than this.
3. Find the equation of the tangent to the graph of the function

$$
y=\frac{2 x}{x^{3}+1}
$$

at the point $(x=2)$.
The tangent to the graph at a point is the straight line passing through the point on the curve, with the same slope as the curve.

As we saw in the lectures, the tangent to $f(x)$ through the point x_{0} has the equation

$$
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) .
$$

To find the tangent, we need to know the derivative of f.

$$
\begin{aligned}
f(x) & =\frac{2 x}{x^{3}+1} \\
f^{\prime}(x) & =\frac{2\left(x^{3}+1\right)-2 x\left(3 x^{2}\right)}{\left(x^{3}+1\right)^{2}}=\frac{2-4 x^{3}}{\left(x^{3}+1\right)^{2}}
\end{aligned}
$$

At the point $x_{0}=2$ we have $f(2)=\frac{4}{9}$ and $f^{\prime}(2)=-\frac{10}{27}$.
Hence the equation for the tangent is

$$
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=\frac{4}{9}-\frac{10}{27}(x-2)=\underline{\underline{-\frac{10}{27}} x+\frac{32}{27}} .
$$

As you can see, this line just touches the curve at $x=2$, so it really is the tangent line.

4. Find the derivative of

$$
x^{3} e^{3 x} \sin 2 x
$$

Use the product rule for many factors.

$$
\begin{aligned}
(u v w)^{\prime} & =u^{\prime} v w+u v^{\prime} w+u v w^{\prime} \\
\frac{d}{d x}\left[x^{3} e^{3 x} \sin 2 x\right] & =\frac{3 x^{2} e^{3 x} \sin 2 x+3 x^{3} e^{3 x} \sin 2 x+2 x^{3} e^{3 x} \cos 2 x}{x^{2} e^{3 x}(3 \sin 2 x+3 x \sin 2 x+2 x \cos 2 x)} \\
& =\underline{x^{2}}
\end{aligned}
$$

5. Calculate the derivative of

$$
f(x)=\frac{2}{x+3}
$$

from first principles.
"From first principles" means we should start from the definition

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f(x)=\frac{2}{x+3} \Rightarrow f(x+h)=\frac{2}{x+h+3} \\
& f(x+h)-f(x)=\frac{2}{x+h+3}-\frac{2}{x+3} \quad \text { subtract fractions } \\
&=\frac{2(x+3)-2(x+h+3)}{(x+h+3)(x+3)} \\
&=\frac{-2 h}{(x+h+3)(x+3)} \\
& \frac{f(x+h)-f(x)}{h}=\frac{-2}{(x+h+3)(x+3)}
\end{aligned}
$$

Fortunately it's easy to take the $h \rightarrow 0$ limit,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0}\left\{\frac{-2}{(x+h+3)(x+3)}\right\}=\underline{\underline{\frac{-2}{(x+3)^{2}}}}
$$

which is the answer you should have expected.

