MATH181 Homework Sheet 8

Due 28th November 2011

Look at Stroud, Chapters 19, 22, 23.

1. Calculate the gradient of

$$
F(x, y)=3 x^{2}+3 y^{2}-y^{3}
$$

and find its stationary points. Classify these points by using the second derivatives, $F_{x x}, F_{y y}, F_{x, y}$, and $F_{y x}$.
2. Evaluate the repeated integral

$$
\int_{1}^{3} d x \int_{0}^{2} d y\left(3 y^{2}-2 x y\right)
$$

On a sketch of the $x-y$ plane, shade in the region this integral covers. What shape is it?
3. A rectangular swimming pool covers the area $0<x<10, \quad 0<y<20$ and has a depth given by $d(x, y)=1+\frac{1}{10} y$. By doing a repeated integral, find out how much water is needed to fill the pool. [All measurements are in metres.]
4. The tea room in theoretical physics has a curved ceiling with height

$$
h(x, y)=4+\frac{x y}{4} .
$$

The room is a square, with $-2<x<2, \quad-2<y<2$. What is the volume of the room? What is the average height of the ceiling? [All measurements are in metres.]
5. Integrate the function

$$
g(x, y)=2 x^{2}+y
$$

over the region A bounded by the curves $\quad y=x \quad$ and $\quad y=x^{2}$.
6. The temperature in a metal cube $0<x<L, \quad 0<y<L, \quad 0<z<L$, is

$$
T(x, y, z)=50+20 \sin \left(\frac{\pi x}{L}\right) \sin \left(\frac{\pi y}{L}\right) \sin \left(\frac{\pi z}{L}\right) .
$$

What is the average temperature in the cube?
7. Use polar coordinates to integrate

$$
F(x, y)=x^{2}+y^{2}+\sqrt{x^{2}+y^{2}}
$$

over the area A enclosed by the curve $x^{2}+y^{2}=4$

