MATH181 Homework Sheet 7

Due 21st November 2011

See Stroud, Chapter 10, Chapter 11.

1. Given that $f(x, y)=y \sin (x y)$ find the partial derivatives

$$
\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial^{2} f}{\partial x^{2}}, \quad \frac{\partial^{2} f}{\partial y \partial x}, \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \text { and } \quad \frac{\partial^{2} f}{\partial y^{2}}
$$

2. A hill has a height given by

$$
h(x, y)=A e^{-x^{2}-2 y^{2}}
$$

Find the gradient of h.
A child at the point $(2,1)$ drops a ball. Which direction will the ball roll initially?
3. Show that if $V(x, y)=e^{2 x} \cos 2 y$, then

$$
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0
$$

4. Show that $F(x, t)=a \sin ^{3}(x-c t)$, is a solution of the wave equation:

$$
\frac{\partial^{2}}{\partial t^{2}} F=c^{2} \frac{\partial^{2}}{\partial x^{2}} F
$$

5. A cylinder of ice is slowly melting. At a given time the cylinder has a radius of 100 cm and a height of 200 cm . What is its volume? Because of melting, its radius is decreasing by $1 \mathrm{~cm} \mathrm{hr}^{-1}$ and its height is decreasing by $2 \mathrm{~cm} \mathrm{hr}^{-1}$. At what rate is its volume changing?
6. The air temperature at height z over the point (x, y) is given by

$$
T(x, y, z)=\left(40+x^{2}-3 y+x y\right) e^{-z}-10
$$

A migrating bird is at the point $(0,0,1)$, flying with velocity $\left(1,3, \frac{1}{10}\right)$. Use the partial derivative chain rule to find the rate at which the bird feels the temperature changing.

