To be handed in by 5:00 pm on Monday October 17th.
For reference you can consult the book by Stroud, section 6 (vectors).

1. $\underset{\sim}{\mathbf{u}}=2 \underset{\sim}{\mathbf{i}}+2 \underset{\sim}{\mathbf{j}}$ and $\underset{\sim}{\mathbf{v}}=\underset{\sim}{\mathbf{i}}-2 \mathbf{j}$. Find the angle between $\underset{\sim}{\mathbf{u}}$ and $\underset{\sim}{\mathbf{v}}$.
2. $\underset{\sim}{\mathbf{u}}=2 \underset{\sim}{\mathbf{i}}+\underset{\sim}{\mathbf{j}}-2 \underset{\sim}{\mathbf{k}}$ and $\underset{\sim}{\mathbf{v}}=3 \underset{\sim}{\mathbf{j}}+4 \underset{\sim}{\mathbf{k}}$. Find
(i) $\underset{\sim}{\mathbf{u}}+\underset{\sim}{\mathbf{v}}$
(ii) $2 \underset{\sim}{\mathbf{u}}-\underset{\sim}{\mathbf{v}}$
(iii) $|\underset{\sim}{\mathbf{u}}|$
(iv) $\quad \underset{\sim}{\mathbf{u}} \cdot \underset{\sim}{\mathbf{v}}$
(v) The angle between $\underset{\sim}{\mathbf{u}}$ and $\underset{\sim}{\mathbf{v}}$.
3. Shortly after launch the rocket engines on a spaceship of mass $10^{5} \mathrm{~kg}$ give a thrust of $10^{6} \underset{\sim}{\mathbf{i}}+10^{6} \mathbf{j}+2 \times 10^{6} \underset{\sim}{\mathbf{k}}$ (in Newtons).
(i) Assuming the z axis is vertical, what is the total force acting on the spaceship, from the engines and from gravity? ($g=9.8 \mathrm{~ms}^{-2}$).
(ii) What is its acceleration? [Remember $\underset{\sim}{\mathbf{F}}=m \underset{\sim}{\mathbf{a}}$]
(your answers to (i) and (ii) should be vectors).
4. Two forces

$$
\overrightarrow{\mathrm{F}}_{1}=(2 \mathbf{i}-3 \mathbf{j}+7 \mathbf{k}) N
$$

and

$$
\overrightarrow{\mathrm{F}}_{2}=(-\mathbf{i}-4 \mathbf{j}+\mathbf{k}) N
$$

act at a point P . Find the resultant force at P , expressing the result in terms of its magnitude and a unit vector in the direction of the force.
5. Find the component of the force

$$
\overrightarrow{\mathrm{F}}=(3 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k}) N
$$

along the direction of the vector $2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$.
6. Find the work done by the force

$$
\overrightarrow{\mathrm{F}}=(2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}) N
$$

in moving a particle of mass 2 kg in a straight line from the point $(1,2,5) \mathrm{m}$ to the point $(2,0,6) \mathrm{m}$.
7. Find the vector product of the vectors

$$
\vec{a}=(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}) N
$$

and

$$
\overrightarrow{\mathrm{b}}=(\mathbf{i}+3 \mathbf{j}-4 \mathbf{k}) N
$$

