String Phenomenology from a Worldsheet perspective

- Question: Ten dimensional tachyonic vacua \rightarrow phenomenology ?
- Conjecture: Connectedness of (2,0) and (2,2) vacua

With: Kounnas, Rizos, Tsulaia, Florakis, Sonmez, Harries, Percival ... AEF, arXiv:1906:09448.

String Phenomenology 2019, CERN, 28 July 2019

DATA \rightarrow STANDARD MODEL EWX \rightarrow PERTUBATIVE

STANDARD MODEL -> UNIFICATION

EVIDENCE: 16 of SO(10), Log running, proton stability, neutrino masses

+ GRAVITY < --> STRINGS

PRIMARY GUIDES:

3 generations SO(10) embedding

Fermionic $Z_2 \times Z_2$ orbifolds

'Phenomenology of the Standard Model and Unification'

- Minimal Superstring Standard Model
- \bullet Top quark mass \sim 175–180GeV
- Generation mass hierarchy
- CKM mixing
- Stringy seesaw mechanism
- Gauge coupling unification
- Proton stability
- Squark degeneracy
- Moduli fixing
- Classification

NPB 335 (1990) 347 (with Nanopoulos & Yuan) PLB 274 (1992) 47 NPB 407 (1993) 57 NPB 416 (1994) 63 (with Halyo) PLB 307 (1993) 311 (with Halyo) NPB 457 (1995) 409 (with Dienes) NPB 428 (1994) 111 NPB 526 (1998) 21 (with Pati) NPB 728 (2005) 83 2003 _ . . .

(with Nooij, Assel, Christodoulides, Kounnas, Rizos & Sonmez)

Other approaches

<u>Geometrical</u> Greene, Kirklin, Miron, Ross (1987) Donagi, Ovrut, Pantev, Waldram (1999) Blumenhagen, Moster, Reinbacher, Weigand (2006) Heckman, Vafa (2008)

<u>Orbifolds</u>

Ibanez, Nilles, Quevedo (1987) Bailin, Love, Thomas (1987) Kobayashi, Raby, Zhang (2004) Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter (2007) Blaszczyk, Groot–Nibbelink, Ruehle, Trapletti, Vaudrevange (2010) <u>Other CFTs</u> Gepner (1987) Schellekens, Yankielowicz (1989)

Gato-Rivera, Schellekens (2009)

<u>Orientifolds</u>

Cvetic, Shiu, Uranga (2001) Ibanez, Marchesano, Rabadan (2001) Kiristis, Schellekens, Tsulaia (2008)

Free Fermionic Construction

<u>Left-Movers</u>: $\psi_{1,2}^{\mu}$, χ_i , y_i , ω_i $(i = 1, \dots, 6)$ <u>Right-Movers</u>

$$\begin{split} \bar{\phi}_{A=1,\cdots,44} &= \begin{cases} \bar{y}_i \ , \ \bar{\omega}_i & i=1,\cdots,6 \\\\ \bar{\eta}_i & U(1)_i & i=1,2,3 \\\\ \bar{\psi}_{1,\cdots,5} & SO(10) \\\\ \bar{\phi}_{1,\cdots,8} & SO(16) \\\\ V & \longrightarrow V & f & \longrightarrow -e^{i\pi\alpha(f)}f \\\\ Z &= \sum_{\substack{all \ spin \\ structures}} c\binom{\vec{\alpha}}{\beta} \ Z\binom{\vec{\alpha}}{\beta} \\\\ \text{Models} &\longleftrightarrow \text{Basis vectors} + \text{ one-loop phases} \end{cases}$$

The NAHE set : $\{ 1, S, b_1, b_2, b_3 \}$ $N = 4 \rightarrow 2$ 11 vacua $Z_2 \times Z_2$ orbifold compactification

 \implies Gauge group $SO(10) \times SO(6)^{1,2,3} \times E_8$

beyond the NAHE set Add $\{\alpha, \beta, \gamma\}$ e.g. FNY model

number of generations is reduced to three

$$SO(10) \longrightarrow SU(3) \times SU(2) \times U(1)_{T_{3_R}} \times U(1)_{B-L}$$
$$U(1)_Y = \frac{1}{2}(B-L) + T_{3_R} \in SO(10) !$$
$$SO(6)^{1,2,3} \longrightarrow U(1)^{1,2,3} \times U(1)^{1,2,3}$$

(Modern School)

Basis vectors:

$$\begin{split} 1 &= \{\psi^{\mu}, \ \chi^{1,\dots,6}, y^{1,\dots,6}, \omega^{1,\dots,6} \mid \bar{y}^{1,\dots,6}, \bar{\omega}^{1,\dots,6}, \bar{\eta}^{1,2,3}, \bar{\psi}^{1,\dots,5}, \bar{\phi}^{1,\dots,8}\} \\ S &= \{\psi^{\mu}, \chi^{1,\dots,6}\}, \\ z_1 &= \{\bar{\phi}^{1,\dots,4}\}, \\ z_2 &= \{\bar{\phi}^{5,\dots,8}\}, \\ e_i &= \{y^i, \omega^i | \bar{y}^i, \bar{\omega}^i\}, \ i = 1, \dots, 6, \\ b_1 &= \{\chi^{34}, \chi^{56}, y^{34}, y^{56} | \bar{y}^{34}, \bar{y}^{56}, \bar{\eta}^1, \bar{\psi}^{1,\dots,5}\}, \\ b_2 &= \{\chi^{12}, \chi^{56}, y^{12}, y^{56} | \bar{y}^{12}, \bar{y}^{56}, \bar{\eta}^2, \bar{\psi}^{1,\dots,5}\}, \\ \lambda &= 2 \rightarrow N = 1 \\ \alpha &= \{\bar{\psi}^{4,5}, \bar{\phi}^{1,2}\} \\ \beta &= \{\bar{\psi}^{1,\dots,5} \equiv \frac{1}{2}, \dots\} \\ \end{split}$$

Independent phases $c \begin{bmatrix} vi \\ v_j \end{bmatrix} = \exp[i\pi(v_i|v_j)]$: upper block

A priori 66 independent coefficients $\rightarrow 2^{66}$ distinct vacua

<u>Starting with:</u> $Z_{10d}^+ = (V_8 - S_8) \left(\overline{O}_{16} + \overline{S}_{16}\right) \left(\overline{O}_{16} + \overline{S}_{16}\right),$

using the level–one SO(2n) characters

$$O_{2n} = \frac{1}{2} \left(\frac{\theta_3^n}{\eta^n} + \frac{\theta_4^n}{\eta^n} \right), \qquad V_{2n} = \frac{1}{2} \left(\frac{\theta_3^n}{\eta^n} - \frac{\theta_4^n}{\eta^n} \right), \\ S_{2n} = \frac{1}{2} \left(\frac{\theta_2^n}{\eta^n} + i^{-n} \frac{\theta_1^n}{\eta^n} \right), \qquad C_{2n} = \frac{1}{2} \left(\frac{\theta_2^n}{\eta^n} - i^{-n} \frac{\theta_1^n}{\eta^n} \right)$$

where

$$\theta_3 \equiv Z_f \begin{pmatrix} 0\\ 0 \end{pmatrix} \qquad \theta_4 \equiv Z_f \begin{pmatrix} 0\\ 1 \end{pmatrix} \qquad \theta_2 \equiv Z_f \begin{pmatrix} 1\\ 0 \end{pmatrix} \qquad \theta_1 \equiv Z_f \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

Apply $g = (-1)^{F + F_{z_1} + F_{z_2}}$

 $Z_{10d}^{-} = \left[V_8 \left(\overline{O}_{16} \overline{O}_{16} + \overline{S}_{16} \overline{S}_{16} \right) - S_8 \left(\overline{O}_{16} \overline{S}_{16} + \overline{S}_{16} \overline{O}_{16} \right) + \frac{O_8 \left(\overline{C}_{16} \overline{V}_{16} + \overline{V}_{16} \overline{C}_{16} \right) - C_8 \left(\overline{C}_{16} \overline{C}_{16} + \overline{V}_{16} \overline{V}_{16} \right) \right].$

In fermionic language: { $\mathbf{1}$, z_1 , z_2 }

where
$$z_1 = \{\bar{\psi}^{1, \cdots, 5}, \bar{\eta}^{1, 2, 3}\}$$
; $z_2 = \{\bar{\phi}^{1, \cdots, 8}\} \Rightarrow S = 1 + z_1 + z_2$
 $c\binom{z_1}{z_2} = +1 \implies E_8 \times E_8$; $c\binom{z_1}{z_2} = -1 \implies SO(16) \times SO(16)$

non-SUSY string phenomenology

Alternatively: Apply
$$g = (-1)^{F+F_{z_1}}$$

$$Z_{10d}^{-} = \left(V_8 \overline{O}_{16} - S_8 \overline{S}_{16} + \underline{O_8 \overline{V}_{16}} - C_8 \overline{C}_{16} \right) \left(\overline{O}_{16} + \overline{S}_{16} \right),$$

 $O_8 \overline{V}_{16} \overline{O}_{16} \implies \text{tachyon}$

In fermionic language: $\{ \mathbf{1}, z_2 \} \implies \text{No } S$

$$1 = \{\psi^{\mu}, \ \chi^{1,\dots,6}, y^{1,\dots,6}, \omega^{1,\dots,6} | \bar{y}^{1,\dots,6}, \bar{\omega}^{1,\dots,6}, \bar{\eta}^{1,2,3}, \bar{\psi}^{1,\dots,5}, \bar{\phi}^{1,\dots,8} \}, \\ b_{1} = \{\psi^{\mu}, \chi^{1,2}, y^{3,\dots,6} | \bar{y}^{3,\dots,6}, \bar{\psi}^{1,\dots,5}, \bar{\eta}^{1} \} \\ b_{2} = \{\psi^{\mu}, \chi^{3,4}, y^{1,2}, \omega^{5,6} | \bar{y}^{1,2}, \bar{\omega}^{5,6}, \bar{\psi}^{1,\dots,5}, \bar{\eta}^{2} \} \\ b_{3} = \{\psi^{\mu}, \chi^{5,6}, \omega^{1,\dots,4} | \bar{\omega}^{1,\dots,4}, \bar{\psi}^{1,\dots,5}, \bar{\eta}^{3} \}$$
(1)
$$\alpha = \{y^{1,\dots,6}, \omega^{1,\dots,6} | \bar{\omega}^{1}, \bar{y}^{2}, \bar{\omega}^{3}, \bar{y}^{4,5}, \bar{\omega}^{6}, \bar{\psi}^{1,2,3}, \bar{\phi}^{1,\dots,4} \} \\ \beta = \{y^{2}, \omega^{2}, y^{4}, \omega^{4} | \bar{y}^{1,\dots,4}, \bar{\omega}^{5}, \bar{y}^{6}, \bar{\psi}^{1,2,3}, \bar{\phi}^{1,\dots,4} \} \\ \gamma = \{y^{1}, \omega^{1}, y^{5}, \omega^{5} | \bar{\omega}^{1,2}, \bar{y}^{3}, \bar{\omega}^{4}, \bar{y}^{5,6}, \bar{\psi}^{1,\dots,5} = \frac{1}{2}, \bar{\eta}^{1,2,3} = \frac{1}{2}, \bar{\phi}^{2,\dots,5} = \frac{1}{2} \}$$

with a suitable set of GGSO projection coefficients

- Tachyon free six generation SLM model with suitable Higgs spectrum Reduction to three generation $\rightarrow S$ -like vector on the left
- Connection with MSDS vacua in two dimensions ? (Kounnas & Florakis)

 $Z_2 X Z_2$ orbifolds

One complex parameter $Z = Z + n e_1 + m e_2$ torus: $T^2 \times T^2 \times T^2 \longrightarrow$ Three complex coordinates z_1 , z_2 and z_3 Z₂ orbifold : $Z = -Z + \sum_{i} m_{i} e_{i}$ 4 fixed points $Z = \{ 0, 1/2 e_1, 1/2 e_2, 1/2 (e_1 + e_2) \}$ α : (z1, z2, z3) -> (-z1, -z2, +z3) -> 16 $T^2 x T^2 x T^2$ β : (z1, z2, z3) -> (+ z1, -z2, -z3) -> 16 $\overline{Z_{0} X Z_{0}}$ $\alpha\beta$: (z1, z2, z3) \rightarrow (-z1, +z2, -z3) \rightarrow 16 48

 $\gamma:(z_1, z_2, z_3) \longrightarrow (z_1+1/2, z_2+1/2, z_3+1/2) \longrightarrow 24$

Connectedness of (2,0) & (2,2) vacua

NAHE \oplus $(z_1 = \{ \bar{\psi}^{1, \dots, 5}, \bar{\eta}^1, \bar{\eta}^2, \bar{\eta}^3 \} = 1) \rightarrow \{ 1, S, z_1, z_2, b_1, b_2 \}$

Gauge group: $SO(4)^3 \times E_6 \times U(1)^2 \times E_8$ and 24 generations.

toroidal
compactification
$$g_{ij} = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -1 & 0 & 2 \end{pmatrix} \qquad b_{ij} = \begin{cases} g_{ij} & i < j \\ 0 & i = j \\ -g_{ij} & i > j \end{cases}$$

 $R_i \rightarrow$ the free fermionic point \rightarrow G.G. $SO(12) \times E_8 \times E_8$

mod out by a $Z_2 \times Z_2$ with standard embedding

 \Rightarrow Exact correspondence

In the realistic free fermionic models

$$c \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = +1 \rightarrow -1 \longrightarrow \text{Wilson line in toroidal language}$$

Then $\{\vec{1}, \vec{S}, \vec{z_1}, \vec{z_2}\} \rightarrow N=4$ SUSY and
 $SO(12) \times SO(16) \times SO(16)$
apply $b_1 \times b_2 \rightarrow Z_2 \times Z_2 \rightarrow N=1$ SUSY and
 $SO(4)^3 \times SO(10) \times U(1)^3 \times SO(16)$
 $b_1, b_2, b_3 \Rightarrow (3 \times 8) \cdot 16 \text{ of } SO(10)_O$
 $b_1 + 2\gamma, b_2 + 2\gamma, b_3 + 2\gamma \Rightarrow (3 \times 8) \cdot 16 \text{ of } SO(16)_H$

Connectedness of (2,0) & (2,2) vacua

Question:

$$Z_2$$
 shift : 48 \longleftrightarrow 24

Is this the same model? In general, no.

Starting from:

$$Z_{+} = (V_{8} - S_{8}) \left(\sum_{m,n} \Lambda_{m,n}\right)^{\otimes 6} \left(\bar{O}_{16} + \bar{S}_{16}\right) \left(\bar{O}_{16} + \bar{S}_{16}\right) ,$$

where as usual, for each circle,

$$p_{\mathrm{L,R}}^{i} = \frac{m_{i}}{R_{i}} \pm \frac{n_{i}R_{i}}{\alpha'},$$

 $\quad \text{and} \quad$

$$\Lambda_{m,n} = \frac{q^{\frac{\alpha'}{4}p_{L}^{2}} \bar{q}^{\frac{\alpha'}{4}p_{R}^{2}}}{|\eta|^{2}}.$$

Add shifts : (A_{1}, A_{1}, A_{1}) , (A_{3}, A_{3}, A_{3})
 $(48 \rightarrow 24 \text{ yes})$
 $(SO(12)? \text{ no})$

Uniquely:

$$A_2: X_{\mathrm{L,R}} \to X_{\mathrm{L,R}} + \frac{1}{2} \left(\pi R \pm \frac{\pi \alpha'}{R} \right)$$

 $g : (A_2, A_2, 0),$

 $h : (0, A_2, A_2),$

where each A_2 acts on a complex coordinate

 $(48 \rightarrow 24 \text{ yes})$ (SO(12)? yes)

$$R = \sqrt{\alpha'}$$

Spinor-vector duality:

Invariance under exchange of $\#(16 + \overline{16}) < - > \#(10)$

Symmetric under exchange of rows and columns

 E_6 : 27 = 16 + 10 + 1 $\overline{27} = \overline{16} + 10 + 1$ Self-dual: $\#(16 + \overline{16}) = \#(10)$ without E_6 symmetry

Spinor-vector duality:

Duality under exchange of spinors and vectors.

_									
	First Pl	ane		Second p	olane		Third Plane	2	
s	\overline{S}	v	s	\overline{S}	v	S	\overline{S}	v	# of models
2	0	0	0	0	0	0	0	0	1325963712
0	2	0	0	0	0	0	0	0	1340075584
1	1	0	0	0	0	0	0	0	3718991872
0	0	2	0	0	0	0	0	0	6385031168

of models with $#(16 + \overline{16}) = #$ of models with #(10)

Operates plane ny plane \rightarrow operates at the N = 2 level

- N=2 Continuous interpolation between W_1 & W_2
- N=1 Discrete exchange of W_1 & W_2

Novel Basis

 $S = \{\psi^{\mu}, \chi^{1,\dots,6}\},\$ $z_1 = \{\bar{\phi}^{1,\dots,4}\},\$ $z_2 = \{\bar{\phi}^{5,\dots,8}\},\$ $z_3 = \{\bar{\psi}^{1,\dots,4}\},\$ $z_4 = \{ \bar{\eta}^{0,\dots,3} \},\$ $\bar{\eta}^0 \equiv \bar{\psi}^5$ $e_i = \{y^i, \omega^i | \bar{y}^i, \bar{\omega}^i\}, i = 1, \dots, 6,$ N = 4 Vacua $1 = S + \sum e_i + z_1 + z_2 + z_3 + z_4$ $b_1 = \{\chi^{34}, \chi^{56}, y^{34}, y^{56} | \bar{y}^{34}, \bar{y}^{56}, \bar{n}^2, \bar{n}^3\}.$ $N = 4 \rightarrow N = 2$ Vector bosons: NS, $z_{1,2,3,4}$, $z_i + z_j$ NS \leftrightarrow $SO(8)^4 \rightarrow$ $SO(8) \times SO(4)^2 \times SO(8)^2$ SO(12)-GUT \rightarrow from enhancement

Duality picture is facilitated

Spinor \longleftrightarrow Vector map $\longrightarrow B \iff B + z_4$ SO(12) enhancement $\longrightarrow B \iff B + z_3$

$z_4 \rightarrow \text{right-moving spectral flow operator}$

The picture extends to compactifications with Interacting Internal CFT

(P. Athanasopoulos, AEF, D. Gepner, PLB 735 (2014) 357)

- DATA \longrightarrow UNIFICATION
- STRINGS THEORY \longrightarrow GAUGE & GRAVITY UNIFICATION
- STRINGS PHENOMENOLOGY \longrightarrow AT ITS INFANCY STILL LEARNING HOW TO WALK
- 10D vacua without S-SUSY generator
- \bullet Connectedness of (2,0) & (2,2) vacua
- String Phenomenology \longrightarrow Physics of the third millenium

e.g. Aristarchus to Copernicus