Exophobia, Leptophobia and Other Manias in Heterotic String Vacua

Progress Report:

- Exophobic String Vacua, NPB844 (2011) 365; PLB702 (2011) 81
- Leptophobic U(1) in heterotic–string models, arXiv:1106:5422
- Spinor–Vector duality,

NPB 848 (2011) 332

With: Ben Assel, Kyriakos Christodoulides, Costas Konnas, John Rizos
 Viraf Mehta
 Yiannis Florakis, Thomas Mohaupt, Mirian Tsulaia

String Phenomenology 2011, Madison, 22-26 August 2011

DATA \rightarrow STANDARD MODEL

STANDARD MODEL -> UNIFICATION

ADDITIONAL EVIDENCE:

Logarithmic running, proton longevity, neutrino masses

PRIMARY GUIDES:

3 generations

SO(10) embedding

Realistic free fermionic models

'Phenomenology of the Standard Model and string unification'

- Top quark mass $\sim 175 180 {
 m GeV}$
- Generation mass hierarchy
- CKM mixing
- Stringy seesaw mechanism
- Gauge coupling unification
- Proton stability
- Squark degeneracy
- Minimal Superstring Standard Model PLB 455 (1999) 135
- Moduli fixing
- Exophobia

PLB 274 (1992) 47 NPB 407 (1993) 57 NPB 416 (1994) 63 (with Halyo) PLB 307 (1993) 311 (with Halyo) NPB 457 (1995) 409 (with Dienes) NPB 428 (1994) 111 NPB 526 (1998) 21 (with Pati) (with Cleaver & Nanopoulos) NPB 728 (2005) 83 PLB 683 (2010) 306 (with Assel, Christodoulides, Kounnas & Rizos)

Other approaches

<u>Geometrical</u> Greene, Kirklin, Miron, Ross (1987) Donagi, Ovrut, Pantev, Waldram (1999) Blumenhagen, Moster, Reinbacher, Weigand (2006) Heckman, Vafa (2008)

<u>Orbifolds</u>

Ibanez, Nilles, Quevedo (1987) Bailin, Love, Thomas (1987) Kobayashi, Raby, Zhang (2004) Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter (2007) Blaszczyk, Groot-Nibbelink, Ruehle, Trapletti, Vaudrevange (2010) Other CFTs Gepner (1987) Schellekens, Yankielowicz (1989) Gato–Rivera, Schellekens (2009) Orientifolds Cvetic, Shiu, Uranga (2001) Ibanez, Marchesano, Rabadan (2001) Kiristis, Schellekens, Tsulaia (2008)

Free Fermionic Construction

<u>Left-Movers</u>: $\psi_{1,2}^{\mu}$, χ_i , y_i , ω_i $(i = 1, \dots, 6)$ <u>Right-Movers</u>

Classification of fermionic $Z_2 \times Z_2$ orbifolds

Basis vectors:

$$\begin{split} 1 &= \{\psi^{\mu}, \ \chi^{1,\dots,6}, y^{1,\dots,6}, \omega^{1,\dots,6} \mid \bar{y}^{1,\dots,6}, \bar{\omega}^{1,\dots,6}, \bar{\eta}^{1,2,3}, \bar{\psi}^{1,\dots,5}, \bar{\phi}^{1,\dots,8}\} \\ S &= \{\psi^{\mu}, \chi^{1,\dots,6}\}, \\ z_{1} &= \{\bar{\phi}^{1,\dots,4}\}, \\ z_{2} &= \{\bar{\phi}^{5,\dots,8}\}, \\ e_{i} &= \{y^{i}, \omega^{i} | \bar{y}^{i}, \bar{\omega}^{i}\}, \ i = 1, \dots, 6, \\ b_{1} &= \{\chi^{34}, \chi^{56}, y^{34}, y^{56} | \bar{y}^{34}, \bar{y}^{56}, \bar{\eta}^{1}, \bar{\psi}^{1,\dots,5}\}, \\ b_{2} &= \{\chi^{12}, \chi^{56}, y^{12}, y^{56} | \bar{y}^{12}, \bar{y}^{56}, \bar{\eta}^{2}, \bar{\psi}^{1,\dots,5}\}, \\ N = 2 \to N = 1 \\ \alpha &= \{\bar{\psi}^{4,5}, \bar{\phi}^{1,2}\} \end{split}$$

& Gauge group $SO(6) \times SO(4) \times U(1)^3 \times hidden$

Independent phases $c \begin{bmatrix} vi \\ v_j \end{bmatrix} = \exp[i\pi(v_i|v_j)]$: upper block

A priori 66 independent coefficients $\rightarrow 2^{66}$ distinct vacua

Pati-Salam models statistics with respect to phenomenological constraints

constraint	# of models	probability	# of models
None	10000000000	1	2.25×10^{15}
+ No gauge group enhancements.	78977078333	7.90×10^{-1}	1.78×10^{15}
+ Complete families	22497003372	2.25×10^{-1}	5.07×10^{14}
+ 3 generations	298140621	2.98×10^{-3}	6.71×10^{12}
+ PS breaking Higgs	23694017	2.37×10^{-4}	5.34×10^{11}
+ SM breaking Higgs	19191088	1.92×10^{-4}	4.32×10^{11}
+ No massless exotics	121669	1.22×10^{-6}	2.74×10^{9}

Constraints in second column act additionally.

Exotics -> fractionally charged states

Exemplary Model

- A specific choice of one-loop GSO phases
- Analysis of cubic level superpotential and flat directions
- Only one Yukawa coupling at cubic level -> heavy family
- All extra colour triplet -> massive
- One light Higgs bi-doublet
- Solely MSSM below PS breaking scale

Leptophobic Z' (PLB388 (1996) 524; arXiv:1106.5422 with Viraf Mehta) CDF -> enhancement in di-jet data at $\sim 4\sigma$; D0 -> no enhancement possible interpretation -> a leptophobic $Z' \rightarrow ->$ in heterotic string? <u>The NAHE set</u>: { 1, S, b_1 , b_2 , b_3 } \implies Gauge group $SO(10) \times SO(6)^{1,2,3} \times E_8$ beyond the NAHE set Add $\{\alpha, \beta, \gamma\} \rightarrow 3$ generations $SO(10) \longrightarrow \text{subgroup}$ $e.g. SU(3) \times SU(2) \times U(1)_{T_{3_R}} \times U(1)_{B-L}$

Patterns of SO(10) symmetry breaking

The $SO(10) \rightarrow \text{subgroup} \quad b(\bar{\psi}_{\frac{1}{2}}^{1\cdots 5}):$

1.
$$b\{\bar{\psi}_{\frac{1}{2}}^{1\dots5} \bar{\eta}^{1} \bar{\eta}^{2} \bar{\eta}^{3}\} = \{\frac{111111111}{222222222}\} \Rightarrow SU(5) \times U(1) \ U(1) \ U(1) \ U(1)$$

2. $b\{\bar{\psi}_{\frac{1}{2}}^{1\dots5} \bar{\eta}^{1} \bar{\eta}^{2} \bar{\eta}^{3}\} = \{11100\ 000\ \} \Rightarrow SO(6) \times SO(4) \ U(1) \ U(1) \ U(1)$

 $(1.+2.) \Rightarrow SO(10) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_C \times U(1)_L$

 $SO(10) \rightarrow SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

 $2. \ b\{\bar{\psi}_{\frac{1}{2}}^{1\cdots 5}\bar{\eta}^{1}\ \bar{\eta}^{2}\ \bar{\eta}^{3}\} = \{11100000\} \Rightarrow SO(6) \times SO(4)\ U(1)\ U(1)\ U(1)$ $3. \ b\{\bar{\psi}_{\frac{1}{2}}^{1\cdots 5}\ \bar{\eta}^{1}\ \bar{\eta}^{2}\ \bar{\eta}^{3}\} = \{\frac{111}{222}00\frac{111}{222}\} \Rightarrow$ $SU(3)_{C} \times U(1)_{C} \times SU(2)_{L} \times SU(2)_{R}\ U(1)\ U(1)\ U(1)$

in cases 1. 2.

$$\Rightarrow \qquad Q_{U(1)_j}(16 = \{Q, L, U, D, E, N\}) = +\frac{1}{2}$$

 \implies the $U(1)_{1,2,3}$ are anomalous

In the LRS model of case 3.

$$\implies \qquad Q_{U(1)_j}(Q_L, L_L) \qquad \qquad = -\frac{1}{2}$$

$$Q_{U(1)_j}(Q_R = \{U, D\}, L_R = \{E, N\}) = +\frac{1}{2}$$

 \implies the $U(1)_{1,2,3}$ are anomaly free

$$U(1)_{B'} = \frac{1}{3}U_C - U_1 - U_2 - U_3$$

$$Q_{B'}(L_L) = -\frac{1}{2} + \frac{1}{2} = 0 \qquad Q_{B'}(L_R) = +\frac{1}{2} - \frac{1}{2} = 0$$

$$Q_{B'}(Q_L) = +\frac{1}{2} + \frac{1}{2} = +1 \qquad Q_{B'}(Q_R) = -\frac{1}{2} - \frac{1}{2} = -1$$

A Family Universal Anomaly Free Leptophobic U(1)

Spinor-vector duality:

Invariance under exchange of $\#(16 + \overline{16}) < - > \#(10)$

Symmetric under exchange of rows and columns

 E_6 : 27 = 16 + 10 + 1 $\overline{27} = \overline{16} + 10 + 1$ Self-dual: $\#(16 + \overline{16}) = \#(10)$ without E_6 symmetry Using the level-one SO(2n) characters

$$O_{2n} = \frac{1}{2} \left(\frac{\theta_3^n}{\eta^n} + \frac{\theta_4^n}{\eta^n} \right), \qquad V_{2n} = \frac{1}{2} \left(\frac{\theta_3^n}{\eta^n} - \frac{\theta_4^n}{\eta^n} \right), \\ S_{2n} = \frac{1}{2} \left(\frac{\theta_2^n}{\eta^n} + i^{-n} \frac{\theta_1^n}{\eta^n} \right), \qquad C_{2n} = \frac{1}{2} \left(\frac{\theta_2^n}{\eta^n} - i^{-n} \frac{\theta_1^n}{\eta^n} \right).$$

where

$$\theta_3 \equiv Z_f \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \theta_4 \equiv Z_f \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\theta_2 \equiv Z_f \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \theta_1 \equiv Z_f \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Starting from:

$$Z_{+} = (V_{8} - S_{8}) \left(\sum_{m,n} \Lambda_{m,n}\right)^{\otimes 6} \left(\bar{O}_{16} + \bar{S}_{16}\right) \left(\bar{O}_{16} + \bar{S}_{16}\right) ,$$

where as usual, for each circle,

$$p_{\mathrm{L,R}}^{i} = \frac{m_{i}}{R_{i}} \pm \frac{n_{i}R_{i}}{\alpha'},$$

 $\quad \text{and} \quad$

$$\Lambda_{m,n} = \frac{q^{\frac{\alpha'}{4}} p_{\mathrm{L}}^2 \, \bar{q}^{\frac{\alpha'}{4}} p_{\mathrm{R}}^2}{|\eta|^2} \,.$$

apply
$$Z_2 \times Z'_2 : g \times g'$$

 $g : (-1)^{(F_1+F_2)}\delta$
 $F_{1,2} : (\overline{O}_{16}^{1,2}, \overline{V}_{16}^{1,2}, \overline{S}_{16}^{1,2}, \overline{C}_{16}^{1,2}) \longrightarrow (\overline{O}_{16}^{1,2}, \overline{V}_{16}^{1,2}, -\overline{S}_{16}^{1,2}, -\overline{C}_{16}^{1,2})$
with $\delta X_9 = X_9 + \pi R_9$,
 $\delta : \Lambda_{m,n}^9 \longrightarrow (-1)^m \Lambda_{m,n}^9$
 $g' : (x_4, x_5, x_6, x_7, x_8, x_9) \longrightarrow (-x_4, -x_5, -x_6, -x_7, +x_8, +x_9)$
Note: A single space twisting $Z'_2 \implies N = 4 \rightarrow N = 2$
 $E_7 \rightarrow SO(12) \times SU(2)$

$$\Rightarrow \text{ Analyze } Z = \left(\frac{Z_+}{Z_g \times Z_{g'}}\right) = \left[\frac{(1+g)(1+g')}{2}\right] Z_+$$

$$a = g$$
; $b = g'$; $c = gg'$

P.F. = $(+ \epsilon) = \Lambda_{m,n} \cdot () + \Lambda_{m,n+1/2} \cdot ()$ $\epsilon = \pm 1$ massless massive

$$\Lambda_{p,q} \left\{ \frac{1}{2} \left(\left| \frac{2\eta}{\theta_4} \right|^4 + \left| \frac{2\eta}{\theta_3} \right|^4 \right) \left[P_{\epsilon}^+ Q_s \overline{V}_{12} \overline{C}_4 \overline{O}_{16} + P_{\epsilon}^- Q_s \overline{S}_{12} \overline{O}_4 \overline{O}_{16} \right] + \frac{1}{2} \left(\left| \frac{2\eta}{\theta_4} \right|^4 - \left| \frac{2\eta}{\theta_3} \right|^4 \right) \left[P_{\epsilon}^+ Q_s \overline{O}_{12} \overline{S}_4 \overline{O}_{16} \right] \right\} + \text{massive}$$

where

$$P_{\epsilon}^{+} = \begin{pmatrix} \frac{1+\epsilon(-1)^{m}}{2} \end{pmatrix} \Lambda_{m,n} \qquad P_{\epsilon}^{-} = \begin{pmatrix} \frac{1-\epsilon(-1)^{m}}{2} \end{pmatrix} \Lambda_{m}$$

$$\epsilon = +1 \implies P_{\epsilon}^{+} = \qquad \Lambda_{2m,n} \qquad P_{\epsilon}^{-} = \qquad \Lambda_{2m+1,n}$$

$$\epsilon = -1 \implies P_{\epsilon}^{+} = \qquad \Lambda_{2m+1,n} \qquad P_{\epsilon}^{-} = \qquad \Lambda_{2m,n}$$

and

$$12 \cdot 2 + 4 \cdot 2 \qquad = \qquad 32$$

• The spinor-vector duality in this model is realised in terms of a continuous

interpolation between two discrete Wilson lines.

• The spinor-vector duality is realised in terms of a spectral flow operator

that operates in the bosonic side of the heterotic string. In the case of

enhanced E_6 symmetry, the spectral flow operator acts as an internal

 E_6 generator. When E_6 is broken the spectral flow operator induces the

spinor-vector duality map.

Exophobia \longrightarrow existence proof. Detailed model.

Leptophobia $\longrightarrow CDF vs D0 \rightarrow experimental issue \rightarrow exclusive models$

spinor–vector duality \rightarrow Physics & Geometry