Spinor–Vector Duality and Light Z' in heterotic string models

Motivation - vector bosons exist; proton stability; μ -parameter Constraints

Constructions

With: John Rizos, NPB 895 (2015) 233
 Costas Kounnas, Carlo Angelantonj, Ioannis Florakis
 Viraf Mehta, Panos Athanasopolos, Hasan Sonmez
 PLANCK 2015, Ioannina, 24-30 May 2015

DATA \rightarrow STANDARD MODEL

STANDARD MODEL -> UNIFICATION

ADDITIONAL EVIDENCE:

Logarithmic running, proton longevity, neutrino masses

PRIMARY GUIDES:

3 generations

SO(10) embedding

Realistic free fermionic models

'Phenomenology of the Standard Model and string unification' Minimal Superstring Standard Model NPB 335 (1990) 347 (with Nanopoulos & Yuan) • Top quark mass $\sim 175-180 {
m GeV}$ PLB 274 (1992) 47 • Generation mass hierarchy NPB 407 (1993) 57 NPB 416 (1994) 63 (with Halyo) • CKM mixing PLB 307 (1993) 311 (with Halyo) Stringy seesaw mechanism NPB 457 (1995) 409 (with Dienes) • Gauge coupling unification NPB 428 (1994) 111 • Proton stability NPB 526 (1998) 21 (with Pati) Squark degeneracy NPB 728 (2005) 83 Moduli fixing Classification & Exophobia 2003

(with Nooij, Assel, Christodoulides, Kounnas, Rizos & Sonmez)

Other approaches

<u>Geometrical</u> Greene, Kirklin, Miron, Ross (1987) Donagi, Ovrut, Pantev, Waldram (1999) Blumenhagen, Moster, Reinbacher, Weigand (2006) Heckman, Vafa (2008)

<u>Orbifolds</u>

Ibanez, Nilles, Quevedo (1987) Bailin, Love, Thomas (1987) Kobayashi, Raby, Zhang (2004) Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter (2007) Blaszczyk, Groot–Nibbelink, Ruehle, Trapletti, Vaudrevange (2010) <u>Other CFTs</u> Gepner (1987) Schellekens, Yankielowicz (1989)

Gato-Rivera, Schellekens (2009)

<u>Orientifolds</u>

Cvetic, Shiu, Uranga (2001) Ibanez, Marchesano, Rabadan (2001) Kiristis, Schellekens, Tsulaia (2008) <u>Some references on:</u> 'Z' in free fermionic models'

- $\frac{3}{2}U(1)_{B-L} 2U(1)_R \in SO(10) @ 1TeV$
- But $m_t = m_{\nu_\tau} \& 1 TeV Z' \Rightarrow m_{\nu_\tau} \approx 10 MeV$
- Pati 1996 $U(1)s \notin SO(10) \to \tau_{\rm P} \& M_{\nu_L}$
- Pati's U(1)s broken at M_{string}
- String derived anomaly free Z'
- String inspired collider Z'
- String inspired anomaly free model
- Gauge coupling constraints ...
- Z' string derived model ...

MPL A6 (1991) 61 (with Nanopoulos) PLB 245 (1990) 435 PLB 388 (1996) 532 PLB 499 (2001) 147 PLB EPJC 53 (2008) 421 (with Coriano & Guzzi) PRD 78 (2008) 015012 (with Coriano & Guzzi) PRD 84 (2011) 086006 (with Mehta) (with Mehta) (with Rizos)

Free Fermionic Construction

<u>Left-Movers</u>: $\psi_{1,2}^{\mu}$, χ_i , y_i , ω_i $(i = 1, \dots, 6)$ <u>Right-Movers</u>

Away from the free fermionic point: $Z_2 \times Z_2$ orbifolds

$$Z = \int \frac{d^2 \tau}{\tau_2^2} \frac{\tau_2^{-1}}{\eta^{12} \bar{\eta}^{24}} \frac{1}{2^3} \left(\sum (-)^{a+b+ab} \vartheta \begin{bmatrix} a \\ b \end{bmatrix} \vartheta \begin{bmatrix} a+h_1 \\ b+g_1 \end{bmatrix} \vartheta \begin{bmatrix} a+h_2 \\ b+g_2 \end{bmatrix} \vartheta \begin{bmatrix} a+h_3 \\ b+g_3 \end{bmatrix} \right)_{\psi^{\mu},}$$

$$\times \left(\frac{1}{2} \sum_{\epsilon,\xi} \bar{\vartheta} \begin{bmatrix} \epsilon \\ \xi \end{bmatrix}^5 \bar{\vartheta} \begin{bmatrix} \epsilon+h_1 \\ \xi+g_1 \end{bmatrix} \bar{\vartheta} \begin{bmatrix} \epsilon+h_2 \\ \xi+g_2 \end{bmatrix} \bar{\vartheta} \begin{bmatrix} \epsilon+h_3 \\ \xi+g_3 \end{bmatrix} \right)_{\bar{\psi}^{1...5}, \bar{\eta}^{1,2,3}}$$

$$\times \left(\frac{1}{2} \sum_{H_1,G_1} \frac{1}{2} \sum_{H_2,G_2} (-)^{H_1G_1+H_2G_2} \bar{\vartheta} \begin{bmatrix} \epsilon+H_1 \\ \xi+G_1 \end{bmatrix}^4 \bar{\vartheta} \begin{bmatrix} \epsilon+H_2 \\ \xi+G_2 \end{bmatrix}^4 \right)_{\bar{\phi}^{1...8}}$$

$$\times \left(\sum_{s_i,t_i} \Gamma_{6,6} \begin{bmatrix} h_i | s_i \\ g_i | t_i \end{bmatrix} \right)_{(y \omega \bar{y} \bar{\omega})^{1...6}} \times e^{i\pi \Phi(\gamma,\delta,s_i,t_i,\epsilon,\xi,h_i,g_i,H_1,G_1,H_2,G_2)}$$

$$\Gamma_{1,1}[_{g}^{h}] = \frac{R}{\sqrt{\tau_{2}}} \sum_{\tilde{m},n} \exp\left[-\frac{\pi R^{2}}{\tau_{2}} \left| (2\tilde{m}+g) + (2n+h)\tau \right|^{2}\right]$$

The NAHE set:

$$b_{1} = \{\chi^{34}, \chi^{56}, y^{34}, y^{56} | \bar{y}^{34}, \bar{y}^{56}, \bar{\eta}^{1}, \bar{\psi}^{1,\dots,5} \}, \qquad N = 4 \to N = 2$$

$$b_{2} = \{\chi^{12}, \chi^{56}, y^{12}, \omega^{56} | \bar{y}^{12}, \bar{\omega}^{56}, \bar{\eta}^{2}, \bar{\psi}^{1,\dots,5} \}, \qquad N = 2 \to N = 1$$

$$b_{3} = \{\chi^{12}, \chi^{34}, \omega^{12}, \omega^{34} | \bar{\omega}^{12}, \bar{\omega}^{34}, \bar{\eta}^{3}, \bar{\psi}^{1,\dots,5} \}, \qquad N = 2 \to N = 1$$

 $Z_2 \times Z_2$ orbifold compactification

 \implies Gauge group $SO(10) \times SO(6)^{1,2,3} \times E_8$

Add $\{\alpha, \beta, \gamma\}$

number of generations is reduced to three

$$SO(10) \longrightarrow SU(3) \times SU(2) \times U(1)_{T_{3_R}} \times U(1)_{B-L}$$

$$U(1)_Y = \frac{1}{2}(B-L) + T_{3_R} \in SO(10) !$$

 $SO(6)^{1,2,3} \longrightarrow U(1)^{1,2,3} \times U(1)^{1,2,3}$

Towards String Predictions

Patterns of SO(10) symmetry breaking

The $SO(10) \rightarrow \text{subgroup} \quad b(\bar{\psi}_{\frac{1}{2}}^{1\cdots 5}):$

1.
$$b\{\bar{\psi}_{\frac{1}{2}}^{1\dots5} \bar{\eta}^{1} \bar{\eta}^{2} \bar{\eta}^{3}\} = \{\frac{111111111}{222222222}\} \Rightarrow SU(5) \times U(1) \ U(1) \ U(1) \ U(1)$$

2. $b\{\bar{\psi}_{\frac{1}{2}}^{1\dots5} \bar{\eta}^{1} \bar{\eta}^{2} \bar{\eta}^{3}\} = \{11100\ 000\ \} \Rightarrow SO(6) \times SO(4) \ U(1) \ U(1) \ U(1)$

 $(1.+2.) \Rightarrow SO(10) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_C \times U(1)_L$

 $SO(10) \rightarrow SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

 $2. \ b\{\bar{\psi}_{\frac{1}{2}}^{1\cdots 5}\bar{\eta}^{1}\ \bar{\eta}^{2}\ \bar{\eta}^{3}\} = \{11100000\} \Rightarrow SO(6) \times SO(4)\ U(1)\ U(1)\ U(1)$ $3. \ b\{\bar{\psi}_{\frac{1}{2}}^{1\cdots 5}\ \bar{\eta}^{1}\ \bar{\eta}^{2}\ \bar{\eta}^{3}\} = \{\frac{111}{222}00\frac{111}{222}\} \Rightarrow$ $SU(3)_{C} \times U(1)_{C} \times SU(2)_{L} \times SU(2)_{R}\ U(1)\ U(1)\ U(1)$

in cases 1. 2.

$$\implies \qquad Q_{U(1)_j}(16 = \{Q, L, U, D, E, N\}) = +\frac{1}{2}$$

 \implies the $U(1)_{1,2,3}$ & $U(1)_{\zeta} = U(1)_1 + U(1)_2 + U(1)_3$ are anomalous

In the LRS model of case 3.

$$\implies \qquad Q_{U(1)_j}(Q_L, L_L) \qquad \qquad = -\frac{1}{2}$$

$$Q_{U(1)_j}(Q_R = \{U, D\}, L_R = \{E, N\}) = +\frac{1}{2}$$

 \implies the $U(1)_{1,2,3}$ are anomaly free

STRING DERIVED LEFT-RIGHT SYMMETRIC MODEL

	ψ^{μ}	χ^{12}	χ^{34}	χ^{56}	$y^{3,,6}$	$\bar{y}^{3,,6}$	$y^{1,2},\omega^{5,6}$	$ar{y}^{1,2},ar{\omega}^{5,6}$	$\omega^{1,,4}$	$\bar{\omega}^{1,\dots,4}$	$ar{\psi}^{1,,5}$	$\bar{\eta}^1$	$ar{\eta}^2$	$\bar{\eta}^3$	$ar{\phi}^{1,,8}$
1	1	1	1	1	1,,1	1,,1	1,,1	1,,1	1,,1	1,,1	1,,1	1	1	1	1,,1
S	1	1	1	1	0,,0	0,,0	0,,0	0,,0	0,,0	0,,0	0,,0	0	0	0	0,,0
b_1	1	1	0	0	1,,1	1,,1	0,,0	0,,0	0,,0	0,,0	1,,1	1	0	0	0,,0
b_2	1	0	1	0	0,,0	0,,0	1,,1	1,,1	0,,0	0,,0	1,,1	0	1	0	0,,0
b_3	1	0	0	1	0,,0	0,,0	0,,0	0,,0	1,,1	1,,1	1,,1	0	0	1	0,,0

	ψ^{μ}	χ^{12}	χ^{34}	χ^{56}	y^3y^6	$y^4 \bar{y}^4$	$y^5 ar{y}^5$	$ar{y}^3ar{y}^6$	$y^1\omega^5$	$y^2 \bar{y}^2$	$\omega^6 \bar{\omega}^6$	$ar{y}^1ar{\omega}^5$	$\omega^2 \omega^4$	$\omega^1 \bar{\omega}^1$	$\omega^3 \bar{\omega}$	$^3 \ \bar{\omega}^2 \bar{\omega}^4$	$ar{\psi}^{1,,5}$	$\bar{\eta}^1$	$\bar{\eta}^2$	$\bar{\eta}^3$	$ar{\phi}^{1,}$
α	0	0	0	0	1	0	0	0	0	0	1	1	0	0	1	1	11100	0	0	0	1111
β	0	0	0	0	0	0	1	1	1	0	0	0	0	1	0	1	11100	0	0	0	1100
γ	0	0	0	0	0	1	0	1	0	1	0	1	1	0	0	0	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 0 0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$1 \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$

Gerald Cleaver, AEF and Christopher Savage, PRD 63:066001,2001.

3 generations;

3 untwisted Higgs bi-doublets;

Fermion mass terms arise from N = 3 and N = 5 superpotential terms

String inspired Z' model

(with Viraf Mehta, PRD88 (2013) 02500

- String scale: $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_C \times U(1)_\zeta$
- Chiral matter states: Q_L , $Q_R = U + D$, L_L , $L_R = E + N$

• \longrightarrow Add $SU(2)_{L/R}$ doublets to cancel gauge anomalies

- \bullet Gauge coupling unification \rightarrow add triplets
- $\alpha_s(M_Z) \approx 0.1$ & $\sin^2 \theta(M_Z) \approx 0.231$

 $M_{SUSY} \approx 1 \text{TeV}; \ M_{Z'} > 10^8 \text{GeV}; \ M_D > 10^{12} \text{GeV}; \ M_R \approx M_{string}$

 $E_6SSM \to M_{Z'} \approx 10 \text{TeV} \longrightarrow \text{Anomaly free } U(1)_{\zeta}$?

Classification of fermionic $Z_2 \times Z_2$ orbifolds

Basis vectors:

$$\begin{split} 1 &= \{\psi^{\mu}, \ \chi^{1,\dots,6}, y^{1,\dots,6}, \omega^{1,\dots,6} \mid \bar{y}^{1,\dots,6}, \bar{\omega}^{1,\dots,6}, \bar{\eta}^{1,2,3}, \bar{\psi}^{1,\dots,5}, \bar{\phi}^{1,\dots,8} \\ S &= \{\psi^{\mu}, \chi^{1,\dots,6}\}, \\ z_{1} &= \{\bar{\phi}^{1,\dots,4}\}, \\ z_{2} &= \{\bar{\phi}^{5,\dots,8}\}, \\ e_{i} &= \{y^{i}, \omega^{i} | \bar{y}^{i}, \bar{\omega}^{i}\}, \ i = 1, \dots, 6, \\ b_{1} &= \{\chi^{34}, \chi^{56}, y^{34}, y^{56} | \bar{y}^{34}, \bar{y}^{56}, \bar{\eta}^{1}, \bar{\psi}^{1,\dots,5}\}, \\ b_{2} &= \{\chi^{12}, \chi^{56}, y^{12}, y^{56} | \bar{y}^{12}, \bar{y}^{56}, \bar{\eta}^{2}, \bar{\psi}^{1,\dots,5}\}, \\ b_{2} &= \{\bar{\psi}^{4,5}, \bar{\phi}^{1,2}\} \\ \alpha &= \{\bar{\psi}^{4,5}, \bar{\phi}^{1,2}\} \\ \beta &= \{\bar{\psi}^{1,\dots,5} \equiv \frac{1}{2}, \dots\} \\ \end{split}$$

Independent phases $c \begin{bmatrix} vi \\ v_j \end{bmatrix} = \exp[i\pi(v_i|v_j)]$: upper block

A priori 66 independent coefficients $\rightarrow 2^{66}$ distinct vacua

The twisted matter spectrum:

$$\begin{split} B^{1}_{\ell_{3}^{1}\ell_{4}^{1}\ell_{5}^{1}\ell_{6}^{1}} &= S + b_{1} + \ell_{3}^{1}e_{3} + \ell_{4}^{1}e_{4} + \ell_{5}^{1}e_{5} + \ell_{6}^{1}e_{6} \\ B^{2}_{\ell_{1}^{2}\ell_{2}^{2}\ell_{5}^{2}\ell_{6}^{2}} &= S + b_{2} + \ell_{1}^{2}e_{1} + \ell_{2}^{2}e_{2} + \ell_{5}^{2}e_{5} + \ell_{6}^{2}e_{6} \\ B^{3}_{\ell_{1}^{2}\ell_{2}^{2}\ell_{3}^{2}\ell_{3}^{3}} &= S + b_{3} + \ell_{1}^{3}e_{1} + \ell_{2}^{3}e_{2} + \ell_{3}^{3}e_{3} + \ell_{4}^{3}e_{4} \qquad l_{i}^{j} = 0, 1 \\ \text{sectors } B^{i}_{pqrs} &\to 16 \text{ or } \overline{16} \text{ of } SO(10) \text{ with multiplicity } (1, 0, -1) \\ B^{i}_{pqrs} + x &\to 10 \quad \text{of } SO(10) \text{ with multiplicity } (1, 0) \\ x &= \{\bar{\psi}^{1, \cdots, 5}, \bar{\eta}^{1}, \bar{\eta}^{2}, \bar{\eta}^{3}\} \qquad x - \text{map } \leftrightarrow \text{ spinor-vector map} \\ \text{Algebraic formulas for } S = \sum_{i=1}^{3} S^{(i)}_{+} - S^{(i)}_{-} \quad \text{and } V = \sum_{i=1}^{3} V^{(i)} \\ \end{bmatrix}$$

Pati-Salam class: with Assel, Christodoulides, Kounnas, Rizos

RESULTS: of random search of over 10¹¹ vacua

Number of 3-generation models versus total number of exotic multiplets

flipped SU(5) class: with Sonmez, Rizos

RESULTS: of random search of over 10^{12} vacua

Number of exophobic models versus the number of generations

Spinor-vector duality:

Invariance under exchange of $\#(16 + \overline{16}) < - > \#(10)$

Symmetric under exchange of rows and columns

 E_6 : 27 = 16 + 10 + 1 $\overline{27} = \overline{16} + 10 + 1$ Self-dual: $\#(16 + \overline{16}) = \#(10)$ without E_6 symmetry

light Z' heterotic-string model $c \begin{bmatrix} vi \\ v_j \end{bmatrix} = \exp[i\pi(v_i|v_j)]$:

Observable gauge group: $SO(6) \times SO(4) \times U(1)_{1,2,3}$

 $U(1)_{\zeta} = U(1)_1 + U(1)_2 + U(1)_3$ is anomaly free

sector	field	$SU(4) \times SU(2)_L \times SU(2)_R$	$U(1)_{1}$	$U(1)_{2}$	$U(1)_{3}$	$U(1)_{\zeta}$
$S + b_1$	\bar{F}_{1R}	$(ar{f 4}, {f 1}, {f 2})$	1/2	0	0	1/2
$S + b_1 + e_3 + e_5$	F_{1R}	$({f 4},{f 1},{f 2})$	1/2	0	0	1/2
$S + b_2$	F_{1L}	$({f 4},{f 2},{f 1})$	0	1/2	0	1/2
$S + b_2 + e_1 + e_2 + e_5$	F_{2L}	$({f 4},{f 2},{f 1})$	0	1/2	0	1/2
$S + b_2 + e_1$	\bar{F}_{2R}	$(ar{f 4}, {f 1}, {f 2})$	0	1/2	0	1/2
$S + b_2 + e_2 + e_5$	\bar{F}_{3R}	$(ar{f 4}, {f 1}, {f 2})$	0	1/2	0	1/2
$S + b_3 + e_1 + e_2$	F_{3L}	$({f 4},{f 2},{f 1})$	0	0	1/2	1/2
$S + b_3 + e_2$	\bar{F}_{4R}	$(ar{f 4}, f 1, f 2)$	0	0	1/2	1/2
$S + b_3 + x$	h_1	$({f 1},{f 2},{f 2})$	-1/2	-1/2	0	-1
$S + b_2 + x + e_5$	h_2	$({f 1},{f 2},{f 2})$	-1/2	0	-1/2	-1
$S + b_2 + x + e_1 + e_2$	h_3	$({f 1},{f 2},{f 2})$	-1/2	0	-1/2	-1
$S + b_3 + x + e_1$	D_4	$({f 6},{f 1},{f 1})$	-1/2	-1/2	0	-1
	χ_1^+	$({f 1},{f 1},{f 1})$	1/2	1/2	1	+2
	χ_1^-	$({f 1},{f 1},{f 1})$	1/2	1/2	-1	0
	$\zeta_a, a = 2, 3$	$({f 1},{f 1},{f 1})$	1/2	-1/2	0	0
	$\bar{\zeta}_a, a=2,3$	(1, 1, 1)	-1/2	1/2	0	0
$S + b_2 + x + e_1 + e_5$	D_5	$({f 6},{f 1},{f 1})$	-1/2	0	-1/2	-1
	χ_2^+	$({f 1},{f 1},{f 1})$	1/2	1	1/2	+2
	χ_2^-	$({f 1},{f 1},{f 1})$	1/2	-1	1/2	0
	$\zeta_a, a = 4, 5$	$({f 1},{f 1},{f 1})$	1/2	0	-1/2	0
	$\bar{\zeta}_a, a=4,5$	(1, 1, 1)	-1/2	0	1/2	0
$S + b_2 + x + e_2$	D_6	$({f 6},{f 1},{f 1})$	-1/2	0	-1/2	-1
	χ_3^+	$({f 1},{f 1},{f 1})$	1/2	1	1/2	+2
	χ_3^-	(1, 1, 1)	1/2	-1	1/2	0
	$\zeta_a, a = 6, 7$	$({f 1},{f 1},{f 1})$	1/2	0	-1/2	0
	$\bar{\zeta}_a, a = 6, 7$	(1, 1, 1)	-1/2	0	1/2	0
$S + b_1 + x + e_3$	\bar{D}_6	$({f 6},{f 1},{f 1})$	0	1/2	1/2	+1
	$\bar{\chi}_4^+$	(1, 1, 1)	-1	-1/2	-1/2	-2
	$\bar{\chi}_4^-$	(1, 1, 1)	1	-1/2	-1/2	0
	$\zeta_a, a = 8, 9$	$({f 1},{f 1},{f 1})$	0	1/2	-1/2	0
	$\bar{\zeta}_a, a = 8, 9$	(1, 1, 1)	0	-1/2	1/2	0
$S + b_1 + x + e_5$	D_7	$({f 6},{f 1},{f 1})$	0	-1/2	-1/2	-1
	χ_5^+	(1, 1, 1)	1	1/2	1/2	+2
	χ_5^-	$({f 1},{f 1},{f 1})$	-1	1/2	1/2	0
	$\zeta_a, a = 10, 11$	$({f 1},{f 1},{f 1})$	0	1/2	-1/2	0
	$\zeta_a, a = 10, 11$	(1, 1, 1)	0	-1/2	1/2	0
$S + b_3 + x + e_2 + e_3$	ζ_1	(1, 1, 1)	1/2	-1/2	0	0
	ζ_1	(1, 1, 1)	-1/2	1/2	0	0
$S + b_1 + x + e_3 + e_4 + e_6$	ϕ_1	$({f 1},{f 1},{f 1})$	0	1/2	1/2	+1
	ϕ_1	(1, 1, 1)	0	-1/2	-1/2	-1
$S + b_1 + x + e_4 + e_5 + e_6$	ϕ_2	$({f 1},{f 1},{f 1})$	0	1/2	1/2	+1
	$ar{\phi}_2$	(1, 1, 1)	0	-1/2	-1/2	-1

Table 1: Observable twisted matter spectrum and $SU(4) \times SU(2)_L \times SU(2)_R \times U(1)^3$ quantum numbers.

The chiral spectrum is self-dual under spinor-vector duality

maintains the E_6 embedding $\Rightarrow U(1)_{\zeta}$ is anomaly free

three generations + heavy and light higgs + $\lambda_t \sim 1$

$$U(1)_{Z'} = \frac{1}{5} U(1)_C - \frac{1}{5} U(1)_L - U_{\zeta}$$

 $Z' \Rightarrow$ Additional matter at the Z' breaking scale

Exotic SO(10) singlets with non–standard $U(1)_{\zeta}$ charges

 \Rightarrow Natural Wilsonian dark-matter candidates

• DATA \longrightarrow HIGH SCALE UNIFICATION

• STRINGS \longrightarrow GAUGE & GRAVITY UNIFICATION

 \bullet STRING CONSISTENCY REQUIRES EXTRA $U(1) {\rm s}$

• EXPERIMENTAL PREDICTIONS ? Light Z' ?

motivated by proton stability; μ -term ...

Hard to implement $M_{Z'} \sim \text{TeV}$ in heterotic string constructions ...

• \Rightarrow Additional matter, dark matter candidates ...