Spinor-vector duality and BSM phenomenology

- 2006 · · · Spinor–vector duality · · ·
- 1990 · · · String derived Z' · · ·
- 2019 · · · non–SUSY string phenomenology from 10D tachyonic vacua
 - AEF, S Groot–Nibbelink, M Hurtado Heredia, arXiv:2103:13442
 AEF, J Rizos, NPB895 (2015) 233
 AEF, B Percival, V Matyas, EPJC80 (2020) 337; NPB961 (2020) 115231; PLB 814 (2021) 136080; 2010.06637; 2011.04113.

BSM–2021, Zoom, 29 March 2021

Fermionic $Z_2 \times Z_2$ orbifolds

'Phenomenology of the Standard Model and Unification'

- Minimal Superstring Standard Model NPB 335 (1990) 347
- \bullet Top quark mass \sim 175–180GeV
- Generation mass hierarchy
- CKM mixing
- Stringy seesaw mechanism
- Gauge coupling unification
- Proton stability
- Squark degeneracy
- Moduli fixing
- Classification

(with Nanopoulos & Yuan) PLB 274 (1992) 47 NPB 407 (1993) 57 NPB 416 (1994) 63 (with Halyo) PLB 307 (1993) 311 (with Halyo) NPB 457 (1995) 409 (with Dienes) NPB 428 (1994) 111 NPB 526 (1998) 21 (with Pati) NPB 728 (2005) 83 2003 _ . . .

(with Kounnas, Rizos & ... Harries, Percival)

Other approaches

<u>Geometrical</u> Greene, Kirklin, Miron, Ross (1987) Donagi, Ovrut, Pantev, Waldram (1999) Blumenhagen, Moster, Reinbacher, Weigand (2006) Heckman, Vafa (2008)

<u>Orbifolds</u>

Gepner (1987) Schellekens, Yankielowicz (1989) Gato–Rivera, Schellekens (2009)

Orientifolds

Cvetic, Shiu, Uranga (2001) Ibanez, Marchesano, Rabadan (2001) Kiristis, Schellekens, Tsulaia (2008) Point, String, Membrane

+ ... SO(16)xSO(16), E8, SO(16)xE8 + ...

Free Fermionic Construction

<u>Left-Movers</u>: $\psi_{1,2}^{\mu}$, χ_i , y_i , ω_i $(i = 1, \cdots, 6)$ <u>Right-Movers</u>

$$\begin{split} \bar{\phi}_{A=1,\cdots,44} = \begin{cases} \bar{y}_i \ , \ \bar{\omega}_i & i = 1, \cdots, 6 \\\\ \bar{\eta}_i & U(1)_i & i = 1, 2, 3 \\\\ \bar{\psi}_{1,\cdots,5} & SO(10) \\\\ \bar{\phi}_{1,\cdots,8} & SO(16) \end{cases} \\ V \longrightarrow V & f \longrightarrow -e^{i\pi\alpha(f)}f \\ Z &= \sum_{\substack{all \ spin \\ structures}} c\binom{\vec{\alpha}}{\vec{\beta}} \ Z\binom{\vec{\alpha}}{\vec{\beta}} \\\\ \text{Models} \longleftrightarrow \text{Basis vectors} + \text{ one-loop phases} \end{cases}$$

(Modern School)

Basis vectors:

$$\begin{split} 1 &= \{\psi^{\mu}, \ \chi^{1,\dots,6}, y^{1,\dots,6}, \omega^{1,\dots,6} \mid \bar{y}^{1,\dots,6}, \bar{\omega}^{1,\dots,6}, \bar{\eta}^{1,2,3}, \bar{\psi}^{1,\dots,5}, \bar{\phi}^{1,\dots,8}\} \\ S &= \{\psi^{\mu}, \chi^{1,\dots,6}\}, \\ z_1 &= \{\bar{\phi}^{1,\dots,4}\}, \\ z_2 &= \{\bar{\phi}^{5,\dots,8}\}, \\ e_i &= \{y^i, \omega^i | \bar{y}^i, \bar{\omega}^i\}, \ i = 1, \dots, 6, \\ b_1 &= \{\chi^{34}, \chi^{56}, y^{34}, y^{56} | \bar{y}^{34}, \bar{y}^{56}, \bar{\eta}^1, \bar{\psi}^{1,\dots,5}\}, \\ b_2 &= \{\chi^{12}, \chi^{56}, y^{12}, y^{56} | \bar{y}^{12}, \bar{y}^{56}, \bar{\eta}^2, \bar{\psi}^{1,\dots,5}\}, \\ \lambda &= 2 \rightarrow N = 1 \\ \alpha &= \{\bar{\psi}^{4,5}, \bar{\phi}^{1,2}\} \\ \beta &= \{\bar{\psi}^{1,\dots,5} \equiv \frac{1}{2}, \dots\} \\ \end{split}$$

Independent phases $c \begin{bmatrix} vi \\ v_j \end{bmatrix} = \exp[i\pi(v_i|v_j)]$: upper block

A priori 66 independent coefficients $\rightarrow 2^{66}$ distinct vacua

Spinor-vector duality:

Invariance under exchange of $\#(16 + \overline{16}) < - > \#(10)$

Symmetric under exchange of rows and columns

 E_6 : 27 = 16 + 10 + 1 $\overline{27} = \overline{16} + 10 + 1$ Self-dual: $\#(16 + \overline{16}) = \#(10)$ without E_6 symmetry Spinor–Vector duality in Orbifolds:

Starting from:
$$Z_+ = (V_8 - S_8) \left(\sum_{m,n} \Lambda_{m,n}\right)^{\otimes 6} E_8 \times E_8,$$

apply $Z_2 \times Z_2' : g \times g'$

 $g : (0^7, 1|1, 0^7) \rightarrow \text{Wilson line} \rightarrow E_8 \times E_8 \rightarrow SO(16) \times SO(16)$

 $g' : (x_4, x_5, x_6, x_7, x_8, x_9) \longrightarrow (-x_4, -x_5, -x_6, -x_7, +x_8, +x_9)$

<u>Note:</u> A single space twisting $Z'_2 \implies N = 4 \rightarrow N = 2$

 $E_7 \to SO(12) \times SU(2)$

$$\Rightarrow \text{ Analyze } Z = \left(\frac{Z_+}{Z_g \times Z_{g'}}\right) = \left[\frac{(1+g)(1+g')}{2}\right] Z_+$$

a = g; b = g'; c = gg'

P.F. = $(+ \epsilon) = \Lambda_{m,n} \cdot () + \Lambda_{m,n+1/2} \cdot ()$ $\epsilon = \pm 1$ massless massive

$$\Lambda_{p,q} \left\{ \frac{1}{2} \left(\left| \frac{2\eta}{\theta_4} \right|^4 + \left| \frac{2\eta}{\theta_3} \right|^4 \right) \left[P_{\epsilon}^+ Q_s \overline{V}_{12} \overline{C}_4 \overline{O}_{16} + P_{\epsilon}^- Q_s \overline{S}_{12} \overline{O}_4 \overline{O}_{16} \right] + \frac{1}{2} \left(\left| \frac{2\eta}{\theta_4} \right|^4 - \left| \frac{2\eta}{\theta_3} \right|^4 \right) \left[P_{\epsilon}^+ Q_s \overline{O}_{12} \overline{S}_4 \overline{O}_{16} \right] \right\} + \text{massive}$$

where

$$P_{\epsilon}^{+} = \left(\frac{1 + \epsilon(-1)^{m}}{2}\right)\Lambda_{m,n} \quad P_{\epsilon}^{-} = \left(\frac{1 - \epsilon(-1)^{m}}{2}\right)\Lambda_{m,n}$$

$$\epsilon = +1 \quad \Rightarrow \quad P_{\epsilon}^{+} = \qquad \Lambda_{2m,n} \qquad P_{\epsilon}^{-} = \qquad \Lambda_{2m+1,n}$$

$$\epsilon = -1 \quad \Rightarrow \quad P_{\epsilon}^{+} = \qquad \Lambda_{2m+1,n} \qquad P_{\epsilon}^{-} = \qquad \Lambda_{2m,n}$$

and

$$12 \cdot 2 \ + \ 4 \cdot 2 \qquad = \qquad 32$$

- From the "Land" to the "Swamp" w Groot-Nibellink & Hurtado-Heredia,
 - arXiv:2103.13442, spinor-vector duality on a resolved orbifold. The role
 - of the discrete torsion in the effective field theory limit
- Vafa–Witten 1994, the role of a discrete torsion in the $Z_2 \times Z_2$ orbifold in mirror symmetry
- In similar spirit \rightarrow the imprint of the worldsheet modular properties in
 - the effective field theory limit

Low scale Z' in free fermionic models:

• $\frac{3}{2}U(1)_{B-L} - 2U(1)_R \in SO(10) @ 1TeV$ MPL A6 (1991) 61 (with Nanopoulos)

- But $m_t = m_{\nu_{\tau}} \& 1 TeV Z' \Rightarrow m_{\nu_{\tau}} \approx 10 MeV$ PLB 245 (1990) 435 $\underline{E_6 \rightarrow SO(10) \times U(1)_A} \implies U(1)_A \text{ is anomalous!}$ $\implies U(1)_A \notin \text{ low scale } U(1)_{Z'}$
- 1996-2013, Pati, AEF, Guzzi, Mehta, Athanasopoulos, $U(1) \notin E_6$
- On the other hand(AEF, Viraf Mehta, PRD88 (2013) 025006)

 $\sin^2 \theta_W(M_Z) , \ \alpha_s(M_Z) \implies U(1)_{Z'} \in E_6$

• Z' string derived model, (with Rizos) NPB 895 (2015) 233

light Z' heterotic-string model $c \begin{bmatrix} vi \\ v_j \end{bmatrix} = \exp[i\pi(v_i|v_j)]$:

Observable gauge group: $SO(6) \times SO(4) \times U(1)_{1,2,3}$

 $U(1)_{\zeta} = U(1)_1 + U(1)_2 + U(1)_3$ is anomaly free

sector	field	$SU(4) \times SU(2)_L \times SU(2)_R$	$U(1)_{1}$	$U(1)_{2}$	$U(1)_{3}$	$U(1)_{\zeta}$
$S + b_1$	\bar{F}_{1R}	$(ar{f 4}, {f 1}, {f 2})$	1/2	0	0	1/2
$S + b_1 + e_3 + e_5$	F_{1R}	$({f 4},{f 1},{f 2})$	1/2	0	0	1/2
$S + b_2$	F_{1L}	$({f 4},{f 2},{f 1})$	0	1/2	0	1/2
$S + b_2 + e_1 + e_2 + e_5$	F_{2L}	$({f 4},{f 2},{f 1})$	0	1/2	0	1/2
$S + b_2 + e_1$	\bar{F}_{2R}	$(ar{f 4}, {f 1}, {f 2})$	0	1/2	0	1/2
$S + b_2 + e_2 + e_5$	\bar{F}_{3R}	$(ar{f 4}, {f 1}, {f 2})$	0	1/2	0	1/2
$S + b_3 + e_1 + e_2$	F_{3L}	$({f 4},{f 2},{f 1})$	0	0	1/2	1/2
$S + b_3 + e_2$	\bar{F}_{4R}	$(ar{f 4}, f 1, f 2)$	0	0	1/2	1/2
$S + b_3 + x$	h_1	$({f 1},{f 2},{f 2})$	-1/2	-1/2	0	-1
$S + b_2 + x + e_5$	h_2	$({f 1},{f 2},{f 2})$	-1/2	0	-1/2	-1
$S + b_2 + x + e_1 + e_2$	h_3	$({f 1},{f 2},{f 2})$	-1/2	0	-1/2	-1
$S + b_3 + x + e_1$	D_4	$({f 6},{f 1},{f 1})$	-1/2	-1/2	0	-1
	χ_1^+	$({f 1},{f 1},{f 1})$	1/2	1/2	1	+2
	χ_1^-	$({f 1},{f 1},{f 1})$	1/2	1/2	-1	0
	$\zeta_a, a = 2, 3$	$({f 1},{f 1},{f 1})$	1/2	-1/2	0	0
	$\bar{\zeta}_a, a=2,3$	(1, 1, 1)	-1/2	1/2	0	0
$S + b_2 + x + e_1 + e_5$	D_5	$({f 6},{f 1},{f 1})$	-1/2	0	-1/2	-1
	χ_2^+	$({f 1},{f 1},{f 1})$	1/2	1	1/2	+2
	χ_2^-	$({f 1},{f 1},{f 1})$	1/2	-1	1/2	0
	$\zeta_a, a = 4, 5$	$({f 1},{f 1},{f 1})$	1/2	0	-1/2	0
	$\bar{\zeta}_a, a=4,5$	(1, 1, 1)	-1/2	0	1/2	0
$S + b_2 + x + e_2$	D_6	$({f 6},{f 1},{f 1})$	-1/2	0	-1/2	-1
	χ_3^+	$({f 1},{f 1},{f 1})$	1/2	1	1/2	+2
	χ_3^-	(1, 1, 1)	1/2	-1	1/2	0
	$\zeta_a, a = 6, 7$	$({f 1},{f 1},{f 1})$	1/2	0	-1/2	0
	$\bar{\zeta}_a, a = 6, 7$	(1, 1, 1)	-1/2	0	1/2	0
$S + b_1 + x + e_3$	\bar{D}_6	$({f 6},{f 1},{f 1})$	0	1/2	1/2	+1
	$\bar{\chi}_4^+$	(1, 1, 1)	-1	-1/2	-1/2	-2
	$\bar{\chi}_4^-$	(1, 1, 1)	1	-1/2	-1/2	0
	$\zeta_a, a = 8, 9$	$({f 1},{f 1},{f 1})$	0	1/2	-1/2	0
	$\bar{\zeta}_a, a = 8, 9$	(1, 1, 1)	0	-1/2	1/2	0
$S + b_1 + x + e_5$	D_7	$({f 6},{f 1},{f 1})$	0	-1/2	-1/2	-1
	χ_5^+	(1, 1, 1)	1	1/2	1/2	+2
	χ_5^-	$({f 1},{f 1},{f 1})$	-1	1/2	1/2	0
	$\zeta_a, a = 10, 11$	$({f 1},{f 1},{f 1})$	0	1/2	-1/2	0
	$\zeta_a, a = 10, 11$	(1, 1, 1)	0	-1/2	1/2	0
$S + b_3 + x + e_2 + e_3$	ζ_1	(1, 1, 1)	1/2	-1/2	0	0
	ζ_1	(1, 1, 1)	-1/2	1/2	0	0
$S + b_1 + x + e_3 + e_4 + e_6$	ϕ_1	$({f 1},{f 1},{f 1})$	0	1/2	1/2	+1
	ϕ_1	(1, 1, 1)	0	-1/2	-1/2	-1
$S + b_1 + x + e_4 + e_5 + e_6$	ϕ_2	$({f 1},{f 1},{f 1})$	0	1/2	1/2	+1
	$ar{\phi}_2$	(1, 1, 1)	0	-1/2	-1/2	-1

Table 1: Observable twisted matter spectrum and $SU(4) \times SU(2)_L \times SU(2)_R \times U(1)^3$ quantum numbers.

Field	$SU(3)_C$	$\times SU(2)_L$	$U(1)_Y$	$U(1)_{Z'}$
Q_L^i	3	2	$+\frac{1}{6}$	$-\frac{2}{5}$
u_L^i	$\bar{3}$	1	$-\frac{2}{3}$	$-\frac{2}{5}$
d_L^i	$\bar{3}$	1	$+\frac{1}{3}$	$-\frac{4}{5}$
e_L^i	1	1	+1	$-\frac{2}{5}$
L_L^i	1	2	$-\frac{1}{2}$	$-\frac{4}{5}$
D^i	3	1	$-\frac{1}{3}$	$+\frac{4}{5}$
\bar{D}^i	$\bar{3}$	1	$+\frac{1}{3}$	$+\frac{6}{5}$
H^i	1	2	$-\frac{1}{2}$	$+\frac{6}{5}$
\bar{H}^i	1	2	$+\frac{1}{2}$	$+\frac{4}{5}$
S^i	1	1	0	-2
h	1	2	$-\frac{1}{2}$	$-\frac{4}{5}$
$ar{h}$	1	2	$+\frac{1}{2}$	$+\frac{4}{5}$
ϕ	1	1	0	-1
$ar{\phi}$	1	1	0	+1
ζ^i	1	1	0	0

Additional matter states at $U(1)_{Z^{\prime}}$ breaking scale

NON–SUSY String Phenomenology:

$$\begin{array}{ll} \underline{ Starting \ with:} \\ using \ the \ level-one \ SO(2n) \ characters \end{array}$$

$$O_{2n} = \frac{1}{2} \left(\frac{\theta_3^n}{\eta^n} + \frac{\theta_4^n}{\eta^n} \right), \qquad V_{2n} = \frac{1}{2} \left(\frac{\theta_3^n}{\eta^n} - \frac{\theta_4^n}{\eta^n} \right), \\ S_{2n} = \frac{1}{2} \left(\frac{\theta_2^n}{\eta^n} + i^{-n} \frac{\theta_1^n}{\eta^n} \right), \qquad C_{2n} = \frac{1}{2} \left(\frac{\theta_2^n}{\eta^n} - i^{-n} \frac{\theta_1^n}{\eta^n} \right).$$

where

$$\theta_3 \equiv Z_f \begin{pmatrix} 0\\ 0 \end{pmatrix} \qquad \theta_4 \equiv Z_f \begin{pmatrix} 0\\ 1 \end{pmatrix} \qquad \theta_2 \equiv Z_f \begin{pmatrix} 1\\ 0 \end{pmatrix} \qquad \theta_1 \equiv Z_f \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

Apply $g = (-1)^{F + F_{z_1} + F_{z_2}}$

$$Z_{10d}^{-} = \begin{bmatrix} V_8 \left(\overline{O}_{16} \overline{O}_{16} + \overline{S}_{16} \overline{S}_{16} \right) - S_8 \left(\overline{O}_{16} \overline{S}_{16} + \overline{S}_{16} \overline{O}_{16} \right) \\ + \underbrace{O_8 \left(\overline{C}_{16} \overline{V}_{16} + \overline{V}_{16} \overline{C}_{16} \right) - C_8 \left(\overline{C}_{16} \overline{C}_{16} + \overline{V}_{16} \overline{V}_{16} \right) \end{bmatrix}.$$

In fermionic language: { $\mathbf{1}$, z_1 , z_2 }

where
$$z_1 = \{\bar{\psi}^{1, \cdots, 5}, \bar{\eta}^{1, 2, 3}\}$$
; $z_2 = \{\bar{\phi}^{1, \cdots, 8}\} \Rightarrow S = 1 + z_1 + z_2$
 $c\binom{z_1}{z_2} = +1 \implies E_8 \times E_8$; $c\binom{z_1}{z_2} = -1 \implies SO(16) \times SO(16)$

non-SUSY string phenomenology

Alternatively: Apply
$$g = (-1)^{F+F_{z_1}}$$

$$Z_{10d}^{-} = \left(V_8 \overline{O}_{16} - S_8 \overline{S}_{16} + \underline{O_8 \overline{V}_{16}} - C_8 \overline{C}_{16} \right) \left(\overline{O}_{16} + \overline{S}_{16} \right),$$

 $O_8 \overline{V}_{16} \overline{O}_{16} \implies \text{tachyon}$

In fermionic language: $\{ \mathbf{1}, z_2 \} \implies \text{No } S$

Tachyon free models: $S \longleftrightarrow \tilde{S}$ -map

Modified NAHE $\longleftrightarrow \overline{NAHE}$

	ψ^{μ}	χ^{12}	χ^{34}	χ^{56}	$y^{3,,6}$	$\bar{y}^{3,,6}$	$y^{1,2},\omega^{5,6}$	$ar{y}^{1,2},ar{\omega}^{5,6}$	$\omega^{1,,4}$	$\bar{\omega}^{1,\dots,4}$	$ar{\psi}^{1,,5}$	$\bar{\eta}^1$	$ar{\eta}^2$	$ar{\eta}^3$	$ar{\phi}^{1,,8}$
1	1	1	1	1	1,,1	1,,1	1,,1	1,,1	1,,1	1,,1	1,,1	1	1	1	1,1,1,1,1,1,1,1
\tilde{S}	1	1	1	1	0,,0	0,,0	0,,0	0,,0	0,,0	0,,0	0,,0	0	0	0	1,1,1,1,0,0,0,0
b_1	1	1	0	0	1,,1	1,,1	0,,0	0,,0	0,,0	0,,0	1,,1	1	0	0	0,0,0,0,0,0,0,0
b_2	1	0	1	0	0,,0	0,,0	1,, 1	1,,1	0,,0	0,,0	1,,1	0	1	0	0,0,0,0,0,0,0,0
b_3	1	0	0	1	0,,0	0,,0	0,,0	0,,0	1,,1	1,,1	1,,1	0	0	1	0,0,0,0,0,0,0,0

Beyond the NAHE-set

	ψ^{μ}	χ^{12}	χ^{34}	χ^{56}	y^3y^6	$y^4 ar{y}^4$	$y^5 ar{y}^5$	$ar{y}^3ar{y}^6$	$y^1\omega^5$	$y^2 ar y^2$	$\omega^6 \bar{\omega}^6$	${}^{5} \bar{y}^{1} ar{\omega}^{5}$	$\omega^2 \omega^4$	$\omega^1 \bar{\omega}^1$	$\omega^3 \bar{\omega}^3$	$^3 \ \bar{\omega}^2 \bar{\omega}^4$	$ar{\psi}^{1,,5}$	$\bar{\eta}^1$	$ar{\eta}^2$	$ar{\eta}^3$	\bar{q}
α	0	0	0	0	1	0	0	1	0	0	1	1	0	0	1	1	11100	1	0	0	000
eta	0	0	0	0	0	0	1	1	1	0	0	1	0	1	0	1	11100	0	1	0	110
γ	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	$\frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2} \ \frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$0 \ 0 \ \frac{1}{2}$
				a		,	$\tilde{\gamma}$														

Up to the $S \longleftrightarrow S$ -map

Same model as published with

with Cleaver, Manno and Timirgazi in PRD78 (2008) 046009

Stable non–SUSY heterotic–string vacuum?

Basis vectors:

$$\begin{split} 1 &= \{\psi^{\mu}, \ \chi^{1,\dots,6}, y^{1,\dots,6}, \omega^{1,\dots,6} \mid \bar{y}^{1,\dots,6}, \bar{\omega}^{1,\dots,6}, \bar{\eta}^{1,2,3}, \bar{\psi}^{1,\dots,5}, \bar{\phi}^{1,\dots,8}\} \\ \tilde{S} &= \{\psi^{\mu}, \chi^{1,\dots,6} \mid \bar{\phi}^{3,\dots,6}\}, \\ z_{1} &= \{\bar{\phi}^{1,\dots,4}\}, \\ z_{2} &= \{\bar{\phi}^{5,\dots,8}\}, \\ e_{i} &= \{y^{i}, \omega^{i} | \bar{y}^{i}, \bar{\omega}^{i}\}, \ i = 1, \dots, 6, \\ e_{i} &= \{\chi^{34}, \chi^{56}, y^{34}, y^{56} | \bar{y}^{34}, \bar{y}^{56}, \bar{\eta}^{1}, \bar{\psi}^{1,\dots,5}\}, \\ N = 4 \text{ Vacua} \\ b_{1} &= \{\chi^{34}, \chi^{56}, y^{34}, y^{56} | \bar{y}^{12}, \bar{y}^{56}, \bar{\eta}^{2}, \bar{\psi}^{1,\dots,5}\}, \\ N = 2 \to N = 1 \end{split}$$

with Viktor Matyas and Ben Percival, NPB 961 (2020) 115231; 2011.04113

Partition functions and the cosmological constant

Full Partition Function for Free Fermionic models:

$$Z_{ToT} = \int_{\mathfrak{F}} \frac{d^2 \tau}{\tau_2^2} Z_B Z_F \equiv \Lambda$$

Integral over the inequivalent tori

• Fermionic contribution:

$$Z_F = \sum_{Sp.Str.} c \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \prod_f Z \begin{bmatrix} \alpha(f) \\ \beta(f) \end{bmatrix}$$
$$Z \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \sqrt{\frac{\theta_1}{\eta}}, \qquad Z \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \sqrt{\frac{\theta_2}{\eta}}, \qquad Z \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \sqrt{\frac{\theta_3}{\eta}}, \qquad Z \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \sqrt{\frac{\theta_4}{\eta}},$$

• Bososnic :

$$Z_B = \frac{1}{\tau_2} \frac{1}{\eta^2 \bar{\eta}^2}$$

from spacetime Bosons.

Evaluated using $q \equiv e^{2\pi i \tau}$ expansion

$$Z = \sum_{n.m} a_{mn} \int_{\mathfrak{F}} \frac{d^2 \tau}{\tau_2^3} q^m \bar{q}^n$$

$$\begin{cases} d\tau_1 & \longrightarrow analytic \\ d\tau_2 & \longrightarrow numeric \end{cases}$$

q – expansion of Z

$$I_{mn} = \begin{cases} \infty & \text{if } m+n < 0 \land m-n \notin \mathbb{Z} \setminus \{0\} \\ \text{Finite} & \text{Otherwise.} \end{cases}$$

- On-Shell Tachyons cause divergence
- Off-Shell Tachyons allowed (necessary)

Modular invariance $\longrightarrow m - n \in \mathbb{Z}$.

Allowed states

$$a_{mn} = \begin{pmatrix} 0 & 0 & a_{-\frac{1}{2}-\frac{1}{2}} & 0 & 0 & 0 & a_{-\frac{11}{22}} & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{-\frac{1}{4}-\frac{1}{4}} & 0 & 0 & 0 & a_{-\frac{13}{44}} & 0 & 0 \\ a_{0-1} & 0 & 0 & 0 & a_{00} & 0 & 0 & a_{01} & 0 \\ 0 & a_{1}-\frac{3}{4} & 0 & 0 & 0 & a_{\frac{11}{44}} & 0 & 0 & 0 & \cdots \\ 0 & 0 & a_{\frac{1}{2}-\frac{1}{2}} & 0 & 0 & 0 & a_{\frac{11}{22}} & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{\frac{3}{4}-\frac{1}{4}} & 0 & 0 & 0 & a_{\frac{33}{44}} & 0 & 0 \\ a_{1-1} & 0 & 0 & 0 & a_{10} & 0 & 0 & a_{11} & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots \end{pmatrix}$$

Coefficients $a_{mn} = N_b - N_f$ at specific mass level.

For SUSY Theories $a_{mn} = 0 \ \forall m, n$

Some interesting results

Distribution of Λ

- DATA \longrightarrow UNIFICATION
- STRINGS THEORY \longrightarrow GAUGE & GRAVITY UNIFICATION
- STRINGS PHENOMENOLOGY \longrightarrow AT ITS INFANCY
- Moduli spaces of (2,0) string compactifications

 \longrightarrow from the "land" to the "swamp"

- String derived Z' at LHCb
- Non–SUSY string phenomenology · · · · · ·
- String Phenomenology \longrightarrow Physics of the third millennium

e.g. Aristarchus to Copernicus