Reduction techniques

Current correlators at four loops and heavy quark mass determinations

Philipp Maierhöfer

Institute for Particle and Nuclear Physics University of Edinburgh

Theoretical Physics Division Seminar Liverpool, 10th March 2010

In Collaboration with K. Chetyrkin, Y. Kiyo, J. H. Kühn, A. Maier, P. Marquard, A. V. Smirnov, M. Steinhauser and C. Sturm

Quark	Mass	Determination

Outline

Quark Mass Determination

- Why precise quark masses?
- From hadron production to quark masses: sum rules
- Status

2 Reduction techniques

- Basics: Integration-by-Parts
- Laporta algorithm
- Gröbner bases
- Combined techniques

3 Results

- Third moment of the vacuum polarization at four loops
- Reconstruction of the full energy dependence
- Charm and bottom quark masses from R(s)
- m_c and $lpha_s$ from lattice QCD
- Conclusion

Precise predictions require precise knowledge of the theory's parameters.

In QCD: strong coupling α_s and masses of the 6 quarks u, d, s, c, b, there: focus on m_c and m_b

Applications:

- Weak decay rates of heavy mesons, e.g. $\Gamma(B_{c/d} \to \ell \nu K) \propto m_b^5$
- Quarkonium spektroscopy
- Decay rates and branching ratios of light Higgs: $\Gamma(H o b ar{b}) \propto m_b^2$
- GUT predictions for m_t/m_b (Yukawa unification at M_{GUT})

• ...

Quark Mass Determination ○●○○○○○ Reduction techniques

From hadron production to quark masses I

Information about quark masses is found in the threshold region of the cross section for hadron production from e^+e^- .

Resonance behaviour is not accessible by perturbative QCD \rightarrow sum rules [Shifman, Vainshtein, Zakharov]

Reduction techniques

Results

From hadron production to quark masses II

Optical theorem: total production cross section R(s)∝ imaginary part of forward scattering amplitude (Vacuum Polarization $\Pi(q^2)$)

$$\left| \cdots \right|^2 \sim R(s) = 12\pi \ln \left(\prod (q^2 = s + i\varepsilon) \right) \sim \lim \cdots$$

Vacuum Polarization: Correlator of electromagnetic currents $j_{\mu} = \bar{\psi} \gamma_{\mu} \psi$

$$(q_{\mu}q_{\nu}-g_{\mu\nu}q^{2})\Pi(q^{2})=i\int dx\,e^{iqx}\langle 0|\,Tj_{\mu}(x)j_{\nu}(0)|0\rangle$$

R-Ratio: $R(s) = \frac{\sigma(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)_{LO}}$

Reduction techniques

From hadron production to quark masses III

The connection between R(s) and $\Pi(q^2)$ leads to a

Dispersion Relation:
$$\Pi(q^2) - \Pi(0) = \frac{q^2}{12\pi^2} \int ds \, \frac{R(s)}{s(s-q^2)}$$

Expansion for small q^2 on both sides:

$$\mathcal{M}_{n}^{th} = \frac{12\pi^{2}}{n!} \left(\frac{\partial}{\partial q^{2}}\right)^{n} \Pi(q^{2})\Big|_{q^{2}=0} = \frac{9}{4}Q_{q}^{2}(4m^{2})^{-n}C_{n}$$
$$\mathcal{M}_{n}^{exp} = \int_{0}^{\infty} ds \,\frac{R(s)}{s^{n+1}}$$
$$\implies m = \frac{1}{2}\left(\frac{9Q_{q}^{2}C_{n}}{4\mathcal{M}_{n}^{exp}}\right)^{\frac{1}{2n}}$$

Reduction techniques

Features of the sum rule approach

Advantages and disadvantages of C_n for different n?

Long distance effects average out for small n

- larger n suppresses continuum region (no data; no m dependence)
 - reduces influence of experimental error
 - growing long distance effects
 - increasingly difficult to calculate

At four loops 700 Feynman integrals contribute

Singlet contributions come into play:

Perform Taylor expansion in the external momentum q^2 reduces the number of scales:

propagator-type integrals $(q^2,m^2) \rightarrow \text{tadpoles} (m^2)$

(light quarks are treated as massless)

Express integrals in terms of master integrals

Status of current correlators in the low energy limit

At three loops, i. e. $\mathscr{O}(\alpha_s^2)$

- first 8 moments [Chetyrkin, Kühn, Steinhauser (1996)]
- moments up to n = 30 for
 - vector current [Boughezal, Czakon, Schutzmeier (2006)]
 - all diagonal currents (including singlet) [Maier, PM, Marquard, (2007)]

At four loops, i.e. $\mathscr{O}(\alpha_s^3)$

- first physical moment of the vector current (non-singlet) [Chetyrkin, Kühn, Sturm; Boughezal, Czakon, Schutzmeier (2006)]
- all orders result for n_l^{z-1} at $\mathscr{O}(lpha_s^z)$ [Grozin, Sturm (2005)]
- moments up to n = 30 for n_f^2 [Czakon, Schutzmeier (2007)]
- second (including singlet) and third moments for all diagonal currents [Maier, PM, Marquard (2008/2009)]

Reduction techniques

Integration-by-Parts

Tadpole integrals are mapped to six topologies

 $BBBBB \otimes$

All appearing integrals can be expressed as linear combination of 13 master integrals with rational coefficients in the space-time dimension d.

Basic tool: Integration-by-Parts identities (IBP) [Chetyrkin, Tkachov (1981)]

$$0 = \int d^{d} k_{1} \dots d^{d} k_{\ell} \frac{\partial}{\partial k_{i}^{\mu}} \frac{\{k_{j}^{\mu}, p_{j}^{\mu}\}}{D_{1}^{a_{1}} D_{2}^{a_{2}} \dots D_{n}^{a_{n}}}$$

give relations between integrals with different propagator powers.

Usage: ● generate and solve a system of equations → Laporta algorithm
 o construct recursion relations → Gröbner bases

Reduction techniques

A Simple two-loop example

Consider the two-loop tadpole with two massive and one massless line:

$$J(x,y,z) = \int dk_1 dk_2 \frac{1}{(k_1^2 + m^2)^x (k_2^2)^y ((k_1 + k_2)^2 + m^2)^z}$$

$$\Rightarrow 0 = \int dk_1 dk_2 \frac{\partial}{\partial k_2^{\mu}} k_2^{\mu} I(x, y, z)$$
$$= (d - 2y - z) J(x, y, z) + z J(x - 1, y, z + 1) + z J(x, y - 1, z + 1)$$

For
$$x = y = z = 1$$
: $J(1,1,1) = \frac{1}{d-3}J(1,0,2)$

Diagrammatically:

$$=\frac{1}{d-3}$$

Laporta algorithm

"Standard" method to solve IBPs: Laporta algorithm [Laporta (2000)]

- define ordering of integrals
- generate IBPs for all permutations of propagator powers and scalar products up to the required sums of powers
- solve systematically for the most difficult integrals by a Gauss elimination-like algorithm

Generally very powerful, but:

- \bullet system of equations is overdetermined by $\mathscr{O}(3\!-\!5)$
- complicated intermediate expressions
- expensive simplifications needed at each step
- bad combinatorics for large propagator powers
- most of the solved integrals are not needed in the calculation

Limitations of the Laporta algorithm

In our case: each q^2 derivative adds two propagator powers and one irreducible scalar product to the integrands.

- For C_3 : $4.5 \cdot 10^6$ integrals needed
 - up to 12 additional propagator powers ("dots")
 - up to 8 irreducible scalar products
 - ullet distributed on 10 indices ($\sim 10^{13}$ permutations)
- \Rightarrow naïve approach fails because of combinatorics
- In principle the problems can be avoided by using recursion relations.
 - calculate exactly what is needed
 - size of expressions is limited by the number of master integrals ("backwards substitution")

Systematic approach: Gröbner bases

Quark Mass Determination	Reduction techniques	Res
000000	0000000	000
0000000	00000000	

Consider multivariate polynomials and conditions of the form

```
b_1=0, \ldots, b_n=0
```

ults

How to find out, if a polynomial p is zero, i.e. a representation

 $\mathbf{p} = f_1 \mathbf{b}_1 + \dots + f_n \mathbf{b}_n$

with polynomial coefficients f_i exists?

Gröbner bases

 $\rightarrow\,$ Divide out the elements of the basis

If we have a Gröbner basis, the remainder is unique.

Gröbner bases can be constructed by the Buchberger algorithm.

• Guaranteed to terminate after a finite number of steps, but not on real computers.

Gröbner bases for Feynman integrals

For Feynman integrals:

- consider algebra of shift and multiplication operators
- IBP identities are polynomials in these operators
- construct a Gröbner basis from the IBP identities
- take an integral and divide out the elements of the basis
- \rightarrow remainder is the desired reduction to master integrals.

Example: $J(a,b) = (S_1^+)^{a-1}(S_2^+)^{b-1}J(1,1)$ $(S_1^+)^{a-1}(S_2^+)^{b-1} = f_1b_1 + f_2b_2 + R$ $\Rightarrow J(a,b) = (f_1b_1 + f_2b_2 + R)J(1,1) = RJ(1,1)$

Quark Mass Determination	Reduction techniques	Results
000000	000000000	000000000000000000000000000000000000000

- S-Bases
 - Problem: Buchberger algorithm is too slow even for simple problems
 - Better: S-bases (modified Buchberger algorithm) [Smirnov & Smirnov]
 - much faster, but not guaranteed to stop
 - strongly dependent on ordering of the integrals
 - sometimes doesn't find a basis even after many tries
 - public implementation in Mathematica available: FIRE [A.V. Smirnov]

Unfortunately, there is no solution to this problem in sight.

 \rightarrow Has to be combined with other methods. FIRE has a Laporta part for that reason; a C++ implementation is in development.

Reduction techniques

Self energy reduction

S-Bases tend to fail for integrals with self energy insertions. These integrals have the highest propagator powers (here: +2).

 \rightarrow most difficult for Laporta algorithm.

Idea: Apply tensor reduction to self energy subgraphs to remove scalar products and reduce the self energies to master integrals.

 $\begin{array}{l} \mbox{2-loop SE} \times \mbox{1-loop SE} \times \mbox{ connecting propagator} \\ \times \mbox{ scalar products between self energies} \end{array}$

Treat self energy master integrals als objects, which depend only on their external momentum. \rightarrow effective one-loop integral!

Very efficient, but limited to special topologies.

Combination of reduction techniques

The reduction techniques have complementary strengths.

Strategy:

- use self energy formalism where it is applicable
 → two dots less for Laporta
- keep the system for Laporta algorithm as small as possible: don't generate all equations, but adapt to the needed integrals
- use Gröbner bases in combination with self energy formalism if something is missing (and for checks)

A sophisticated combination of reduction techniques can handle problems which are difficult for Laporta alone.

Reduction techniques

Results

First three moments of the vacuum polarization up to $\mathcal{O}(\alpha_s^3)$ (with n_l light quark flavours)

$$\begin{split} C_{1}^{v} =& 1.06666 + 2.55473 \left(\frac{\alpha_{s}}{\pi}\right) + \left(0.50988 + 0.66227 n_{l}\right) \left(\frac{\alpha_{s}}{\pi}\right)^{2} \\ &+ \left(1.87882 - 2.79472 n_{l} + 0.09610 n_{l}^{2}\right) \left(\frac{\alpha_{s}}{\pi}\right)^{3}, \\ C_{2}^{v} =& 0.45714 + 1.10955 \left(\frac{\alpha_{s}}{\pi}\right) + \left(1.41227 + 0.45491 n_{l}\right) \left(\frac{\alpha_{s}}{\pi}\right)^{2} \\ &+ \left(-6.23488 + 0.96156 n_{l} - 0.01594 n_{l}^{2}\right) \left(\frac{\alpha_{s}}{\pi}\right)^{3}, \\ C_{3}^{v} =& 0.27089 + 0.51939 \left(\frac{\alpha_{s}}{\pi}\right) + \left(0.35222 + 0.42886 n_{l}\right) \left(\frac{\alpha_{s}}{\pi}\right)^{2} \\ &+ \left(-8.30971 + 1.94219 n_{l} - 0.03959 n_{l}^{2}\right) \left(\frac{\alpha_{s}}{\pi}\right)^{3} \end{split}$$

+ correlators of the scalar $j^s = \bar{\psi}\psi$, pseudoscalar $j^p = \bar{\psi}\gamma_5\psi$ and axial vector $j^a_\mu = \bar{\psi}\gamma_\mu\gamma_5\psi$ currents

Third moment of the vacuum polarization

$$\begin{split} C_n &= \ C_n^{(0)} + \left(\frac{\alpha_x}{\pi}\right) C_n^{(1)} + \left(\frac{\alpha_x}{\pi}\right)^2 C_n^{(2)} + \left(\frac{\alpha_x}{\pi}\right)^3 C_n^{(3)} + \dots \\ C_n^{(3)} &= \ C_F T_F^2 n_\ell^2 C_{\ell,n}^{(3)} + C_F T_F^2 n_h^2 C_{h,n}^{(3)} + C_F T_F^2 n_\ell n_h C_{\ell,n,n}^{(3)} \\ &+ C_F T_F n_\ell \left(C_A C_{\ell NA,n}^{(3)} + C_F T_\ell^2 n_h^2 C_{\ell,n,n}^{(3)}\right) + C_n^{(3)} + C_F T_F n_h \left(C_A C_{h NA,n}^{(3)} + C_F C_{hA,n}^{(3)}\right) \\ C_{H,3}^{(3),v} &= + \frac{31556642272}{4922803125} - \frac{256}{405} \zeta_3, \\ C_{h,3,s}^{(3),v} &= + \frac{56877138427}{12609717120} - \frac{6184964549}{1556755200} \zeta_3, \\ C_{H,3,3}^{(3),v} &= + \frac{60361465477}{129393280000} - \frac{1765}{31104} c_4 + \frac{86485}{41472} \zeta_4 - \frac{57669161}{17418240} \zeta_3, \\ C_{INA,3}^{(3),v} &= + \frac{60361465477}{4452412825600000} - \frac{772144400}{77414400} c_4 + \frac{1510937903}{14745600} \zeta_4 - \frac{561258009401}{6193152000} \zeta_3, \\ C_{IA,3}^{(3),v} &= + \frac{983812946922223}{4389396480000} + \frac{8529817}{38707200} c_4 + \frac{21972351293}{17203200} \zeta_4 - \frac{28995540810097}{21676032000} \zeta_3, \\ C_{hNA,3}^{(3),v} &= - \frac{454880458419083629}{5854170457175040000} - \frac{7110196837}{1117670400} c_4 + \frac{1068488091383}{7451136000} \zeta_4 \\ &+ \frac{4448}{315} \zeta_5 - \frac{43875740175477222611}{3394256087040000} \zeta_3, \\ C_{hA,3}^{(3),v} &= - \frac{2327115263308753}{2489610816000} - \frac{16870125343}{39916800} c_4 + \frac{286864384271}{26611200} \zeta_4 - \frac{377837317054807}{61471872000} \zeta_3, \\ C_{hA,3}^{(3),v} &= - \frac{2327115263308753}{2489610816000} - \frac{16870125343}{39916800} c_4 + \frac{286864384271}{26611200} \zeta_4 - \frac{377837317054807}{61471872000} \zeta_3, \\ c_4 = 24a_4 + \log^4 2 - 6\zeta_2 \log^2 2; \qquad a_n = \text{Li}_n(1/2) \end{split}$$

Padé approximations l

What if we want more moments?

Direct calculation not reasonable at the moment.

Full q^2 dependence of correlators?

Needed e.g. for contour improved perturbation theory.

Padé approximations: [Broadhurst, Fleischer, Tarasov '93; Baikov, Broadhurst '95; Chetyrkin, Kühn, Steinhauser '96; Hoang, Mateu, Zerbarjad '08; Masjuan, Peris '08]

Use
$$p_{m,n}(x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m}{1 + b_1 x + b_2 x^2 + \dots + b_n x^n}$$

to approximate $\Pi(x=rac{q^2}{4\,m^2})$. Fix a_1,b_j by $p_{m,n}^{(k)}(x_0)=\Pi^{(k)}(x_0)$.

Input:

- Iow energy expansion
- threshold expansion
- high energy expansion

Quark Mass Determination Reduction techniques

Padé approximations ||

Problem 1: Padé approximations cannot predict logarithms $log(\frac{q^2}{4m^2})$ \rightarrow subtract an appropriate function

 $\Pi(q^2) = \Pi_{\textit{reg}}(q^2) + \Pi_{\textit{log}}(q^2)$

Problem 2: Branch cut above threshold

 \rightarrow conformal mapping to the unit circle

Reduction techniques

Padé approximations: Results

Padé approximations below and above threshold

The plots show the low energy and threshold rsp. the threshold and high energy expansion and the Padé approximations including a 3σ error band.

Reduction techniques

Results ○○○○○●○○○○○○○

Padé approximations: Error estimation

Exploit the freedom of choosing numerator / denominator degree of the approximation and the freedom in the choice of the subtraction function to estimate errors.

Padé approximations: Prediction of higher moments

	<i>n</i> _l = 3	$n_{l} = 4$	$n_{l} = 5$
$C_1^{(3),v}$	366.1748	308.0188	252.8399
$C_2^{(3),v}$	381.5091	330.5835	282.0129
$C_{3}^{(3),v}$	385.2331	338.7065	294.2224
$C_4^{(3),v}$	383.073(11)	339.913(10)	298.576(9)
$C_{5}^{(3),v}$	378.688(32)	338.233(32)	299.433(27)
$C_{6}^{(3),v}$	373.536(61)	335.320(63)	298.622(54)
$C_{7}^{(3),v}$	368.23(9)	331.90(10)	296.99(9)
$C_8^{(3),v}$	363.03(13)	328.33(14)	294.94(12)
$C_{9}^{(3),v}$	358.06(17)	324.78(18)	292.72(16)
$C_{10}^{(3),v}$	353.35(20)	321.31(22)	290.44(19)
$K_0^{(3),v}$	17(11)	17(29)	16(10)
$D_2^{(3),v}$	2.0(42)	1.2(83)	1.4(21)

Quark	Mass	Determination
	000	

Results for m_c

п	exp	α_s	μ	np	total	$m_c(3 \mathrm{GeV})$
1	0.009	0.009	0.002	0.001	0.013	0.986
2	0.006	0.014	0.005	0.000	0.016	0.976
3	0.005	0.015	0.007	0.002	0.017	0.978
4	0.003	0.009	0.031	0.007	0.033	1.004

Error sources:

- experimental (exp)
- uncertainty of $lpha_s$
- renormalisation scale dependence (μ)
- non-perturbative effects (np);

Operator product expansion:

$$\Pi(q^2) = \Pi_{\textit{perturbative}}(q^2) + \mathcal{C}_{\psi\bar{\psi}}\langle\psi\bar{\psi}\rangle + \mathcal{C}_{\mathcal{G}^2}\langle\mathcal{G}^2\rangle + \dots$$

Reduction techniques

Results ○○○○○○○●○○○○

Results for m_c : Comparison

Reduction techniques

Bottom threshold

Barbar data from 2009 significantly reduced the error compared to m_b determinations from CLEO data.

Reduction techniques

Results for m_b

п	exp	α_s	μ	total	$m_b(10{ m GeV})$	$m_b(m_b)$
1	0.014	0.007	0.002	0.016	3.597	4.151
2	0.010	0.012	0.003	0.016	3.610	4.163
3	0.008	0.014	0.006	0.018	3.619	4.172
4	0.006	0.015	0.020	0.026	3.631	4.183

Note the discussion about m_b from sum rules vs. m_b from semi-leptonic B decays.

Reduction techniques

Results ○○○○○○○○○○○○

Results for m_b : Comparison

$lpha_s$ and m_c from lattice QCD

Instead of experimental data for R(s) one can use lattice QCD simulations to determine α_s and m_c .

Pseudoscalar current correlator is best suited. [HPQCD & Karlsruhe] (really?)

Experimental input: m_π^2 , $2m_K^2-m_\pi^2$, m_{η_c} , m_Υ

 $\alpha_s(M_Z) = 0.1174(12)$

nice agreement with other determinations

 $m_c(3\,{\rm GeV}) = 0.986(10)\,{\rm GeV}$

perfect agreement with determinations from R(s)

Correlators of non-diagonal currents are of interest for future applications.

Conclusi<u>on</u>

- Current correlators in combination with R(s) or lattice data allow for precise determinations of quark masses
- A combination of reduction techniques for Feynman integrals led to the calculation of the second and third moment of current correlators at four loops
- Full energy dependence can be reconstructed by Padé approximations
- Results led to the most precise values for the charm and bottom quark masses up to date
- Don't rely only on C₁, higher moments are crucial for consistency checks