# Algebraic Geometry and Lattice Landau Gauge Fixing

# **Dhagash Mehta**

Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.

Algebraic Geometry and Lattice Landau Gauge, Dhagash Mehta

# **Plan of The Talk:**

- 1. Motivation
- 2. Lattice Landau gauge for compact U(1)
   Groebner basis Method and Results
   Numerical Algebraic Geometry (Polynomial Homotopy)
- 3. Results
- 4. Conclusion

# **Motivation**

• Field theories on the lattice – extremely successful non-perturbative method

• Systems of non-linear equations/minimization of multivariate functions

• Many, if not all, CAN BE VIEWED having polynomial-like non-linearity

• Can use Algebraic Geometry methods !

# **Motivation II**

Why gauge fixing on the lattice?

No need to fix gauge on the lattice – beauty of lattice field theories

But... Continuation non-perturbative methods such as Dyson-Schwinger equations require gauge-fixing

To compare the non-peruturbative results from those methods to the corresponding lattice analogues, we fix gauge on the lattice as well

# Lattice Landau Gauge for Compact U(1)

Usually, Landau gauge fixing on the lattice is done via minimizing a gauge-fixing functional,

$$F(\theta) = \sum_{i,\mu} (1 - \cos(\phi_{i,\mu} + \theta_{i+\hat{\mu}} - \theta_i)) = \sum_{i,\mu} (1 - \operatorname{ReTr} \Omega_{i+\hat{\mu}} U_{i,\mu} \Omega_i^{\dagger})$$

# Lattice Landau Gauge for Compact U(1)

Usually, Landau gauge fixing on the lattice is done via minimizing a gauge-fixing functional,

$$\begin{split} F(\theta) &= \sum_{i,\mu} (1 - \cos(\phi_{i,\mu} + \theta_{i+\hat{\mu}} - \theta_i)) = \sum_{i,\mu} (1 - \operatorname{ReTr} \Omega_{i+\hat{\mu}} U_{i,\mu} \Omega_i^{\dagger}) \\ \text{On lattice, gauge fields lie on the link variables, for i-th link in  $\mu$ -th direction, 
$$U_{i,\mu} &= e^{i\phi_{i,\mu}} & \phi_{i,\mu} \\ \text{Where, } \phi_{i,\mu} \text{ is the link variable } & \theta_i & \phi_{i+\mu} \end{split}$$$$

 $\phi_{i,\mu}$  corresponds to  $A_{\mu}$  in continuum case.

And its gauge transformation is  $\phi_{i,\mu}^{g} = \phi_{i,\mu} + \theta_{i+\hat{\mu}} - \theta_{i}$ 

$$\begin{aligned} \theta_i &\in (-\pi, \pi] \\ \phi_{i,\mu} &\in (-\pi, \pi] \\ \phi_{i,\mu}^g &= (\phi_{i,\mu} + \theta_{i+\hat{\mu}} - \theta_i) \mod 2\pi \in (-\pi, \pi] \end{aligned}$$

## Lattice Landau Gauge for Compact U(1)

Usually, Landau gauge fixing on the lattice is done via minimizing a gauge-fixing functional,

 $F(\theta) = \sum_{i,\mu} (1 - \cos(\phi_{i,\mu} + \theta_{i+\hat{\mu}} - \theta_i)) \begin{array}{l} \text{Random phase XY model,} \\ \text{Kuramoto Model} \end{array}$ On lattice, gauge fields lie on the link variables, for *i*-th link in  $\mu$  -th direction,

$$U_{i,\mu} = e^{i\phi_{i,\mu}} \qquad \qquad \phi_{i,\mu}$$
 Where,  $\phi_{i,\mu}$  is the link varible  
 $\theta_i \longrightarrow \theta_{i+\mu}$ 

 $\phi_{i,\mu}$  corresponds to  $A_{\mu}$  in continuum case.

And its gauge transformation is  $\phi_{i,\mu}^g = \phi_{i,\mu} + \theta_{i+\hat{\mu}} - \theta_i$ 

$$\begin{aligned} \theta_i &\in (-\pi, \pi] \\ \phi_{i,\mu} &\in (-\pi, \pi] \\ \phi_{i,\mu}^g &= (\phi_{i,\mu} + \theta_{i+\hat{\mu}} - \theta_i) \mod 2\pi \in (-\pi, \pi] \end{aligned}$$

Using trigonometric relations, the gauge-fixing equations are:

$$f_i(\theta) = \frac{\partial F}{\partial \theta_i} = \cos \theta_i (\sin \theta_{i+1} + \sin \theta_{i-1}) - \sin \theta_i (\cos \theta_{i+1} + \cos \theta_{i-1}) = 0,$$
  
$$i = 1, \dots, n$$

Using trigonometric relations, the gauge-fixing equations are:

$$f_i(\theta) = \frac{\partial F}{\partial \theta_i} = \cos \theta_i (\sin \theta_{i+1} + \sin \theta_{i-1}) - \sin \theta_i (\cos \theta_{i+1} + \cos \theta_{i-1}) = 0,$$
  
$$i = 1, \dots, n$$

By taking  $\cos\theta_i = c_i$  and  $\sin\theta_i = s_i$ 

$$f_i(c,s) = c_i(s_{i+1} + s_{i-1}) - s_i(c_{i+1} + c_{i-1}) = 0$$

Using trigonometric relations, the gauge-fixing equations are:

$$f_i(\theta) = \frac{\partial F}{\partial \theta_i} = \cos \theta_i (\sin \theta_{i+1} + \sin \theta_{i-1}) - \sin \theta_i (\cos \theta_{i+1} + \cos \theta_{i-1}) = 0,$$
  
$$i = 1, \dots, n$$

By taking  $\cos\theta_i = c_i$  and  $\sin\theta_i = s_i$ 

$$f_i(c,s) = c_i(s_{i+1} + s_{i-1}) - s_i(c_{i+1} + c_{i-1}) = 0$$

And I introduce additional constraint equations,

$$g_i(c,s) = {s_i}^2 + {c_i}^2 - 1 = 0, i = 1,...,n$$

Using trigonometric relations, the gauge-fixing equations are:

By

$$f_{i}(\theta) = \frac{\partial F}{\partial \theta_{i}} = \cos \theta_{i} (\sin \theta_{i+1} + \sin \theta_{i-1}) - \sin \theta_{i} (\cos \theta_{i+1} + \cos \theta_{i-1}) = 0,$$
  

$$i = 1, \dots, n$$
By taking  $\cos \theta_{i} = c_{i}$  and  $\sin \theta_{i} = s_{i}$   

$$f_{i}(c, s) = c_{i} (s_{i+1} + s_{i-1}) - s_{i} (c_{i+1} + c_{i-1}) = 0$$
And I introduce additional constraint equations, Polynomial equations  

$$g_{i}(c, s) = s_{i}^{2} + c_{i}^{2} - 1 = 0, i = 1, \dots, n$$

e.g. for the n = 3 lattice sites case in 1-d, the new gauge-fixing equations are

$$f_{1}(c,s) = -c_{2}s_{1} - c_{3}s_{1} + c_{1}s_{2} - c_{1}s_{3}$$

$$f_{2}(c,s) = c_{2}s_{1} - c_{1}s_{2} - c_{3}s_{2} + c_{2}s_{3}$$

$$f_{3}(c,s) = -c_{3}s_{1} + c_{3}s_{2} - c_{1}s_{3} - c_{2}s_{3}$$

$$g_{1}(c,s) = c_{1}^{2} + s_{1}^{2} - 1$$

$$g_{2}(c,s) = c_{2}^{2} + s_{2}^{2} - 1$$

$$g_{3}(c,s) = c_{3}^{2} + s_{3}^{2} - 1$$

So, we have now 2n polynomial equations for 2n variables  $c_i$ s and  $s_i$ s, instead of n trigonometric equations for n no. of  $\theta$  variables.

e.g. for the n = 3 lattice sites case in 1-d, the new gauge-fixing equations are

$$f_{1}(c,s) = -c_{2}s_{1} - c_{3}s_{1} + c_{1}s_{2} - c_{1}s_{3}$$

$$f_{2}(c,s) = c_{2}s_{1} - c_{1}s_{2} - c_{3}s_{2} + c_{2}s_{3}$$

$$f_{3}(c,s) = -c_{3}s_{1} + c_{3}s_{2} - c_{1}s_{3} - c_{2}s_{3}$$

$$g_{1}(c,s) = c_{1}^{2} + s_{1}^{2} - 1$$

$$g_{2}(c,s) = c_{2}^{2} + s_{2}^{2} - 1$$

$$g_{3}(c,s) = c_{3}^{2} + s_{3}^{2} - 1$$

So, we have now 2n polynomial equations for 2n variables  $c_i$ s and  $s_i$ s, instead of n trigonometric equations for n no. of  $\theta$  variables.

Can use two methods:

- 1. Groebner basis technique
- 2. Numerical Algebraic Geometry

• Very roughly speaking, one can obtain another system of polynomial equations by performing a finite set of operations on the original system (the Buchberger algorithm)

- The new system is 'easier' to solve (how? A. Will be clear soon)
- The new system has the same solutions as the original
- The new system is called the Groebner basis
- Packages like Singular, COCOA, McCAULEY2, Maple, Mathematica, etc.

• Very roughly speaking, one can obtain another system of polynomial equations by performing a finite set of operations on the original system (the Buchberger algorithm)

- The new system is 'easier' to solve (how? A. Will be clear soon)
- The new system has the same solutions as the original
- The new system is called the Groebner basis
- Packages like Singular, COCOA, McCAULEY2, Maple, Mathematica, etc.
- The first three are available for free !!

• Very roughly speaking, one can obtain another system of polynomial equations by performing a finite set of operations on the original system (the Buchberger algorithm)

- The new system is 'easier' to solve (how? A. Will be clear soon)
- The new system has the same solutions as the original
- The new system is called the Groebner basis
- Packages like Singular, COCOA, McCAULEY2, Maple, Mathematica, etc.
- •The first three are available for free !!

Mathematica-interface of Singular STRINGVACUA by Oxford-Durham group

Mathematica gives for the n = 3 case,

$$-s_{3} + s_{3}^{2} = 0,$$
  

$$c_{3}s_{3} = 0,$$
  

$$-1 + c_{3}^{2} + s_{3}^{2} = 0,$$
  

$$-s_{2} + s_{2}s_{3}^{2} = 0,$$
  

$$c_{3}s_{2} = 0,$$
  

$$c_{2}s_{3} = 0,$$
  

$$c_{2}s_{3} = 0,$$
  

$$c_{2}s_{2} = 0,$$
  

$$-1 + c_{2}^{2} + s_{3}^{2} = 0,$$
  

$$c_{3}s_{1} = 0,$$
  

$$c_{2}s_{1} = 0,$$
  

$$c_{1}s_{3} = 0,$$
  

$$c_{1}s_{3} = 0,$$
  

$$c_{1}s_{3} = 0,$$
  

$$c_{1}s_{3} = 0,$$
  

$$c_{1}s_{1} = 0,$$
  

$$-1 + c_{1}^{2} + s_{3}^{2} = 0$$

Mathematica gives for the n = 3 case,

$$-s_{3} + s_{3}^{2} = 0,$$
  

$$c_{3}s_{3} = 0,$$
  

$$-1 + c_{3}^{2} + s_{3}^{2} = 0,$$
  

$$-s_{2} + s_{2}s_{3}^{2} = 0,$$
  

$$c_{3}s_{2} = 0,$$
  

$$c_{2}s_{3} = 0,$$
  

$$c_{2}s_{3} = 0,$$
  

$$c_{2}s_{2} = 0,$$
  

$$-1 + c_{2}^{2} + s_{3}^{2} = 0,$$
  

$$c_{3}s_{1} = 0,$$
  

$$c_{2}s_{1} = 0,$$
  

$$c_{1}s_{3} = 0,$$
  

$$c_{1}s_{3} = 0,$$
  

$$c_{1}s_{3} = 0,$$
  

$$c_{1}s_{1} = 0,$$
  

$$-1 + c_{1}^{2} + s_{3}^{2} = 0$$

This looks more complicated !

What have we gained ?

Mathematica gives for the n = 3 case,



Mathematica gives for the n = 3 case,



Mathematica gives for the n = 3 case,



# Numerical Algebraic Geometry/ Homotopy Continuation Method

Thanks to Applied Mathematicians !!!

Jan Verschelde, A Sommese, CW Wampler, TY Lee, etc. Basic strategy:

- 1. Estimate the number of solutions of the given system
- 2. Take another 'simple' system that has the same number of solutions, and solve it.
- 3. 'Track' these solutions towards the given system using a homotopy
- There are well-written packages for these calculations, e.g. PHCPack, HOM4PS2, PHoM, Bertini
- All are free !!!

### **Estimate of the no. of Solutions**

For a given system of algebraic equations known to have finite no. of solutions, there exists an upper bound for its number of solutions:

Bernshtein/Bezout bound: Let  $f_i(x_1, x_2, x_k) = 0$ , i = 1, k algebraic equations and their maximum degrees  $d_i$ . Then this system of equations can have at most  $\prod_{i=1}^k d_i$  no. of complex and real solutions.

In the n = 3 case, there are k = 6 equations all of which have degree  $d_i = 2$ and so they can have at most  $2^6 = 64$ . Take another system whose solutions are known and the upper bound for the no. of solutions is the same as the one for the above system, e.g.

$$\vec{g}(c,s) = \begin{pmatrix} c_1^2 - 1 \\ c_2^2 - 1 \\ c_3^2 - 1 \\ s_1^2 - 1 \\ s_2^2 - 1 \\ s_3^2 - 1 \end{pmatrix}$$

Take another system whose solutions are known and the upper bound for the no. of solutions is the same as the one for the above system, e.g.

$$\vec{g}(c,s) = \begin{pmatrix} c_1^2 - 1 \\ c_2^2 - 1 \\ c_3^2 - 1 \\ s_1^2 - 1 \\ s_2^2 - 1 \\ s_3^2 - 1 \end{pmatrix}$$
$$\vec{f}(c,s) = \begin{pmatrix} -c_2s_1 - c_3s_1 + c_1s_2 - c_1s_3 \\ c_2s_1 - c_1s_2 - c_3s_2 + c_2s_3 \\ -c_3s_1 + c_3s_2 - c_1s_3 - c_2s_3 \\ c_1^2 + s_1^2 - 1 \\ c_2^2 + s_2^2 - 1 \\ c_3^2 + s_3^2 - 1 \end{pmatrix}$$

Then take the homotopy of these two,

$$\vec{H}((c,s),t) = (1-t)\vec{f}(c,s) + e^{i\gamma}t\vec{g}(c,s) = 0$$

Take another system whose solutions are known and the upper bound for the no. of solutions is the same as the one for the above system, e.g.

$$\vec{g}(c,s) = \begin{pmatrix} c_1^2 - 1 \\ c_2^2 - 1 \\ c_3^2 - 1 \\ s_1^2 - 1 \\ s_2^2 - 1 \\ s_3^2 - 1 \end{pmatrix}$$
$$\vec{f}(c,s) = \begin{pmatrix} -c_2s_1 - c_3s_1 + c_1s_2 - c_1s_3 \\ c_2s_1 - c_1s_2 - c_3s_2 + c_2s_3 \\ -c_3s_1 + c_3s_2 - c_1s_3 - c_2s_3 \\ c_1^2 + s_1^2 - 1 \\ c_2^2 + s_2^2 - 1 \\ c_3^2 + s_3^2 - 1 \end{pmatrix}$$

Then take the homotopy of these two,

$$\vec{H}((c,s),t) = (1-t)\vec{f}(c,s) + e^{i\gamma}t\vec{g}(c,s) = 0$$

For t = 1, i.e.  $H((c, s), t) = \vec{g}(c, s)$ , the solutions are known.

Start from t = 1 and go towards t = 0 for each solution and by predictorcorrector method, check if the path is smooth i.e. there is a solution for  $\vec{f}(c, s)$ .

- 1. Exact solutions
- 2. Exponential space complexity
- 3. Highly sequential
- 4. Non-integer coefficients a problem

### Numerical Algebraic Geometry

Numerical, but ALL solutions/extrema

No such scaling problems

'Embarrassingly' parallelizable

Any floating point coefficients are fine

In particular, for the 2-dimensional lattice, the 3x3 lattice case was intractable for the Groebner basis technique, but it took only 1 hour with the NAG.

## **Applications?**

Many !!!

In lattice field theories, statistical mechanics, complex systems, theoretical chemistry etc.

ALL stationary points of a spin glass system!

ALL Gribov copies !

All steady state solutions of the Kuramoto model,...

# **Applications?**

Many !!!

In lattice field theories, statistical mechanics, complex systems, theoretical chemistry etc.

ALL stationary points of a spin glass system!

ALL Gribov copies !

All steady state solutions of the Kuramoto model,...

Let's check the Neuberger zero:

H Neuberger: The gauge-fixed partition function on the lattice is zero and so the expectation values of a gauge-fixed observable is 0/0 !

Martin Schaden: For a compact gauge group, the gauge-fixing partition function computes the Euler character of the group manifold at each site. And with the Poincare-Hopf theorem,

$$Z_{GF} = (\chi(G))^n = \sum_{\text{Gribov copies}} \operatorname{sgn}(\det M_{FP})$$

For compact U(1) and for SU(N), the Euler char. is 0 !

### Algebraic Geometry and Lattice Landau Gauge, Dhagash Mehta

### **Results for the Two-dimensional Lattice**

Trivial Orbit (Classical XY model), 3x3 lattice:

| CBB    | AllSol. | Re al | NonSingular | Singular |
|--------|---------|-------|-------------|----------|
| 262144 | 10738   | 2968  | 1816        | 1152     |

Singular solutions = Gribov horizon Real solutions = No. of Gribov copies

For the 1816 nonsingular solutions,

*i* 0 1 2 3 4 5 6 7 8 9  $K_i = \text{no. of sol. with i neg. evalues}$  2 18 216 342 330 330 342 216 18 2

i.e., 1<sup>st</sup>, ..., 9<sup>th</sup>, 10<sup>th</sup> Gribov region. Thus,

 $\sum_{\text{Gribov copies}} \operatorname{sgn}(\det M_{FP}) = 0$ 

Random Orbit, 3x3 lattice:

| CBB    | AllSol. | Re al | NonSingular | Singular |
|--------|---------|-------|-------------|----------|
| 262144 | 20558   | 2480  | 2480        | 0        |

Singular solutions = Gribov horizon Real solutions = No. of Gribov copies

For the 2480 nonsingular solutions,

*i* 0 1 2 3 4 5 6 7 8 9  $K_i = \text{no. of sol. with i neg. evalues}$  2 58 202 402 576 576 402 202 58 2

i.e., 1<sup>st</sup>, ..., 9<sup>th</sup>, 10<sup>th</sup> Gribov region. Thus,

 $\sum_{\text{Gribov copies}} \operatorname{sgn}(\det M_{FP}) = 0$ 

# **Results for the One-dimensional Lattice**

### Anti-periodic b.c.

 $\phi_i^{\theta} \in \{0, \pi\}$ for  $i = 1, \cdots, n$ 

$$\begin{aligned} & \tilde{\varphi}_{i}^{\theta} = \left(q_{i-1} + \sum_{l=0}^{i-2} q_{l} \left(\prod_{k=l}^{i-2} (-1)^{q_{k+1}}\right)\right) \pi + \tilde{\varphi}_{n}^{\theta} \prod_{l=0}^{i-1} (-1)^{q_{l}} \\ & \text{for } i = 1, \cdots, n-1 \\ & \text{and } \tilde{\varphi}_{n}^{\theta} = \frac{n(\bar{\varphi} - \frac{2\pi r}{n}) - \left(\sum_{i=1}^{n-1} (q_{i-1} + \sum_{l=0}^{i-2} q_{l} (\prod_{k=l}^{i-2} (-1)^{q_{k+1}}))\right) \pi}{\left(\sum_{i=1}^{n-1} (\prod_{l=0}^{i-1} (-1)^{q_{l}}) + 1\right)} \\ & \text{where, } \tilde{\varphi}^{\theta} = \phi^{\theta} + 2 \pi t \\ & \bar{\varphi} \coloneqq \frac{1}{n} \sum_{i=1}^{n} \phi_{i}, \\ & q_{i} \in \{0, 1\}, \\ & t_{i} \text{'s are integers.} \end{aligned}$$

No. of solutions =  $2^n$ 

$$\sum_{i=0}^{\frac{n-1}{2}} (n-2i) \binom{n}{i}, \text{ if n is odd}$$
$$\sum_{i=0}^{\frac{n-2}{2}} (n-2i) \binom{n}{i}, \text{ if n is even}$$

### Algebraic Geometry and Lattice Landau Gauge, Dhagash Mehta

### Modified Lattice Landau Gauge (Lorenz von Smekal, DM, Andre Sternbeck, Anthony G Williams)

Decompactify the gauge-transformed gauge fields via stereographic projection on the manifold at each site

The modified gauge fixing functional is

$$F(\theta) = -2\sum_{i,\mu} \ln(1 - \cos(\phi_{i,\mu} + \theta_{i+\hat{\mu}} - \theta_i)) = -2\sum_{i,\mu} \ln(1 - \operatorname{ReTr} \Omega_{i+\hat{\mu}} U_{i,\mu} \Omega_i^{\dagger})$$

The modified gauge fixing equations are, which has the same continuum limit,

$$f_{i}(\theta) = \frac{\partial F}{\partial \theta_{i}} = \sum_{\mu} (\tan((\phi_{i,\mu} + \theta_{i+\hat{\mu}} - \theta_{i})/2) - \tan((\phi_{i,\mu} + \theta_{i} - \theta_{i-\hat{\mu}})/2)) = 0, i = 1, \dots, n$$

Tangents are 'naturally algebraic variables', so

$$\tan\frac{\theta_i}{2} \to t_i$$

No need to add additional constraints.

### **Results for the Modified Lattice Landau Gauge**

### Anti-periodic b.c.

 $\phi_i^{\theta} = 0$ , for  $i = 1, \dots, n$ 

$$\begin{split} \tilde{\phi}_{n}^{\theta} &= \overline{\phi} - \frac{2\pi r}{n} \\ \text{for } \mathbf{r} &= 1, \cdots, n-1 \\ \text{and } \tilde{\phi}_{i}^{\theta} &= \overline{\phi} - \frac{2\pi r}{n} + 2\pi l_{i}, \text{ for } i = 1, \cdots, n-1, \\ \text{where, } \tilde{\phi}^{\theta} &\equiv \phi^{\theta} + 2\pi t \\ \overline{\phi} &\coloneqq \frac{1}{n} \sum_{i=1}^{n} \phi_{i}, \end{split}$$

Periodic b.c.

Only one configuration

n Gribov copies (exponentially suppressed)

### Algebraic Geometry and Lattice Landau Gauge, Dhagash Mehta

### **Results for the Modified Lattice Landau Gauge**

### Anti-periodic b.c.

 $\phi_i^{\theta} = 0$ , for  $i = 1, \dots, n$ 

$$\begin{split} \tilde{\phi}_{n}^{\theta} &= \overline{\phi} - \frac{2\pi r}{n} \\ \text{for } \mathbf{r} &= 1, \cdots, n-1 \\ \text{and } \tilde{\phi}_{i}^{\theta} &= \overline{\phi} - \frac{2\pi r}{n} + 2\pi l_{i}, \text{ for } i = 1, \cdots, n-1, \\ \text{where, } \tilde{\phi}^{\theta} &\equiv \phi^{\theta} + 2\pi t \\ \overline{\phi} &\coloneqq \frac{1}{n} \sum_{i=1}^{n} \phi_{i}, \end{split}$$

Only one configuration

n Gribov copies (exponentially suppressed)

### Analytically shown that No Neuberger zero for ANY dimension !

### Algebraic Geometry and Lattice Landau Gauge, Dhagash Mehta

## **Other examples - work in progress...**

• Solving classical field equations for various models on the lattice, e.g., compact QED/Instantons, Abelian Higgs model, XY model, Heisenberg model, SU(2) Yang-Mills theory etc. !!!

- Parameterization of SU(N) (with Jon-Ivar Skullerud)
- Complex Systems

# Conclusions

• Many problems in lattice field theories are non-linear with polynomial-like non-linearity

• Computational and Numerical Algebraic Geometry can be of great help – can replace the existing numerical methods on the lattice at least in lower dimensional models

• NAG is worth-attempting, due to its efficiency, in many of the statistical mechanics and lattice field theory problems to solve the corresponding non-linear equations