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Motivation

• Field theories on the lattice – extremely successful non-perturbative

method

• Systems of non-linear equations/minimization of multivariate functions

• Many, if not all, CAN BE VIEWED having polynomial-like non-linearity 

• Can use Algebraic Geometry methods !



Algebraic Geometry and Lattice Landau Gauge, Dhagash Mehta

Motivation II

Why gauge fixing on the lattice?

No need to fix gauge on the lattice – beauty of lattice field theories

But… 

Continuation non-perturbative methods such as Dyson-Schwinger 

equations require gauge-fixing

To compare the non-peruturbative results from those methods to the 

corresponding lattice analogues, we fix gauge on the lattice as well
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Lattice Landau Gauge for Compact U(1)
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Usually, Landau gauge fixing on the lattice is done via minimizing a gauge-fixing functional,
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On lattice, gauge ¯elds lie on the link variables, for i-th link in ¹ -th direction,
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First, we will work with the trivial orbit case i.e. Á
i
= 0, in 1-d.

Using trigonometric relations, the gauge-¯xing equations are:
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So, we have now 2n polynomial equations for 2n variables c
i
s and s

i
s, instead

of n trigonometric equations for n no. of µ variables.

e.g. for the n = 3 lattice sites case in 1-d, the new gauge-¯xing equations
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Can use two methods:

1. Groebner basis technique

2. Numerical Algebraic Geometry
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• Very roughly speaking, one can obtain another system of polynomial equations 

by performing a finite set of operations on the original system (the Buchberger 

algorithm)

• The new system is ‘easier’ to solve (how? A. Will be clear soon)

• The new system has the same solutions as the original 

• The new system is called the Groebner basis

• Packages like Singular, COCOA, McCAULEY2, Maple, Mathematica, etc.

Groebner Basis
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Groebner Basis

Mathematica-interface of Singular STRINGVACUA by Oxford-Durham group
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Mathematica gives for the n = 3 case,
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This looks more complicated !

What have we gained ?

Mathematica gives for the n = 3 case,
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This looks more complicated !

What have we gained ?

The ¯rst equation is univariate !

Solve it as s
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Put these values in the second eq. which is bi-variate.

And solve all equations by back-substitutions.

How is it helpful ?!!



Comp. and Num. AG in Lattice Field Theories, Dhagash Mehta

This looks more complicated !

What have we gained ?

The ¯rst equation is univariate !

Solve it as s
3
(s2
3

¡ 1) = 0 i.e. s
3
= 0 and s

3
= §1.

Mathematica gives for the n = 3 case,

2

3 3

3 3

2 2

3 3

2

2 2 3

3 2

2 2

2 3

2 3

2 2

2 2

2 3

2

1 1 3

3 1

2 1

2 2

1 3

1 3

1 3

1 1

2 2

1 3

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

1

0,

0,

0,

0,

1

1 0

s

s

s

s s

s

s

s

s

s

s

s

c

c

s

c

s

c

c

c

s

c

c

s

c

c

s

s

s

s

s

c

s

s

sc

 



 

 



 





 

 





 











 



 



 

Put these values in the second eq. which is bi-variate.

And solve all equations by back-substitutions.

There are 16 solutions.

How is it helpful ?!!
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Numerical Algebraic Geometry/ 

Homotopy Continuation Method

Thanks to Applied Mathematicians !!! 

Jan Verschelde, A Sommese, CW Wampler, TY Lee, etc.

Basic strategy:

1. Estimate the number of solutions of the given system

2. Take another ‘simple’ system that has the same number of 

solutions, and solve it.

3. ‘Track’ these solutions towards the given system using a homotopy

• There are well-written packages for these calculations, e.g. PHCPack, 

HOM4PS2, PHoM, Bertini

• All are free !!!
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For a given system of algebraic equations known to have ¯nite no. of solu-

tions, there exists an upper bound for its number of solutions:

Estimate of the no. of Solutions

Bernshtein/Bezout bound: Let f
i
(x
1
; x
2
; ; x

k
) = 0, i = 1; ; k algebraic equa-

tions and their maximum degrees d
i
. Then this system of equations can have

at most
Q
k

i=1
d
i
no. of complex and real solutions.

In the n = 3 case, there are k = 6 equations all of which have degree d
i
= 2

and so they can have at most 26 = 64.
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Take another system whose solutions are known and the upper bound for

the no. of solutions is the same as the one for the above system, e.g.
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Then take the homotopy of these two,

Take another system whose solutions are known and the upper bound for

the no. of solutions is the same as the one for the above system, e.g.
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For t = 1, i.e. H((c; s); t) = ~g(c; s), the solutions are known.

Start from t = 1 and go towards t = 0 for each solution and by predictor-

corrector method, check if the path is smooth i.e. there is a solution for ~f(c; s).
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Groebner Basis Numerical Algebraic Geometry

1. Exact solutions Numerical, but ALL solutions/extrema

2. Exponential space complexity             No such scaling problems

3. Highly sequential ‘Embarrassingly’ parallelizable

In particular, for the 2-dimensional lattice, the 3x3 lattice case was 

intractable for the Groebner basis technique, but it took only 1 hour 

with the NAG.

4. Non-integer coefficients a problem     Any floating point coefficients are fine
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Applications?

Many !!! 

In lattice field theories, statistical mechanics, complex systems, theoretical 

chemistry etc.

ALL stationary points of a spin glass system!

ALL  Gribov copies ! 

All steady state solutions of the Kuramoto model,… 
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Let’s check the Neuberger zero:

H Neuberger: The gauge-fixed partition function on the lattice is zero and so 

the expectation values of a gauge-fixed observable is 0/0 !

Martin Schaden: For a compact gauge group, the gauge-fixing partition 

function computes the Euler character of the group manifold at each site. 

And with the Poincare-Hopf theorem,

Gribov copies

( ( )) sgn(det )n

GF FPZ G M  

For compact U(1) and for SU(N), the Euler char. is 0 !

Applications?

Many !!! 

In lattice field theories, statistical mechanics, complex systems, theoretical 

chemistry etc.

ALL stationary points of a spin glass system!

ALL  Gribov copies ! 

All steady state solutions of the Kuramoto model,… 
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Trivial Orbit (Classical XY model), 3x3 lattice:

Singular solutions = Gribov horizon

Real solutions       = No. of Gribov copies

For the 1816 nonsingular solutions,

i.e., 1st, …, 9th , 10th Gribov region. Thus,

no. of sol. with i ne

0 1 2 3 4 5 6 7 8 9

2 18 216 342 33g. eval 0 330 342u 2 6 1es 1 8 2i

i

K 

Gribov copies

sgn )(det 0FPM 

. Re

262144 10738 2968 1816 1152

CBB AllSol al NonSingular Singular

Results for the Two-dimensional Lattice
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Random Orbit, 3x3 lattice:

Singular solutions = Gribov horizon

Real solutions       = No. of Gribov copies

For the 2480 nonsingular solutions,

i.e., 1st, …, 9th , 10th Gribov region. Thus,

Gribov copies

sgn )(det 0FPM 

. Re

262144 20558 2480 2480 0

CBB AllSol al NonSingular Singular

no. of sol. with i ne

0 1 2 3 4 5 6 7 8 9

2 58 202 402 57g. eval 6 576 402u 2 2 5es 0 8 2i

i

K 
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Results for the One-dimensional Lattice
Anti-periodic b.c. Periodic b.c.
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Modified Lattice Landau Gauge

(Lorenz von Smekal, DM, Andre Sternbeck, Anthony G Williams)

Decompactify the gauge-transformed gauge fields via stereographic projection 

on the manifold at each site

The modified gauge fixing functional is

†

ˆ ˆ, ,

, ,

( ) 2 ln(1 cos( )) 2 ln(1 )i i i i i i

i i

F ReTr U   
 

              

The modified gauge fixing equations are, which has the same continuum limit,

ˆ ˆ, ,( ) ( tan(( 2) tan(() / 2))) / 0, 1, ,i i i i i i i

i

F
i nf    



      


 


         




tan
2

i
it




Tangents are ‘naturally algebraic variables’, so

No need to add additional constraints.
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Results for the Modified Lattice Landau Gauge

Anti-periodic b.c. Periodic b.c.
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for r 1, , 1
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and 2  for 1, , 1,

where, + 2 
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

 

 

    



 

0,  for 1, ,i i n  

Only one configuration n Gribov copies (exponentially 

suppressed)
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Results for the Modified Lattice Landau Gauge

Anti-periodic b.c. Periodic b.c.

1

2

for r 1, , 1

2
and 2  for 1, , 1,

where, + 2 

1
:

,

,

i i

n

i

i

n

r

n

n

r
l i n

n

t

n





 


 


  

  

 


 

 

    



 

0,  for 1, ,i i n  

Only one configuration n Gribov copies (exponentially 

suppressed)

Analytically shown that No Neuberger zero for ANY dimension !
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Other examples - work in progress…

• Solving classical field equations for various models on the lattice, e.g., compact 

QED/Instantons, Abelian Higgs model, XY model, Heisenberg model, SU(2) Yang-

Mills theory etc. !!!

• Parameterization of SU(N) (with Jon-Ivar Skullerud)

• Complex Systems

Conclusions

• Many problems in lattice field theories are non-linear with polynomial-like non-

linearity

• Computational and Numerical Algebraic Geometry can be of great help – can

replace the existing numerical methods on the lattice at least in lower dimensional

models

• NAG is worth-attempting, due to its efficiency, in many of the statistical mechanics

and lattice field theory problems to solve the corresponding non-linear equations


