

Finding New Physics with B decays: Prospects for $B \rightarrow K^* \mu^+ \mu^-$

Aoife Bharucha with W. Altmannshofer, Patricia Ball, A.J. Buras, D. Straub and M. Wick (arXiv:0811.1214 [hep-ph]) also with William Reece

IPPP

Seminar, Liverpool, 17th February 2010

Aoife Bharucha (IPPP)

 $B \rightarrow K^* \mu^+ \mu^-$

February 18, 2010 1 / 32

Just launched expedition to 14 TeV

Just launched expedition to 14 TeV

NP in B decays B physics Tool-Box Theory: $B \to K^* \mu^+ \mu^-$ Prospects at LHCb: $B \to K^* \mu^+ \mu^-$ Constraints

Some Structure

- New sources of Flavour in B decays
- Theoretical Predictions for $B \to K^* \mu^+ \mu^-$
- Prospects at LHCb for $B \to K^* \mu^+ \mu^-$
- Constraints on NP at LHCb

NP in B decays B physics Tool-Box Theory: $B \to K^* \mu^+ \mu^-$ Prospects at LHCb: $B \to K^* \mu^+ \mu^-$ Constraints

Source of all Flavour in the SM

 $\mathcal{L}_{\text{kinetic}+\text{gauge}} + \mathcal{L}_{\text{Higgs}}$

respects the Flavour Symmetry $SU(3)_q^3 \times SU(3)_{\ell}^2$, under which

$$Q_L \to V_Q Q_L, \quad U_R \to V_U U_R, \quad D_R \to V_D D_R,$$

and

$$L_L \to V_L L_L, \quad E_R \to V_E E_R,$$

where the V_i are unitary matrices. The Yukawa interactions

 $-\mathcal{L}_{\text{Yukawa}} = Y_{ij}^d \ \bar{Q}_{Li} \phi D_{Rj} + Y_{ij}^u \ \bar{Q}_{Li} \tilde{\phi} U_{Rj} + Y_{ij}^e \ \bar{L}_{Li} \phi E_{Rj} + \text{h.c.}.$

BREAK the global symmetry, resulting in Flavour Violation...

Aoife Bharucha (IPPP)

CP Violation via the CKM Matrix

Choosing

$$Y^d = \lambda_d, \quad Y^u = V^{\dagger} \lambda_u,$$

where $\lambda_{d,u}$ are diagonal,

CKM matrix V using the Wolfenstein Parameterization

$$\begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix}$$

 $\lambda = 0.2257 \pm 0.001$ and $A = 0.814 \pm 0.022$

 $B \rightarrow K^* \mu^+ \mu^-$

Aoife Bharucha (IPPP)

 $B \to K^* \mu^+ \mu^-$

Current status of B decays and prospects at future colliders¹

Observable	SM prediction	Theory error	Present result	Future error	Future Facility
$ \begin{array}{ c c c } & [B \rightarrow X_c \ell \nu] \\ & V_{ub} & [B \rightarrow \pi \ell \nu] \\ & \gamma & [B \rightarrow DK] \end{array} $	input input input	$10\% \xrightarrow{1\%}_{< 1^{\circ}} 5\%_{\text{Latt}}$	$\begin{array}{c} (41.54\pm0.73)\times10^{-3}\\ (3.38\pm0.36)\times10^{-3}\\ (70^{+27}_{-30})^{\circ} \end{array}$	1% 4% 3°	Super- <i>B</i> Super- <i>B</i> LHCb
$\begin{bmatrix} S_{B_d \to \psi K} \\ S_{B_s \to \psi \phi} \end{bmatrix}$	$sin(2\beta)$ 0.036	$\stackrel{<}{\underset{\sim}{\sim}} 0.01$	$\begin{array}{c} 0.671 \pm 0.023 \\ 0.81 \substack{+0.12 \\ -0.32} \end{array}$	0.01 0.01	LHCb LHCb
$ \begin{array}{c} S_{B_d} \rightarrow \phi K \\ S_{B_s} \rightarrow \phi \phi \\ S_{B_d} \rightarrow K^* \gamma \\ S_{B_s} \rightarrow \phi \gamma \\ A_{SL}^a \\ A_{s}^a, \end{array} $	$\sin(2\beta)$ 0.036 few × 0.01 few × 0.01 -5×10^{-4} 2×10^{-5}	$ \begin{array}{c} \approx 0.05 \\ \approx 0.05 \\ \approx 0.01 \\ 0.01 \\ 10^{-4} \\ < 10^{-5} \end{array} $	0.44 ± 0.18	$\begin{array}{c} 0.1 \\ 0.05 \\ 0.03 \\ 0.05 \\ 10^{-3} \\ 10^{-3} \end{array}$	LHCb LHCb Super- <i>B</i> LHCb LHCb LHCb
$ \begin{array}{c} \overline{A_{CP}(b \to s\gamma)} \\ \overline{A_{CP}(b \to s\gamma)} \\ \overline{\mathcal{B}(B \to \tau\nu)} \\ \overline{\mathcal{B}(B \to \mu\nu)} \\ \overline{\mathcal{B}(B_s \to \mu^+\mu^-)} \\ \overline{\mathcal{B}(B_d \to \mu^+\mu^-)} \\ \overline{A_{FB}(B \to K^*\mu^+\mu^-)}_{q_0^2} \\ \overline{\mathcal{R} \to K\nu\bar{\nu}} \end{array} $	$ \begin{array}{c} < 0.01 \\ 1 \times 10^{-4} \\ 4 \times 10^{-7} \\ 3 \times 10^{-9} \\ 1 \times 10^{-10} \\ 0 \\ 4 \times 10^{-6} \end{array} $	$ \begin{array}{c} < 0.01 \\ 20\% \rightarrow 5\%_{\text{Latt}} \\ 20\% \rightarrow 5\%_{\text{Latt}} \\ 20\% \rightarrow 5\%_{\text{Latt}} \\ 20\% \rightarrow 5\%_{\text{Latt}} \\ 0.05 \\ \end{array} $	$\begin{array}{c} -0.012 \pm 0.028 \\ (1.73 \pm 0.35) \times 10^{-4} \\ < 1.3 \times 10^{-6} \\ < 5 \times 10^{-8} \\ < 1.5 \times 10^{-8} \\ (0.2 \pm 0.2) \\ < 1.4 \times 10^{-5} \end{array}$	0.005 5% 6% 10% [?] 0.05 20%	Super-B Super-B LHCb LHCb LHCb Super-B

¹G. Isidori, Y. Nir and G. Perez, "Flavor Physics Constraints for Physics Beyond the Standard Model," arXiv:1002.0900 [hep-ph]

Aoife Bharucha (IPPP)

NP in B Decays

Can be model dependent or model independent.. Use an Effective Field Theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{c_i^{(d)}}{\Lambda_{\text{NP}}^{(d-4)}} O_i^{(d)}(\text{SM fields})$$

Flavour Changing Neutral Currents

- Suppressed at tree level by V_{ij} and M_W
- \bullet Big effects if Λ_{NP} provides similar suppression

Model Independent

MFV

Strictest bounds from $B \to X_s \gamma \Rightarrow$ Assume Flavour Violating Structure Beyond the SM linked to known SM Yukawas

- $\bullet\,$ FCNC's suppressed even for $\Lambda \sim {\rm few}\,\, {\rm TeV}$
- \bullet Naturally implementable in $\mathcal{L}_{\rm eff}$
- Not a theory of flavour
- Difficult to prove but might be easy to disprove : $B \to X_s l^+ l^- / B \to l^+ l^-$?

EXTENSIONS:

- MFV with additional Higgs doublet/ large $tan\beta$
- MFV with additional flavour diagonal phases

Model Dependent

SUSY

Provides a well motivated model for various MFV scenarios

- Flavour Structure determind by **SUSY breaking soft mass terms** and **Trilinear couplings**
- Flavour Blind MSSM (FBMSSM): MFVMSSM modified by some flavour conserving but CP-violating phases in the soft SUSY breaking trilinear couplings
- General MSSM (GMSSM): No MFV, and generic flavour- and CP-violating soft SUSY-breaking terms allowed

NP in **B** decays B physics Tool-Box Theory: $B \to K^* \mu^+ \mu^-$ Prospects at LHCb: $B \to K^* \mu^+ \mu^-$ Constraints

Looking for NP in $B \to K^* \mu^+ \mu^-$

- No. of events seen at Belle is 230
 - $\Rightarrow B \rightarrow K^* \mu^+ \mu^-$ is one of the rarest B decays ever observed
- LHCb predicts 7200 signal events with $2 \mathrm{fb}^{-1} \Leftrightarrow 1$ year's data.
- $\bullet\,$ FCNC, but bounds much weaker than for $B\to X_s\gamma$
- SM CP violation is doubly Cabibbo suppressed, NP CPV more visible
- 4 body decays, many angular observables, sensitive to NP

Experiment	BaBar	Belle	CDF
$\mathcal{B}(B \to K^* \mu^+ \mu^-) \times 10^7$	$11.1 \pm 1.9 \pm 0.7$	$10.8^{+1.0}_{-1.0} \pm 0.9$	$8.1\pm3.0\pm1.0$
# of $B\bar{B}$ events	384×10^{6}	657×10^{6}	—

NP in B decays

B physics Tool-Box

Prospects at LHCb: $B \rightarrow .$

Constraints

A B Physicists Tool Box

Effective Field Theories

$$\mathcal{L} = \sum_{i} C_i O_i$$

Contain short distance effects and possibly NP

Hard Spectator Effects

For $B \rightarrow K^* \mu^+ \mu^-$ QCD factorization/ SCET/ HQET...

Hadronic Matrix Elements

e.g. $\langle B|J|K^*\rangle$

Described by Form Factors

Relating Observables to NP: EFTs

For $B \to K^*$ decays, important Operators are..

Relating Observables to NP: EFTs

For $B \to K^*(\to K^-\pi^+)\mu^+\mu^-$, important NP O's are..

Spin-Flipped EM Dipole O'_7 Scalar/Pseudoscalar $O_{S(P)}$

Brief Interlude-Form Factors

Matrix elements responsible for $B \rightarrow K^* l^+ l^-$ can be expressed as:

8 Full form factors (FF's)

$$\langle K^{*}(p)|\bar{s}\gamma_{\mu}\gamma_{L}b|\bar{B}(p_{B})\rangle = -ie_{\mu}^{*}(m_{B} + m_{K}^{*})\mathbf{A}_{1}(q^{2}) + i(p_{B} + p)_{\mu}e^{*}\cdot q\frac{\mathbf{A}_{2}(q^{2})}{m_{B} + m_{K}^{*}}$$

$$+ iq_{\mu}(e^{*}\cdot q)\frac{2m_{K^{*}}}{q^{2}}\left(\mathbf{A}_{3}(q^{2}) - \mathbf{A}_{0}(q^{2})\right) + \epsilon_{\mu\nu\rho\sigma}e^{*\nu}p_{B}^{\rho}p^{\sigma}\frac{2\mathbf{V}(q^{2})}{m_{B} + m_{K}^{*}}$$

$$\langle K^{*}(p)|\bar{s}\sigma_{\mu\nu}q^{\nu}\gamma_{L}b|\bar{B}(p_{B})\rangle = i\epsilon_{\mu\nu\rho\sigma}e^{*\nu}p_{B}^{\rho}p^{\sigma}2\mathbf{T}_{1}(q^{2}) + \mathbf{T}_{2}(q^{2})e_{\mu}^{*}(m_{B}^{2} - m_{K^{*}}^{2})$$

$$- \mathbf{T}_{2}(q^{2})(e^{*}\cdot q)(p_{B} + p)_{\mu} + \mathbf{T}_{3}(q^{2})(e^{*}\cdot q)\left\{q_{\mu} - \frac{q^{2}}{m_{B}^{2} - m_{K^{*}}^{2}}(p_{B} + p)_{\mu}\right\}$$

Form Factor Predictions

Theoretical Prections:

- Lattice: High q^2 , Unstable particles eg. K^* difficult
- Light Cone Sum Rules: Low q^2

Range of Form Factors:

- Kinematic Range: $0 \le q^2 \le 20 \text{GeV}^2$
- QCDF Range for $B \to K^* \mu^+ \mu^-$: $1 \le q^2 \le 6 \text{GeV}^2$

...where $I(q^2, \theta_l, \theta_K, \phi) = \sum_{i=1}^9 I_i^{(s/c)}(q^2) \omega_i(\theta_l, \theta_K, \phi)$

Emphasize CP conserving and CP violating² effects

$$S_i^{(a)} = \frac{I_i^{(a)} + \bar{I}_i^{(a)}}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2}$$
$$A_i^{(a)} = \frac{I_i^{(a)} - \bar{I}_i^{(a)}}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2}$$

²Also considered in C. Bobeth, G. Hiller and G. Piranishvili arXiv:0805.2525

Aoife Bharucha (IPPP)

 $B \rightarrow K^* \mu^+ \mu^-$

17 / 32

Aoife Bharucha (IPPP)

 $B \to K^* \mu^+ \mu^-$

February 18, 2010 18 / 32

19 / 32

NP in B decays B physics Tool-Box Theory: $B \to K^* \mu^+ \mu^-$ Prospects at LHCb: $B \to K^* \mu^+ \mu^-$ Constraints

Model Independent Analysis

Observable

Most affected by

S_1^s , S_1^c , S_2^s , S_2^c	$C_7, C_7', C_9, C_9', C_{10}, C_{10}'$
S_3	$C_{7}^{\prime}, C_{9}^{\prime}, C_{10}^{\prime}$.
S_4	C_7 , C'_7 , C_{10} , C'_{10}
S_5	C_7, C_7', C_9, C_{10}'
S_6^s	C ₇ , C ₉
A_7	$C_7, C_7', C_{10}, C_{10}'$
A_8	$C_7, C_7', C_9, C_9', C_{10}'$
A_9	C'_{7}, C'_{9}, C'_{10}
S_6^c	$C_S - C'_S$

Theoretical Predictions: Specific Scenarios

Correlate zeros of S_4 , S_5 , S_6^s with $B(b \rightarrow s\gamma)$

Theoretical Predictions: Specific Scenarios

Correlate zeros of S_4 , S_5 , S_6^s with $B(b \rightarrow s\gamma)$

NP in B decays B physics Tool-Box **Theory:** $B \to K^* \mu^+ \mu^-$ Prospects at LHCb: $B \to K^* \mu^+ \mu^-$

Theoretical Predictions: Specific Scenarios

Aoife Bharucha (IPPP)

 $B \rightarrow K^* \mu^+ \mu^-$

Correlations at large $tan\beta$

Aoife Bharucha (IPPP)

NP in B decays

B physics Tool-Box Theory: $B \to K^* \mu^+ \mu^-$ Prospects at LHCb: $B \to K^* \mu^+ \mu^-$ Constraints

General MSSM: No MFV constraints

Aoife Bharucha (IPPP)

NP in B decays B physics Tool-Box Theory: $B \to K^* \mu^+ \mu^-$ Prospects at LHCb: $B \to K^* \mu^+ \mu^-$

Current Status/Prospects at LHCb

- EvtGen Model for $B \to K^* \mu^+ \mu^-$ at NLO
- Includes trigger studies, acceptance effects
- Finds sets of allowed WCs using current experimental constraints

NP in B decays B physics Tool-Box Theory: $B \to K^* \mu^+ \mu^-$ Prospects at LHCb: $B \to K^* \mu^+ \mu^-$ Constraints

Observables for early measurement

Using S's and A's reconstruct standard observables e.g. forward-backward asymmetry, $A_{\rm FB}$, longtitudinal polarization fraction, $F_{\rm L}$:

$$A_{\rm FB} = \frac{3}{8}(2S_6^s + S_6^c)$$
 and $F_{\rm L} = -S_2^c$.

Extract by counting in angular bins:

$$\begin{split} A_{\rm FB} &= \frac{4}{3} \left(\int_0^1 - \int_{-1}^0 \right) \mathrm{d}\theta_1 \frac{\mathrm{d}^2(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \, \mathrm{d}\theta_1} \left/ \frac{\mathrm{d}(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2} \right. \\ F_{\rm L} &= \frac{1}{9} \left(16 \int_{-1/2}^{1/2} \frac{\mathrm{d}(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \, \mathrm{d}\cos\theta_{\rm K^*}} \left/ \frac{\mathrm{d}(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2} - 11 \right) \right. \\ S_5 &= \frac{4}{3} \left(\int_0^{\pi/2} + \int_{3\pi/2}^{2\pi} - \int_{\pi/2}^{3\pi/2} \right) \mathrm{d}\phi \left(\int_0^1 - \int_{-1}^0 \right) \mathrm{d}\cos\theta_{\rm K^*} \frac{\mathrm{d}^3(\Gamma - \bar{\Gamma})}{\mathrm{d}q^2 \, \mathrm{d}\cos\theta_{\rm K^*} \, \mathrm{d}\phi} \left/ \frac{\mathrm{d}(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2} \right. \end{split}$$

Sensitivity to New Physics

NP in B decays

3 physics Tool-Box

ory: $B \to K^* \mu^+$

Prospects at LHCb: $B \to K^* \mu^+ \mu^-$

Constraints

$A_{\rm FB}$ and S_5 at LHCb

NP in B decays B physics Tool-Box Theory: $B \to K^* \mu^+ \mu^-$ Prospects at LHCb: $B \to K^* \mu^+ \mu^-$ Constraints

Experimental Sensitivities

Observable	2fb^{-1}	$1 \mathrm{fb}^{-1}$	$0.5 { m fb}^{-1}$
$\begin{array}{c} \langle A_{\rm FB} \rangle_{1-6 {\rm GeV}^{2}} \\ \langle F_{\rm L} \rangle_{1-6 {\rm GeV}^{2}} \\ \langle S_5 \rangle_{1-6 {\rm GeV}^{2}} \\ q_0^2(A_{\rm FB}) \\ q_0^2(S_5) \end{array}$	$\begin{array}{r} +0.03\\ -0.04\\ +0.02\\ -0.02\\ +0.07\\ -0.08\\ +0.56\\ -0.94\\ +0.27\\ -0.25\end{array}$	$\begin{array}{r} +0.05\\ -0.03\\ +0.04\\ -0.03\\ +0.09\\ -0.11\\ +1.27\\ -0.97\\ +0.53\\ -0.40\end{array}$	$\begin{array}{c} +0.08 \\ -0.06 \\ +0.04 \\ -0.06 \\ +0.16 \\ -0.15 \\ -\end{array}$

$$\left\langle V \right\rangle_{1-6 \,\mathrm{GeV}^2} = \int_{1 \,\mathrm{GeV}^2}^{6 \,\mathrm{GeV}^2} \mathrm{d}q^2 \left(V(q^2) \,\frac{\mathrm{d}(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2} \right) \left/ \int_{1 \,\mathrm{GeV}^2}^{6 \,\mathrm{GeV}^2} \mathrm{d}q^2 \frac{\mathrm{d}(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2} \right)$$

Existing Constraints for $b \rightarrow s$

Observable	Experiment	SM Theory	
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	$3.6 \cdot 10^{-8}$	$(3.70 \pm 0.31) \cdot 10^{-9}$	
$\mathcal{B}(B \to X_s l^+ l^-)_{1-6 \mathrm{GeV}^2}$	$(1.60 \pm 0.51) \cdot 10^{-6}$	$(1.97 \pm 0.11) \cdot 10^{-6}$	
$\mathcal{B}(B \to X_s \gamma)$	$(3.52 \pm 0.23 \pm 0.09) \cdot 10^{-9}$	$(3.28 \pm 0.25) \cdot 10^{-4}$	
$S(B \to K^* \gamma)$	$(-1.6 \pm 2.2) \cdot 10^{-1}$	$(-0.26 \pm 0.05) \cdot 10^{-1}$	
$\langle A_{\rm FB} \rangle_{1-6 {\rm GeV^2}}$	-0.26 ± 0.29	0.04 ± 0.03	
$\langle F_L \rangle_{1-6 { m GeV}^2}$	0.67 ± 0.24	0.76 ± 0.08	

Constraints on C_7 and C'_7

 $B \rightarrow K^* \mu^+ \mu^-$

Constraints on C_7 and C'_7

 $B \to K^* \mu^+ \mu^-$

Constraints on C_9 and C'_{10}

Constraints on C_9 and C'_{10}

 $B \to K^* \mu^+ \mu^-$

Summary

- B decays will lead to interesting complementary information about the nature of NP
- $\mathbf{B} \to \bar{\mathbf{K}}^* \mu^+ \mu^-$ observables provide insight into flavour structure of NP: MFV/ MFV+flavour blind phases/MFV+Higgs doublet
- New NLO EvtGen model, promising preliminary results for zero's of S_5 , $A_{\rm FB}$ and integrated S_5 , $A_{\rm FB}$ and F_L
- Constraints on Wilson Coefficients will be greatly affected by these measurements, especially S_5

Summary

- B decays will lead to interesting complementary information about the nature of NP
- $\mathbf{B} \to \bar{\mathbf{K}}^* \mu^+ \mu^-$ observables provide insight into flavour structure of NP: MFV/ MFV+flavour blind phases/MFV+Higgs doublet
- New NLO EvtGen model, promising preliminary results for zero's of S_5 , $A_{\rm FB}$ and integrated S_5 , $A_{\rm FB}$ and F_L
- Constraints on Wilson Coefficients will be greatly affected by these measurements, especially S_5

Summary

- B decays will lead to interesting complementary information about the nature of NP
- $\mathbf{B} \to \bar{\mathbf{K}}^* \mu^+ \mu^-$ observables provide insight into flavour structure of NP: MFV/ MFV+flavour blind phases/MFV+Higgs doublet
- New NLO EvtGen model, promising preliminary results for zero's of S_5 , $A_{\rm FB}$ and integrated S_5 , $A_{\rm FB}$ and F_L
- Constraints on Wilson Coefficients will be greatly affected by these measurements, especially S_5