A New Perspective on Quantum Field Theory arXiv:1003.1366 [hep-th]

Oliver J. Rosten

Sussex U.

October 2010

Outline of this Lecture

Qualitative Aspects of the ERG

2 Renormalizability

Outline of this Lecture

Qualitative Aspects of the ERG

2 Renormalizability

Outline of this Lecture

Qualitative Aspects of the ERG

2 Renormalizability

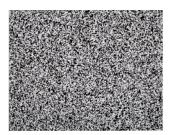
A microscope with variable resolving power

• Our description of physics generally changes with scale

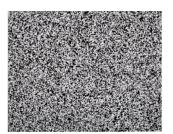
- Our description of physics generally changes with scale
- Short/long distance descriptions often differ

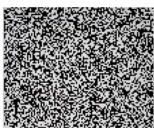
- Our description of physics generally changes with scale
- Short/long distance descriptions often differ
- We can go from short to long by averaging over local patches

- Our description of physics generally changes with scale
- Short/long distance descriptions often differ
- We can go from short to long by averaging over local patches



- Our description of physics generally changes with scale
- Short/long distance descriptions often differ
- We can go from short to long by averaging over local patches





The ERG is of use for systems witl

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG`

A small number of degrees of freedom per correlation length

unucipuanu

The subsystem captures the

behaviour of the whole system

• The whole system is easy to

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

- A small number of degrees of freedom per correlation length
 - The subsystem is easy to understand
 - The subsystem captures the behaviour of the whole system
 - The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

A small number of degrees of freedom per correlation length

- The subsystem is easy to understand
- The subsystem captures the behaviour of the whole system
- The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

A small number of degrees of freedom per correlation length

- I he subsystem is easy to understand
- The subsystem captures the behaviour of the whole system
 - The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

- A small number of degrees of freedom per correlation length
 - The subsystem is easy to understand
 - The subsystem captures the behaviour of the whole system
 - The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

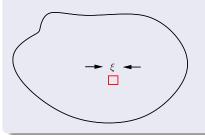
- A small number of degrees of freedom per correlation length
 - The subsystem is easy to understand
 - The subsystem captures the behaviour of the whole system
 - The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

• A small number of degrees of freedom per correlation length



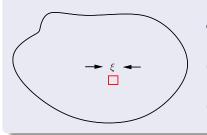
- The subsystem is easy to understand
- The subsystem captures the behaviour of the whole system
- The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

• A small number of degrees of freedom per correlation length



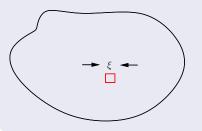
- The subsystem is easy to understand
- The subsystem captures the behaviour of the whole system
- The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

• A small number of degrees of freedom per correlation length



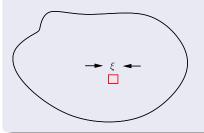
- The subsystem is easy to understand
- The subsystem captures the behaviour of the whole system
- The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

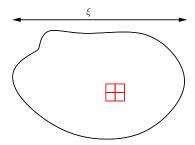
Easy Problems (no need for ERG)

A small number of degrees of freedom per correlation length

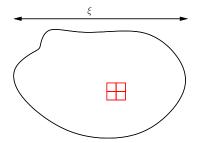


- The subsystem is easy to understand
- The subsystem captures the behaviour of the whole system
- The whole system is easy to understand

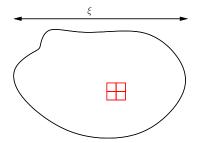
- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches
- Iterating, we build up an understanding of the whole system



- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches
- Iterating, we build up an understanding of the whole system



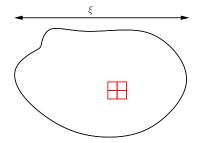
- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches
- Iterating, we build up an understanding of the whole system



- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches
- Iterating, we build up an understanding of the whole system

ny the ERG!

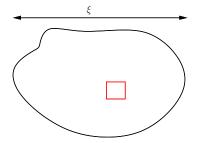
Take a system with a large number of d.o.f. per correlation length



- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches

• Iterating, we build up an understanding of the whole system

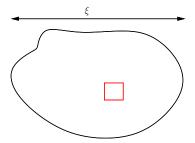
Take a system with a large number of d.o.f. per correlation length



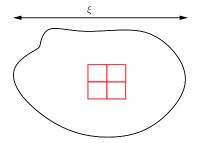
- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches

• Iterating, we build up an understanding of the whole system

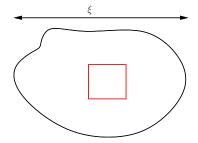
Take a system with a large number of d.o.f. per correlation length



- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches
- Iterating, we build up an understanding of the whole system



- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches
- Iterating, we build up an understanding of the whole system



- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches
- Iterating, we build up an understanding of the whole system

Applications

- Applications
 - Quantum held theory
 - Critical phenomena
 - Kondo effect, ultra-ccc
- What has the ERG given u
- A deep understanding
- A tool for performing
- What's the catch
 - vviiat 3 tile cateir:
 - The coarse-graining price

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

• The coarse-graining procedure cannot be done exactly

The ERG supports nonperturbative approximation schemes

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

The coarse-graining procedure cannot be done exactly

The ERG supports nonperturbative approximation schemes

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

• The coarse-graining procedure cannot be done exactly

The ERG supports nonperturbative approximation schemes

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

- The coarse-graining procedure cannot be done exactly
- The ERG supports nonperturbative approximation schemes

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

- The coarse-graining procedure cannot be done exactly
- e. The EPC supports perpenturbative approximation schemes

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

- The coarse-graining procedure cannot be done exactly
- The ERG supports nonperturbative approximation schemes

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

The coarse-graining procedure cannot be done exactly

• The ERG supports nonperturbative approximation schemes

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

- The coarse-graining procedure cannot be done exactly
 If a small parameter is available we can do perturbation theory
 For many problems of interest, there is no small parameter
- The ERG supports nonperturbative approximation schemes

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

- The coarse-graining procedure cannot be done exactly
 - If a small parameter is available we can do perturbation theory
 - For many problems of interest, there is no small parameter
- The ERG supports nonperturbative approximation schemes

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

- The coarse-graining procedure cannot be done exactly
 - If a small parameter is available we can do perturbation theory
 - For many problems of interest, there is no small parameter
- The ERG supports nonperturbative approximation schemes

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

- The coarse-graining procedure cannot be done exactly
 - If a small parameter is available we can do perturbation theory
 - For many problems of interest, there is no small parameter
- The ERG supports nonperturbative approximation schemes

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

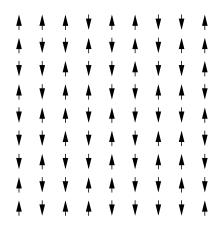
- A deep understanding of renormalization and universality
- A tool for performing real calculations

- The coarse-graining procedure cannot be done exactly
 - If a small parameter is available we can do perturbation theory
 - For many problems of interest, there is no small parameter
- The ERG supports nonperturbative approximation schemes

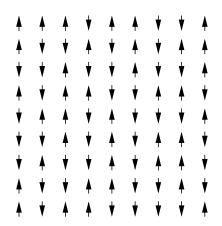
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale

- Consider a lattice of spins
- To go from micro to macro, average over groups of spinss
- Rescale

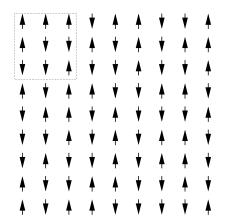
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



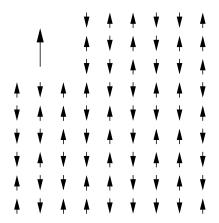
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



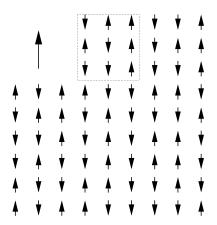
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



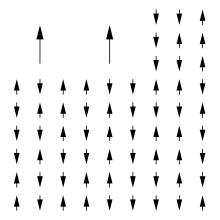
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



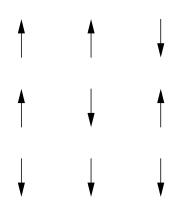
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



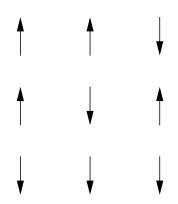
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



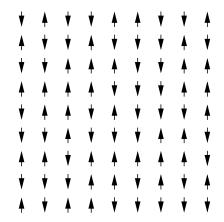
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



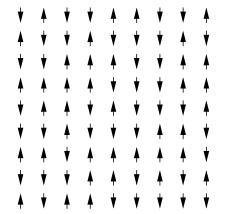
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



The ERG implements the continuous version of blocking

What is the effect of blocking?

What is the effect of blocking?

• Suppose the microscopic spins interact only with their nearest neighbours

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

How can we visualize this?

Consider the space of all possible interactions

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

- Consider the space of all possible interactions
- Each point in the space represents a strength for every interaction

What is the effect of blocking?

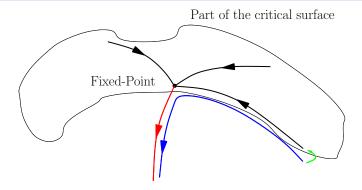
- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

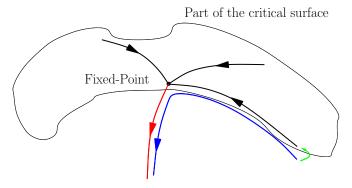
- Consider the space of all possible interactions
- Each point in the space represents a strength for every interaction
- As we block and rescale, we hop in this space

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

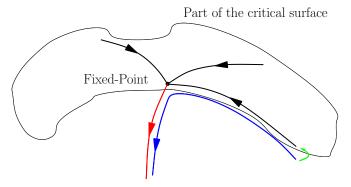
- Consider the space of all possible interactions
- Each point in the space represents a strength for every interaction
- As we block and rescale, we hop in this space
- The transformation can have fixed-points



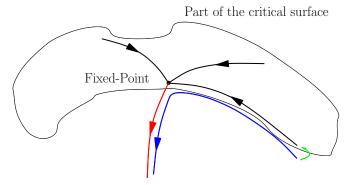


• Trajectories in the critical surface flow into the fixed-point

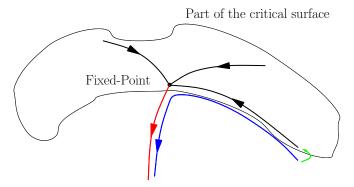
Correlation Functions in the ERG



- Trajectories in the critical surface flow into the fixed-point
- The critical manifold is spanned by the irrelevant operators



- Trajectories in the critical surface flow into the fixed-point
- The critical manifold is spanned by the irrelevant operators
- Flows along the relevant directions leave the critical surface



- Trajectories in the critical surface flow into the fixed-point
- The critical manifold is spanned by the irrelevant operators
- Flows along the relevant directions leave the critical surface
- If there are n relevant directions, then we must tune n quantities to get on to the critical surface

The Wilsonian Effective Action

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale

 Modes ahove this scale are cut off free
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, Λ
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account.
 - □ The action evolves ⇒ Wilsonian effective action

The Wilsonian Effective Action

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
- The bare (classical) action
- Integrate out modes between the bare scale and an

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, Λ
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves ⇒ Wilsonian effective action

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, Λ
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves ⇒ Wilsonian effective action

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, Λ
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - ullet The action evolves \Rightarrow Wilsonian effective action

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, Λ
 - The partition function stays the same
 - The effects of the high energy modes must be taken into
 - The action evolves ⇒ Wilsonian effective action

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, Λ
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves ⇒ Wilsonian effective action

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, Λ
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves ⇒ Wilsonian effective action

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, Λ
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves ⇒ Wilsonian effective action

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, Λ
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves ⇒ Wilsonian effective action

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{x} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

Wilsonian effective action

Parametrizes blocking procedure

$$-\Lambda \partial_{\Lambda} S = \int_{V} \frac{\delta S}{\delta \phi(x)} \Psi_{x} - \int_{V} \frac{\delta \Psi_{x}}{\delta \phi(x)}$$

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{X} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

- ellective sca
- Jet of fields
- VVIIsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs
 - corresponds to a field redefinition

$$-\Lambda \partial_{\Lambda} S = \int_{\mathcal{X}} \frac{\delta S}{\delta \phi(x)} \Psi_{x} - \int_{\mathcal{X}} \frac{\delta \Psi_{x}}{\delta \phi(x)}$$

Formulation

$$- \Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{\mathcal{X}} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- Set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs
 - corresponds to a field redefinition

$$-\Lambda \partial_{\Lambda} S = \int_{X} \frac{\delta S}{\delta \phi(x)} \Psi_{x} - \int_{X} \frac{\delta \Psi_{x}}{\delta \phi(x)}$$

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{X} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs
 - corresponds to a field redefinition

$$-\Lambda \partial_{\Lambda} S = \int_{V} \frac{\delta S}{\delta \phi(x)} \Psi_{x} - \int_{V} \frac{\delta \Psi_{x}}{\delta \phi(x)}$$

Formulation

$$-\Lambda \partial_{\Lambda} e^{-\boldsymbol{S}[\phi]} = \int_{X} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-\boldsymbol{S}[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
- huge freedom in precise form—adapt to suit our needs

$$-\Lambda \partial_{\Lambda} S = \int_{\mathcal{X}} \frac{\delta S}{\delta \phi(x)} \Psi_{x} - \int_{\mathcal{X}} \frac{\delta \Psi_{x}}{\delta \phi(x)}$$

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{X} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- ullet partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure

huge freedom in precise form—adapt to suit our needs

$$-\Lambda \partial_{\Lambda} S = \int_{V} \frac{\delta S}{\delta \phi(x)} \Psi_{x} - \int_{V} \frac{\delta \Psi_{x}}{\delta \phi(x)}$$

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{x} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs
 - corresponds to a field redefinition

$$-\Lambda \partial_{\Lambda} S = \int_{Y} \frac{\delta S}{\delta \phi(x)} \Psi_{x} - \int_{Y} \frac{\delta \Psi_{x}}{\delta \phi(x)}$$

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{X} \frac{\delta}{\delta \phi(x)} \left(\Psi_{\mathbf{x}}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs
 - corresponds to a field redefinition

$$-\Lambda \partial_{\Lambda} S = \int_{V} \frac{\delta S}{\delta \phi(x)} \Psi_{x} - \int_{V} \frac{\delta \Psi_{x}}{\delta \phi(x)}$$

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{X} \frac{\delta}{\delta \phi(x)} \left(\Psi_{\mathbf{x}}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs
 - corresponds to a field redefinition

$$-\Lambda \partial_{\Lambda} S = \int_{x} \frac{\delta S}{\delta \phi(x)} \Psi_{x} - \int_{x} \frac{\delta \Psi_{x}}{\delta \phi(x)}$$

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{\mathcal{X}} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs
 - corresponds to a field redefinition

$$-\Lambda \partial_{\Lambda} S = \int_{X} \frac{\delta S}{\delta \phi(x)} \Psi_{x} - \int_{X} \frac{\delta \Psi_{x}}{\delta \phi(x)}$$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling
- Implementing Rescalin
 - ...p. o... o... g
 - Measure all dimension
 - Remember to take account count
 - $\lambda \to \lambda i$
 - ϕ (votation: ϕ dimensioniul,
 - \circ $-\Lambda\partial_{\Lambda}\to\partial_{t}$, with t=
- What we need for this talk
 - ERG Equation: ∂_iS[φ]
 - Fixed-points: $\partial_t S_t[\varphi] = 0$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X o X\Lambda^{
m full}$$
 scaling dimension

- Notation: ϕ dimensionful, φ dimensionless
- \bullet $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

- ERG Equation: $\partial_t S[\omega] = \dots$
- Fixed-points: $\partial_t S_*[\varphi] = 0$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: φ dimensionful. φ dimensionless
- \bullet $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

- ERG Equation: $\partial_t S[\omega] = \dots$
- Fixed-points: $\partial_+ S_+ [\varphi] = 0$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!
- $X o X \Lambda^{ ext{full scaling dimension}}$
- Notation: ϕ dimensionful. φ dimensionless
- \bullet $-\Lambda \partial_{\Lambda} \to \partial_{t}$, with $t = \ln \mu / \Lambda$

- ERG Equation: $\partial_t S[\omega] = \dots$
- Fixed-points: $\partial_{+}S_{+}[\varphi] = 0$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- ullet Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

- ERG Equation: $\partial_t S[\omega] = \dots$
- Fixed-points: $\partial_{\tau} S_{-}[\omega] = 0$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- ullet Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

- ERG Equation: $\partial_t S[\omega] = \dots$
- Fixed-points: $\partial_t S_*[\omega] = 0$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- ullet Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

- ERG Equation: $\partial_t S[\varphi] = \dots$
- Fixed-noints: $\partial_{\bullet} S_{\bullet}[\omega] = 0$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- ullet Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- ullet Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

- FRG Equation: ∂₊S[ω]
- Fixed-noints: $\partial_* S.[\omega] = 0$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- ullet Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- ullet Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

What we need for this talk

• ERG Equation: $\partial_t S[\varphi] =$

• Fixed-noints: $\partial_* S.[\omega] = 0$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- ullet Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

- ERG Equation: $\partial_t S[\varphi] = \dots$
- Fixed-points: $\partial_t S_*[\varphi] = 0$

Renormalizability

Rescaling

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- ullet Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

- ERG Equation: $\partial_t S[\varphi] = \dots$
- Fixed-points: $\partial_t S_{\star}[\varphi] = 0$

Correlation Functions in the ERG

Rescaling

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- ullet Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

- ERG Equation: $\partial_t S[\varphi] = \dots$
- Fixed-points: $\partial_t S_{\star}[\varphi] = 0$

- At a fixed-point we have $\partial_t S_\star = 0$
- Consider an infinitesimal perturbation

First order classification

- 6 Operators that grow with that release
- Operators that shrink with a are irrelevant
 - o operators that stay the same are margin

- \circ $S_k + aO_{\mathrm{marginal}}$ is a fixed-point up to $O\left(a^{\epsilon}\right)$
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally intelevant.
- An exactly margar

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

- $S_{\star} + a\mathcal{O}_{\text{marginal}}$ is a fixed-point up to O (a^2)
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally irrelevant
- An exactly marginal operator generates a line of fixed-points

- At a fixed-point we have $\partial_t S_\star = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

- $S_{\star} + a\mathcal{O}_{\text{marginal}}$ is a fixed-point up to O (a^2)
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally irrelevant
- An exactly marginal operator generates a line of fixed-points

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

- $S_{\star} + a\mathcal{O}_{\text{marginal}}$ is a fixed-point up to O (a^2)
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally irrelevant
- An exactly marginal operator generates a line of fixed-point

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

- $S_{\star} + aO_{\text{marginal}}$ is a fixed-point up to $O(a^2)$
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally irrelevant
- An exactly marginal operator generates a line of fixed-points

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

- $S_{\star} + aO_{\text{marginal}}$ is a fixed-point up to $O(a^2)$
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally irrelevant
- An exactly marginal operator generates a line of fixed-points

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- $S_{\star} + aO_{\text{marginal}}$ is a fixed-point up to $O(a^2)$
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally irrelevant
- An exactly marginal operator generates a line of fixed-points

- At a fixed-point we have $\partial_t S_\star = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- $S_{\star} + a\mathcal{O}_{\text{marginal}}$ is a fixed-point up to O (a^2)
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally irrelevant

Renormalizability

- At a fixed-point we have $\partial_t S_\star = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- $S_{\star} + a\mathcal{O}_{\mathrm{marginal}}$ is a fixed-point up to $\mathrm{O}\left(a^2\right)$
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally irrelevant

Renormalizability

- At a fixed-point we have $\partial_t S_\star = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- $S_{\star} + a\mathcal{O}_{\mathrm{marginal}}$ is a fixed-point up to $\mathrm{O}\left(a^2\right)$
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally irrelevant

Renormalizability

Correlation Functions in the ERG

Relevance/Irrelevance

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- $S_{\star} + a\mathcal{O}_{\mathrm{marginal}}$ is a fixed-point up to $O\left(a^2\right)$
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally irrelevant
- An exactly marginal operator generates a line of fixed-points

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

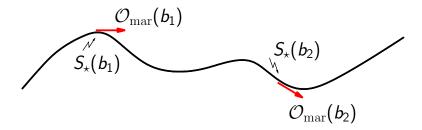
First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- $S_{\star} + a\mathcal{O}_{\mathrm{marginal}}$ is a fixed-point up to $O\left(a^2\right)$
- This might not be true beyond leading order
- Eg the four point coupling in D = 4 scalar field theory is marginally irrelevant

Renormalizability



Qualitative Aspects of the ERG

2 Renormalizability

3 Correlation Functions in the ERG

• Choose an action e.g.

$$S[\phi] = \int \! d^D \! x \left[\frac{1}{2} \partial_\mu \phi \partial_\mu \phi + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4!} \phi^4 \right]$$

- Choose a UV regulator
- Start computing the correlation functions

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) e^{-S[\phi]}$$

Adjust the action to absorb UV divergences

$$S[\phi] \rightarrow S[\phi] + \delta S[\phi]$$

• Choose an action e.g.

$$S[\phi] = \int\!\! d^D\!x \left[rac{1}{2} \partial_\mu \phi \partial_\mu \phi + rac{1}{2} m^2 \phi^2 + rac{\lambda}{4!} \phi^4
ight]$$

Renormalizability

- Choose a UV regulator
- Start computing the correlation functions

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) e^{-S[\phi]}$$

Adjust the action to absorb UV divergences:

$$S[\phi] \rightarrow S[\phi] + \delta S[\phi]$$

• Choose an action e.g.

$$S[\phi] = \int\!\! d^D\!x \left[rac{1}{2} \partial_\mu \phi \partial_\mu \phi + rac{1}{2} m^2 \phi^2 + rac{\lambda}{4!} \phi^4
ight]$$

- Choose a UV regulator
- Start computing the correlation functions

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) e^{-S[\phi]}$$

Adjust the action to absorb UV divergences:

$$S[\phi] \rightarrow S[\phi] + \delta S[\phi]$$

• Choose an action e.g.

$$S[\phi] = \int \!\! d^D \! x \left[rac{1}{2} \partial_\mu \phi \partial_\mu \phi + rac{1}{2} m^2 \phi^2 + rac{\lambda}{4!} \phi^4
ight]$$

- Choose a UV regulator
- Start computing the correlation functions

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) e^{-S[\phi]}$$

Adjust the action to absorb UV divergences:

$$S[\phi] \rightarrow S[\phi] + \delta S[\phi]$$

• Choose an action e.g.

$$S[\phi] = \int \!\! d^D \! x \left[\frac{1}{2} \partial_\mu \phi \partial_\mu \phi + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4!} \phi^4 \right]$$

- Choose a UV regulator
- Start computing the correlation functions

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) e^{-S[\phi]}$$

• Adjust the action to absorb UV divergences:

$$S[\phi] \rightarrow S[\phi] + \delta S[\phi]$$

• Choose an action e.g.

$$S[\phi] = \int \!\! d^D \! x \left[\frac{1}{2} \partial_\mu \phi \partial_\mu \phi + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4!} \phi^4 \right]$$

- Choose a UV regulator
- Start computing the correlation functions

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) e^{-S[\phi]}$$

Adjust the action to absorb UV divergences:

$$S[\phi] \rightarrow S[\phi] + \delta S[\phi]$$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0\to\infty7$

The Simplest Answe

Only dimensionless variables appear

Fixed-points of the ERG correspond to continuum limits.

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

- S_{\star} is independent of all scales, including Λ_{\cap}
- ullet Trivially, we can send $\Lambda_0 o \infty$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

- ullet Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

- S_* is independent of all scales, including Λ_0
- Trivially, we can send $\Lambda_0 \to \infty$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

- ullet Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

- S_* is independent of all scales, including Λ_0
- Trivially, we can send $\Lambda_0 \to \infty$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

- S_* is independent of all scales, including Λ_0
- Trivially, we can send $\Lambda_0 \to \infty$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

- S_* is independent of all scales, including Λ_0
- Trivially, we can send $\Lambda_0 \to \infty$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

- S_* is independent of all scales, including Λ_0
- Trivially, we can send $\Lambda_0 \to \infty$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

- S_{\star} is independent of all scales, including Λ_0
- Trivially, we can send $\Lambda_0 \to \infty$

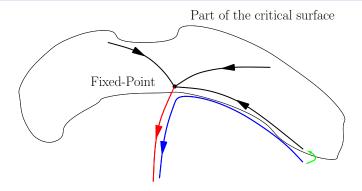
The Question

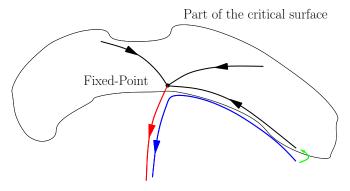
Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

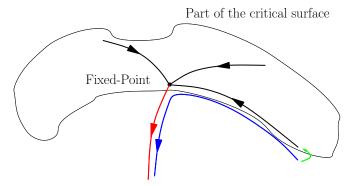
$$\partial_t S_{\star}[\varphi] = 0$$

- S_{\star} is independent of all scales, including Λ_0
- Trivially, we can send $\Lambda_0 \to \infty$

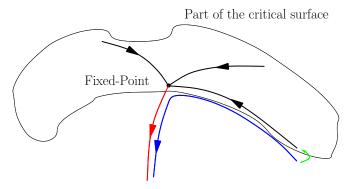




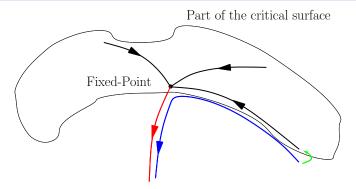
 \bullet Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$



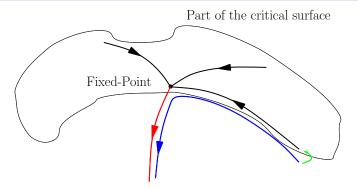
- \bullet Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$
- The trajectory splits in two:



- \bullet Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$
- The trajectory splits in two:
 - One part sinks into the fixed-point



- ullet Tune the trajectory towards the critical surface, as $\Lambda_0 o \infty$
- The trajectory splits in two:
 - One part sinks into the fixed-point
 - One part emanates out



- ullet Tune the trajectory towards the critical surface, as $\Lambda_0 o \infty$
- The trajectory splits in two:
 - One part sinks into the fixed-point
 - One part emanates out
- Actions on the RT are renormalizable

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

- QFTs should be understood in terms of 'theory space'
- Renormalizable QFTs follow from the solution to an equation

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

- QFT's should be understood in terms of 'theory spaces
- Renormalizable QETs follow from the solution to an equation.

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

- QFTs should be understood in terms of 'theory space'
- Renormalizable QFTs follow from the solution to an equation

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

- QFTs should be understood in terms of 'theory space'
- Renormalizable QFTs follow from the solution to an equation

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

- QFTs should be understood in terms of 'theory space'
- Renormalizable QFTs follow from the solution to an equation

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

- QFTs should be understood in terms of 'theory space'
- Renormalizable QFTs follow from the solution to an equation

The Key Point

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

Theory Space

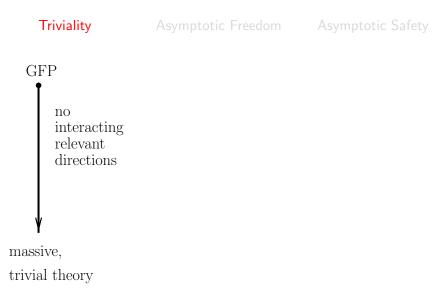
- QFTs should be understood in terms of 'theory space'
- Renormalizable QFTs follow from the solution to an equation

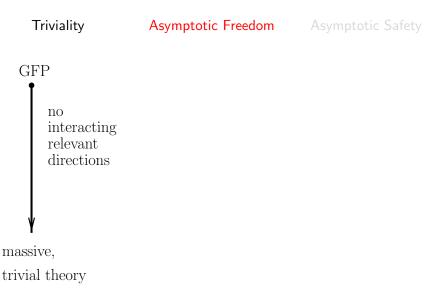
Triviality Asymptotic Freedom Asymptotic Safety

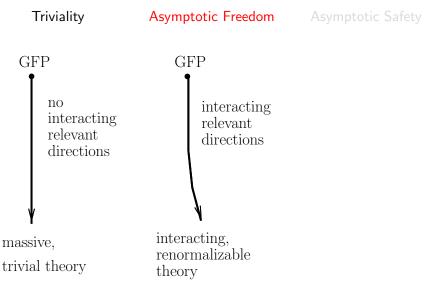
Triviality

Asymptotic Freedom

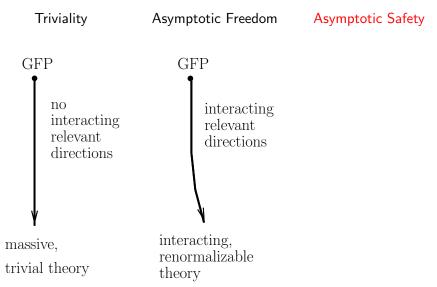
Asymptotic Safety







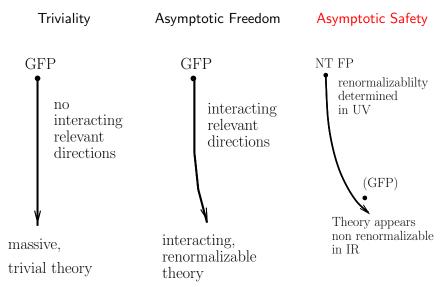
Renormalizability



Correlation Functions in the ERG

Correlation Functions in the ERG

Asymptotic Freedom etc.



```
Nonperturbativ
```

The four point coup

All other couplings are inclevantual

Perturbative

 \circ Formally, $\lim_{\Lambda_0\to\infty} f(\Lambda_{\rm conorm}/\Lambda_0) = 0$

Nonperturbative

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- ullet Order by order in perturbation theory, $\lambda arphi^4$ is renormalizable
- $\lambda_{\text{bare}} = \sum a_n \lambda_{\text{renorm}}^n + f(\Lambda_{\text{renorm}}/\Lambda_0)$
- Formally, $\lim_{\Lambda_0 \to \infty} f(\Lambda_{\text{renorm}}/\Lambda_0) = 0$
- Remaining pert. series is ambiguous, due to renormalons!

Nonperturbative

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- ullet Order by order in perturbation theory, $\lambda \varphi^4$ is renormalizable
- $\lambda_{\text{bare}} = \sum a_n \lambda_{\text{renorm}}^n + f(\Lambda_{\text{renorm}}/\Lambda_0)$
- ullet Formally, $\lim_{\Lambda_0 \to \infty} f(\Lambda_{\mathrm{renorm}}/\Lambda_0) = 0$
- Remaining pert. series is ambiguous, due to renormalons!

Nonperturbative

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories

Nonperturbative

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- Order by order in perturbation theory, $\lambda \varphi^4$ is renormalizable
- $\lambda_{\rm bare} = \sum a_n \lambda_{\rm renorm}^n + f(\Lambda_{\rm renorm}/\Lambda_0)$
- Formally, $\lim_{\Lambda_0 \to \infty} f(\Lambda_{\text{renorm}}/\Lambda_0) = 0$
- Remaining pert. series is ambiguous, due to renormalons!

Nonperturbative

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- ullet Order by order in perturbation theory, $\lambda arphi^4$ is renormalizable
- $\lambda_{\text{bare}} = \sum a_n \lambda_{\text{renorm}}^n + f(\Lambda_{\text{renorm}}/\Lambda_0)$
- Formally, $\lim_{\Lambda_0 \to \infty} f(\Lambda_{\text{renorm}}/\Lambda_0) = 0$
- Remaining pert. series is ambiguous, due to renormalons!

Nonperturbative

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- Order by order in perturbation theory, $\lambda \varphi^4$ is renormalizable
- $\lambda_{\text{bare}} = \sum a_n \lambda_{\text{renorm}}^n + f(\Lambda_{\text{renorm}}/\Lambda_0)$
- Formally, $\lim_{\Lambda_0 \to \infty} f(\Lambda_{\text{renorm}}/\Lambda_0) = 0$
- Remaining pert series is ambiguous, due to renormalons!

Nonperturbative

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- ullet Order by order in perturbation theory, $\lambda arphi^4$ is renormalizable
- $\lambda_{\text{bare}} = \sum a_n \lambda_{\text{renorm}}^n + f(\Lambda_{\text{renorm}}/\Lambda_0)$
- Formally, $\lim_{\Lambda_0 \to \infty} f(\Lambda_{\text{renorm}}/\Lambda_0) = 0$
- Remaining pert. series is ambiguous, due to renormalons!

Nonperturbative

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- ullet Order by order in perturbation theory, $\lambda arphi^4$ is renormalizable
- $\lambda_{\text{bare}} = \sum a_n \lambda_{\text{renorm}}^n + f(\Lambda_{\text{renorm}}/\Lambda_0)$
- Formally, $\lim_{\Lambda_0 \to \infty} f(\Lambda_{\text{renorm}}/\Lambda_0) = 0$
- Remaining pert. series is ambiguous, due to renormalons!

Nonperturbative

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- ullet Order by order in perturbation theory, $\lambda \varphi^4$ is renormalizable
- $\lambda_{\rm bare} = \sum a_n \lambda_{\rm renorm}^n + f(\Lambda_{\rm renorm}/\Lambda_0)$
- Formally, $\lim_{\Lambda_0 \to \infty} f(\Lambda_{\text{renorm}}/\Lambda_0) = 0$
- Remaining pert. series is ambiguous, due to renormalons!

Nonperturbative

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- ullet Order by order in perturbation theory, $\lambda arphi^4$ is renormalizable
- $\lambda_{\rm bare} = \sum a_n \lambda_{\rm renorm}^n + f(\Lambda_{\rm renorm}/\Lambda_0)$
- Formally, $\lim_{\Lambda_0 \to \infty} f(\Lambda_{\text{renorm}}/\Lambda_0) = 0$
- Remaining pert. series is ambiguous, due to renormalons!

Nonperturbative

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- ullet Order by order in perturbation theory, $\lambda \varphi^4$ is renormalizable
- $\lambda_{\rm bare} = \sum a_n \lambda_{\rm renorm}^n + f(\Lambda_{\rm renorm}/\Lambda_0)$
- Formally, $\lim_{\Lambda_0 \to \infty} f(\Lambda_{\text{renorm}}/\Lambda_0) = 0$
- Remaining pert. series is ambiguous, due to renormalons!

Gaussian Fixed-poi

The mass term is relevant.

The four-point coupling is relevant.

 $ilde{\phi}$ Non-trivial renormalizable theories exist along the $\lambda \varphi^{\alpha}$

Wilson-Fisher Fixed-point

with addition to the Gautte

The W-F FP possesses a single relevant direction

This can also be used to construct an RT

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RTI

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RT

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RTI

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RT

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RT

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RT

Gaussian Fixed-point

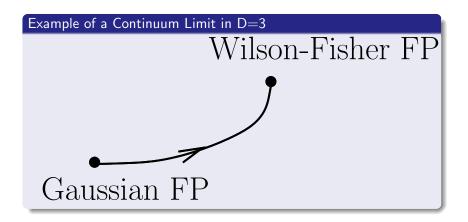
- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RT

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RT



- Question: What is the link
- Wilsonian formulation is in terms of the WEA
- Maraina in the west of this tells
- To convince you that the guestion is profound

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

My aims in the rest of this talk

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

My aims in the rest of this talk

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

My aims in the rest of this talk

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

My aims in the rest of this talk

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

My aims in the rest of this talk

Qualitative Aspects of the ERG

2 Renormalizability

Correlation Functions in the ERG

Correlation Functions in the ERG

Polchinski's Equation

Polchinski made a particular choice

$$\Psi = \Psi_{\mathrm{Pol}}$$

Pros

- The flow equation is simple
- α . The correlation functions can be extracted from $\mathcal{S}_{A=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $(\phi(x_1) \cdots \phi(x_n))$

Cons

• Polchinski made a particular choice

$$\Psi=\Psi_{\rm Pol}$$

Pros

- The flow equation is simple
- ullet The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Cons

• Polchinski made a particular choice

$$\Psi=\Psi_{Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Cons

• Polchinski made a particular choice

$$\Psi=\Psi_{\rm Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Cons

• Polchinski made a particular choice

$$\Psi=\Psi_{\rm Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Cons

• Polchinski made a particular choice

$$\Psi=\Psi_{\rm Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Cons

• Polchinski made a particular choice

$$\Psi=\Psi_{\rm Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Cons

• Polchinski made a particular choice

$$\Psi=\Psi_{\rm Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Cons

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{\mathrm{Pol}} + \psi$$

Choose

$$\eta \equiv \Lambda \frac{d \ln Z}{d \Lambda}$$

- ullet Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{\text{Pol}} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- ullet The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_{\star} \neq 0$

Cons

• Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- ullet The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_{\star} \neq 0$

Cons

• Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- \bullet The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_{\star} \neq 0$

Cons

• Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- \bullet The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_{\star} \neq 0$

Cons

• Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- \bullet The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_{\star} \neq 0$

Cons

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{\text{Pol}} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- ullet Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- ullet The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_{\star} \neq 0$

Cons

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- ullet The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_{\star} \neq 0$

Cons

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d \ln Z}{d\Lambda}$$

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- \bullet The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_{\star} \neq 0$

Cons

The Standard Correlation Functions

Composite Operators

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, e^{-S_{\Lambda_0}[\phi] + J \cdot \phi}$$

ullet Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

- Add additional source terms e.g. $J_2 \cdot \phi^2$
- Take derivatives with respect to J and J_2 to find

$$\langle \phi(x_1) \cdots \phi(x_n) \phi^2(y_1) \cdots \phi^2(y_m) \rangle_{\text{conn}}$$

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, \mathrm{e}^{-S_{\Lambda_0}[\phi] + J \cdot \phi}$$

ullet Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

- Add additional source terms e.g. $J_2 \cdot \phi^2$
- ullet Take derivatives with respect to J and J_2 to find

$$\langle \phi(x_1) \cdots \phi(x_n) \phi^2(y_1) \cdots \phi^2(y_m) \rangle_{\text{conn}}$$

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, \mathrm{e}^{-S_{\Lambda_0}[\phi] + J \cdot \phi}$$

ullet Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

- Add additional source terms e.g. $J_2 \cdot \phi$
- Take derivatives with respect to J and J_2 to find
 - $\langle \phi(x_1) \cdots \phi(x_n) \phi^2(y_1) \cdots \phi^2(y_m) \rangle_{\text{conn}}$
- Analyse the renormalization properties

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, \mathrm{e}^{-S_{\Lambda_0}[\phi] + J \cdot \phi}$$

ullet Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

- Add additional source terms e.g. $J_2 \cdot \phi^2$
- Take derivatives with respect to J and J_2 to find

$$\langle \phi(x_1) \cdots \phi(x_n) \phi^2(y_1) \cdots \phi^2(y_m) \rangle_{\text{conn}}$$

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, \mathrm{e}^{-S_{\mathsf{\Lambda}_{\mathsf{0}}}[\phi] + J \cdot \phi}$$

ullet Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

- Add additional source terms e.g. $J_2 \cdot \phi^2$
- Take derivatives with respect to J and J_2 to find

$$\langle \phi(x_1) \cdots \phi(x_n) \phi^2(y_1) \cdots \phi^2(y_m) \rangle_{\text{conn}}$$

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, \mathrm{e}^{-S_{\mathsf{\Lambda}_0}[\phi] + J \cdot \phi}$$

ullet Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

- Add additional source terms e.g. $J_2 \cdot \phi^2$
- Take derivatives with respect to J and J_2 to find

$$\langle \phi(x_1) \cdots \phi(x_n) \phi^2(y_1) \cdots \phi^2(y_m) \rangle_{\text{conn}}$$

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, \mathrm{e}^{-S_{\mathsf{\Lambda}_0}[\phi] + J \cdot \phi}$$

ullet Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

- Add additional source terms e.g. $J_2 \cdot \phi^2$
- Take derivatives with respect to J and J_2 to find

$$\langle \phi(x_1) \cdots \phi(x_n) \phi^2(y_1) \cdots \phi^2(y_m) \rangle_{\text{conn}}$$

- Introduce an external field, J, with undetermined scaling dimension, dj
- Allow for J-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int \!\! d^D\!x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

- Introduce an external field, J, with undetermined scaling dimension, d_J
- Allow for *J*-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int \! d^{D}\!x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

• A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

- Introduce an external field, J, with undetermined scaling dimension, d_J
- Allow for *J*-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int \! d^{D}\!x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

- Introduce an external field, J, with undetermined scaling dimension, d_J
- Allow for *J*-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int d^{D}x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

- Introduce an external field, J, with undetermined scaling dimension, d_J
- Allow for *J*-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int \!\! d^D \! x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

- Introduce an external field, J, with undetermined scaling dimension, d_J
- Allow for *J*-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int d^{D}x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

- The game
 - 9 Scarcii IO
 - T1 . .
- The Stra
- Notation
 - \circ ϕ , J dimensionful, φ , j dimensionless

The game

• Search for renormalizable, source-dependent solutions

The strategy

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_t T_{\star}[\varphi, j] = 0$
- Or from relevant (source-dependent) perturbations

Notation

• ϕ , J dimensionful, φ , j dimensionless

The game

• Search for renormalizable, source-dependent solutions

The strategy

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_t T_*[\varphi,j] = 0$
- Or from relevant (source-dependent) perturbations

Notation

 \bullet ϕ , J dimensionful, φ , j dimensionless

The game

• Search for renormalizable, source-dependent solutions

The strategy

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_t T_{\star}[\varphi, j] = 0$
- Or from relevant (source-dependent) perturbations

Notation

• ϕ , J dimensionful, φ , j dimensionless

The game

• Search for renormalizable, source-dependent solutions

The strategy

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_t T_{\star}[\varphi, j] = 0$
- Or from relevant (source-dependent) perturbations

Notation

 \bullet ϕ , J dimensionful, φ , j dimensionless

The game

• Search for renormalizable, source-dependent solutions

The strategy

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_t T_{\star}[\varphi,j] = 0$
- Or from relevant (source-dependent) perturbations

Notation

 \bullet ϕ , J dimensionful, φ , j dimensionless

The game

• Search for renormalizable, source-dependent solutions

The strategy

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_t T_{\star}[\varphi,j] = 0$
- Or from relevant (source-dependent) perturbations

Notation

ullet ϕ , J dimensionful, φ , j dimensionless

The game

• Search for renormalizable, source-dependent solutions

The strategy

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_t T_{\star}[\varphi,j] = 0$
- Or from relevant (source-dependent) perturbations

Notation

• ϕ , J dimensionful, φ , j dimensionless

The game

Search for renormalizable, source-dependent solutions

The strategy

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_t T_{\star}[\varphi,j] = 0$
- Or from relevant (source-dependent) perturbations

Notation

• ϕ , J dimensionful, φ , j dimensionless

• Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

• Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\bar{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi\right]$$

 $0 \quad f(n) = f(n^2)$ $0 \quad f = f(n^2)$

Two crucial points

. The solution only works if $d_J = (D+2-\eta_c)/2$

In dimensionnul variables

 $\lim_{\Lambda \to \infty} I_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

• Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-ar{j}\cdotarrho\cdot\delta/\deltaarphi} - 1
ight] \left[S_{\star}[\varphi] + rac{1}{2}\varphi\cdot f\cdot \varphi
ight]$$
 $= ar{j}(p) \equiv j(p)/p^2$

- The solution only works if $d_J = (D + 2 \eta_\star)/2$
- In dimensionful variables

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\bar{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1 \right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi \right]$$

- $\bar{j}(p) \equiv j(p)/p^2$
- $\varrho = \varrho(p^2), f = f(p^2)$

- The solution only works if $d_J = (D + 2 \eta_*)/2$
- In dimensionful variables

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

• Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\overline{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1 \right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi \right]$$

•
$$\bar{j}(p) \equiv j(p)/p^2$$

• $\rho = \rho(p^2), f = f(p^2)$

- The solution only works if $d_J = (D + 2 \eta_*)/2$
- In dimensionful variables

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

• Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\bar{j}\cdot\underline{\varrho}\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot\mathbf{f}\cdot\varphi\right]$$

- $\bar{j}(p) \equiv j(p)/p^2$
- $\varrho = \varrho(p^2), f = f(p^2)$

- The solution only works if $d_J = (D + 2 \eta_*)/2$
- In dimensionful variables

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

• Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\bar{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi\right]$$

- $\bar{j}(p) \equiv j(p)/p^2$
- $\varrho = \varrho(p^2)$, $f = f(p^2)$

- The solution only works if $d_J = (D + 2 \eta_{\star})/2$
- In dimensionful variables

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

• Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\overline{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi\right]$$

- $\bar{j}(p) \equiv j(p)/p^2$
- $\varrho = \varrho(p^2)$, $f = f(p^2)$

- The solution only works if $d_J = (D + 2 \eta_{\star})/2$
- In dimensionful variables

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

• Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\bar{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi\right]$$

- $\bar{j}(p) \equiv j(p)/p^2$
- $\varrho = \varrho(p^2)$, $f = f(p^2)$

- The solution only works if $d_J = (D + 2 \eta_{\star})/2$
- In dimensionful variables

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

• For each critical f-p, we can find the eigenperturbations

$$S_t[\varphi] = S_{\star}[\varphi] + \sum_i \alpha_i e^{\lambda_i t} \mathcal{O}_i[\varphi]$$

ullet Every eigenperturbation, \mathcal{O}_i has a source-dependent extension

$$ilde{\mathcal{O}}_i[arphi,j]=e^{ar{j}\cdotarrho\cdot\delta/\deltaarphi}\mathcal{O}_i$$

At the linear level

$$\mathcal{T}_t[\varphi,j] = \mathcal{T}_\star[\varphi,j] + \sum_i \alpha_i e^{\bar{\lambda}_i t} \tilde{\mathcal{O}}_i[\varphi,j]$$

• For each critical f-p, we can find the eigenperturbations

$$S_t[\varphi] = S_{\star}[\varphi] + \sum_i \alpha_i e^{\lambda_i t} \mathcal{O}_i[\varphi]$$

ullet Every eigenperturbation, \mathcal{O}_i has a source-dependent extension

$$\tilde{\mathcal{O}}_{i}[\varphi,j] = e^{\bar{j}\cdot\varrho\cdot\delta/\delta\varphi}\mathcal{O}_{i}$$

At the linear level

$$T_t[\varphi,j] = T_{\star}[\varphi,j] + \sum_i \alpha_i e^{\tilde{\lambda}_i t} \tilde{\mathcal{O}}_i[\varphi,j]$$

• For each critical f-p, we can find the eigenperturbations

$$S_t[\varphi] = S_{\star}[\varphi] + \sum_i \alpha_i e^{\lambda_i t} \mathcal{O}_i[\varphi]$$

ullet Every eigenperturbation, \mathcal{O}_i has a source-dependent extension

$$\tilde{\mathcal{O}}_i[\varphi,j] = e^{\bar{j}\cdot\varrho\cdot\delta/\delta\varphi}\mathcal{O}_i$$

At the linear level

$$T_t[\varphi,j] = T_{\star}[\varphi,j] + \sum_i \alpha_i e^{\tilde{\lambda}_i t} \tilde{\mathcal{O}}_i[\varphi,j]$$

• For each critical f-p, we can find the eigenperturbations

$$S_t[\varphi] = S_{\star}[\varphi] + \sum_i \alpha_i e^{\lambda_i t} \mathcal{O}_i[\varphi]$$

ullet Every eigenperturbation, \mathcal{O}_i has a source-dependent extension

$$\tilde{\mathcal{O}}_i[\varphi,j] = e^{\bar{j}\cdot\varrho\cdot\delta/\delta\varphi}\mathcal{O}_i$$

At the linear level

$$T_t[\varphi,j] = T_{\star}[\varphi,j] + \sum_i \alpha_i e^{\tilde{\lambda}_i t} \tilde{\mathcal{O}}_i[\varphi,j]$$

• For each critical f-p, we can find the eigenperturbations

$$S_t[\varphi] = S_{\star}[\varphi] + \sum_i \alpha_i e^{\lambda_i t} \mathcal{O}_i[\varphi]$$

ullet Every eigenperturbation, \mathcal{O}_i has a source-dependent extension

$$\tilde{\mathcal{O}}_i[\varphi,j] = e^{\bar{j}\cdot\varrho\cdot\delta/\delta\varphi}\mathcal{O}_i$$

At the linear level

$$T_t[\varphi,j] = T_{\star}[\varphi,j] + \sum_i \alpha_i e^{\tilde{\lambda}_i t} \tilde{\mathcal{O}}_i[\varphi,j]$$

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- I his source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

If we use the modified Polchinski equation with $\psi = -\eta arphi/2$

Renormalizability of S_A implies renormalizability of the standard correlation functions

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

If we use the modified Polchinski equation with $\psi = -\eta \varphi/2$

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

If we use the modified Polchinski equation with $\psi = -\eta \varphi/2$

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

If we use the modified Polchinski equation with $\psi = -\eta \varphi/2$

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

If we use the modified Polchinski equation with $\psi = -\eta \varphi/2$

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

If we use the modified Polchinski equation with $\psi = -\eta \varphi/2$

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

If we use the modified Polchinski equation with $\psi = -\eta \varphi/2$

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- The Wilsonian effective action is fundamental.
- QFT determines which quantities we should compute

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- The Wilsonian effective action is fundamental
- OFT determines which quantities we should compute

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

The Wilsonian effective action is fundamentalQFT determines which quantities we should compute

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

The Wilsonian effective action is fundamentalQFT determines which quantities we should compute

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

Questions

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the UPE play a role?
- Can a link be made with methods of CFT?

Other flow equations:

- What happens for other flow equations?
- What does this imply for gauge theories

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

- What happens for other flow equations?
- What does this imply for gauge theories?

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

- What happens for other flow equations?
- What does this imply for gauge theories?

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

- What happens for other flow equations?
- What does this imply for gauge theories?

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

- What happens for other flow equations:
- What does this imply for gauge theories

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

- What happens for other flow equations?
- What does this imply for gauge theories?

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

- What happens for other flow equations?
- What does this imply for gauge theories?

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

- What happens for other flow equations?
- What does this imply for gauge theories?

- It is possible to construct a gauge invariant cutoff, using Constraint higher derivatives
- W can be chosen to give a manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- ullet Ψ can be chosen to give a

manifestly gauge invariant flow equation

- No gauge fixing is required at any stage!
- The formalism is very complicated

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a
 - manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a
 - manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a

manifestly gauge invariant flow equation

- No gauge fixing is required at any stage!
- The formalism is very complicated

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

Ask not what quantum field theory can compute for you, but what you can compute for quantum field theory