The state of the art is to include also subleading (for instance, velocity-suppressed or spin-dependent) interactions, either in an attempt to resolve tensions between different experimental results, or to accommodate concrete models of dark matter. Here, electroweak corrections can have a large impact on the interpretation of data, via the mixing of suppressed into unsuppressed operators. In this talk I report on our effort to provide a complete framework of effective theories, connecting all relevant energy scales from the UV down to the nuclear scale. We also calculate the electroweak operator mixing for dark matter furnishing a general representation of the electroweak gauge group, and I will show preliminary results of our analysis.