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Concept of Renormalization Group

In perturbative QFT we have to regularise the divergences that occur in
loop diagrams.

Dimensional regularisation ⇒ Analytically continue the space-time
dimension to d-dimensions.
However, still need the action to be dimensionless [S ] = 0

Rescale coupling constant in such a way that it is dimensionless in
d-dimensions g → gµ

ε
2

To do this we need to introduce an arbitrary energy scale µ
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Concept of Renormalization Group

The theory of RG postulates that one can change the arbitrary scale of the
theory in such a way that the physics on energy scales < µ remains
constant.

Action at a particular energy scale is known as the Wilsonian Effective
Action S [φ;µ, gi ]

Key RG Equation:

S
[
Z (µ)

1
2φ;µ, gi (µ)

]
= S

[
Z (µ′)

1
2φ;µ′, gi (µ

′)
]

(1)
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Concept of Renormalization Group

Summary: QFT is now a regularised theory but depends on an arbitrary
scale µ. This is a problem as physical quantities cannot depend on
arbitrary scales.

Resolution is via renormalization group equation which requires and is
deduced from

µdΓ0(n)

dµ = 0 (as Γ0(n) is independent of µ)

But Γ(n) are not unconnected as φ0 =
√

Zφφ ⇒ Γ0(n) = Z
n
2
φ Γ(n)

⇒ µ ∂
∂µ(Z

n
2
φ Γ(n)) = 0
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Concept of Renormalization Group

From this we can deduce

Callan-Symanzik Equation

0 =

[
µ
∂

∂µ
+ µ

∂g

∂µ

∂

∂g
+ µ

∂m

∂µ

∂

∂m
+

n

2

µ

Zφ

∂Zφ
∂µ

]
Γ(n) (2)

β(g) = µ
∂g

∂µ︸ ︷︷ ︸
β−function

γm(g) =
µ

m

∂m

∂µ︸ ︷︷ ︸
mass anomalous dimension

γφ(g) = µ
∂(ln(Zφ))

∂µ︸ ︷︷ ︸
wavefunction anomalous dimension

All renormalization group functions are renormalization scheme dependent.

But, at two loops the coefficients of the β−function are scheme
independent in single coupling theories.
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Renormalization Group Flows

In perturbation theory (In 4−dimensions),

β(g) = (d − 4)g + Ag2 + Bg3 + Cg4 + . . . (3)

(A < 0⇐ QCD)

General property: There exists a value g∗ for which β(g∗) = 0, which are
known as fixed points. These underline phase transitions.

Example

If we have β(g) = Ag2 + Bg3, g∗ = −A
B > 0

In QCD, A and B have opposite signs for 9 ≤ Nf ≤ 16
(Conformal window)
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Renormalization Group Flows

Conformal window: 9 ≤ Nf ≤ 16 The range of Nf values for which the
nontrivial fixed point exists.
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Renormalization Group Flows

β(g) can have many forms,

As µ increases, flow is away from g∗

and to 0 if g < g∗. This is called

ultraviolet flow.

Reversing flow direction, the infrared

flow is to g∗ 6= 0, which is therefore

infrared stable.
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Critical Exponents

If the β−function has a nontrivial fixed point at the value g∗, then the
renormalization group functions evaluated at g∗ are termed
critical exponents which are thought to be renormalization group
invariants.

Critical exponents can also be found using scaling relations.

Critical exponents describe the behaviour of physical quantities near
continuous phase transitions.

ω = β′(g∗)︸ ︷︷ ︸
measure of corrections to scaling

η = γφ(g∗)

ρ = γψ̄ψ(g∗)︸ ︷︷ ︸
Quark mass anomalous dimension exponent

is of primary interest because of its relation to the definition of conformal theory
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Universality

A feature of fixed points is that there can be more than one theory giving
the same critical exponents. If two theories have a common fixed point
with the same critical exponents they are said to be in the same
universality class.
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Quark Mass Anomalous Dimension

The quark mass anomalous dimension is deduced from the renormalization
of the associated quark mass operator ψ̄ψ.

This is renormalized by inserting it into a quark 2-point function and
ensuring that the Green’s function is rendered finite with respect to the
particular renormalisation scheme of interest.

= 〈ψ(p)ψ̄(q)[ψ̄ψ](r)〉
∣∣∣∣
p2=q2=−µ2

The restriction above indicates evaluation at the
symmetric point which is defined as
p2 = q2 = r 2 = −µ2, implying pq = 1

2
µ2

γψ̄ψ(g) = µ ∂
∂µ lnZψ̄ψ
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Motivation

If one computes the critical exponents in different renormalization schemes,
say MS and MOMh, at the Banks-Zaks fixed point then both expressions
ought to be the same. This is because ultimately the critical exponent is a
physical quantity and hence a renormalisation group invariant.

The aim is to see if the numerical values for the exponents in various
schemes show the consistency which would indicate renormalisation group
invariance.

Also want to look at the specific range of values of the number of quark
flavours, Nf , where the exponents appear to be scheme independent.
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Critical exponent ω at the Banks-Zaks fixed point

ωL = 2β′L(g∗, 0)
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Critical exponent ω at the Banks-Zaks fixed point

ωL = 2β′L(g∗, 0)
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Critical exponent ρ at the Banks-Zaks fixed point

ρL = −2γψ̄ψL(g∗, 0)
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Critical exponent ρ at the Banks-Zaks fixed point

ρL = −2γψ̄ψL(g∗, 0)
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Critical exponent ρ at the Banks-Zaks fixed point

ρL = −2γψ̄ψL(g∗, 0)
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Conclusions

Scheme dependence appears to disappear for values of Nf near the upper
end of the conformal window. This is where perturbation theory is at its
most reliable.

In the main the MOMggg scheme appears mostly to be the outlier class.
This is not unreasonable due to the nature of the scheme. It is based on
ensuring that the triple gluon vertex has no O(a) corrections at the
completely symmetric point. Therefore, with the associated
renormalization group functions their content is necessarily weighted by
gluonic rather than quark contributions.

Therefore, for the quark mass anomalous dimension the quark content is
not dominant.
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Thank you!
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